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Abstract

In this paper, the effect of the
inclusion of a feature selection stage
previous to the RBFNs design is
analyzed.
Two different RBFNs design
algorithms have been used: a
cooperative-competitive scheme,
where each individual is a single
neuron, and a Pittsburgh evolution-
ary scheme, where each individual
is a complete network. On the other
hand, six different feature selection
algorithms (three filter and three
wrapper) have been considered.
The experimentation shows the gen-
eralization ability of the obtained
RBFNs (with and without applying
feature selection). Furthermore the
inclusion of an FS stage leads to
less complicated network structure
and thus increases the simplicity
of the system and the efficiency in
processing data.

Keywords: RBFNs, Feature Selec-
tion, Fuzzy Rule Base Systems.

1 Introduction

Radial Basis Function Networks (RBFNs) are
one of the most important Artificial Neu-
ral Network paradigms in the machine learn-
ing field. They have been successfully used
in many areas such as pattern classification,
function approximation, and time series pre-

diction, among others. RBFNs have interest-
ing characteristics such as their simple topo-
logical structure and their high degree of in-
terpretability. The functional equivalence be-
tween RBFNs and TSK Fuzzy Inference Sys-
tems (FISs) have been established in [8][18].

FISs, also known as Fuzzy Rule-Based Sys-
tems (FRBSs), are a popular computing
framework based on the concepts of Fuzzy
Set Theory, fuzzy IF-THEN rules, and fuzzy
reasoning [9][22]. The basic structure of an
FRBS consists of three conceptual compo-
nents: a rule base, containing a set of fuzzy
rules; a database, which defines the member-
ship functions used in the fuzzy rules and a
fuzzy reasoning method, which performs the
inference procedure upon the rules and given
facts to derive a reasonable output.

On the other hand, any inductive supervised
learning algorithm has to face up to two dif-
ficulties when dealing with high-dimensional
problems: firstly, it should be able to ade-
quately deal with a very high search space
(since an increase in the number of variables
leads to an exponential grow in the fuzzy rules
search space); secondly, the obtained system
could turn to be too complex, being this one
of the crucial aspect in the interpretability of
FRBS and, consequently, RBFNs.

Both difficulties can be solved by using a
preprocessing algorithm such as a feature
selection (FS) process. An FS process can
be defined as a preprocessing algorithm that
searches for a subset of the complete set of
variables in order to obtain simpler systems
with a greater precision in the forecasting.
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Genetic Algorithms (GAs) [5] for instance,
have been successfully applied to carry out
FS processes [1][3][14][19][23].

In this paper, we study and analyze the ef-
fect of FS procedures in the evolutionary de-
sign of RBFNs for high-dimensional classifica-
tion problems. Different RBFNs design meth-
ods for classification problems have been set
out in the specialized bibliography, some of
them using evolutionary algorithms (see [2],
[11], [13] among others). FS algorithms have
also been applied in order to reduce the com-
plexity of the obtained RBFNs [6]. In this
paper a feature ranking algorithm based on a
separability correlation measure is considered
and the RBFN design method is iteratively
applied with a increasing set of features in or-
der to select the best RBFN generalization
results. In our paper, six different FS algo-
rithms have been used to pre-process a set of
classification databases, and, after this, gen-
eralization abilities of the obtained RBFNs,
with and without applying FS, are compared.

The contribution is organized as follows: Sec-
tion 2 introduces some preliminary concepts;
Section 3 describes the six FS methods and
the two RBFN evolutionary learning meth-
ods used in this work; the experimental study
carried out is shown in Section 4; finally, con-
clusions are presented in Section 5.

2 Preliminary Concepts

2.1 Feature selection

Feature Selection (FS) techniques select the
best subset of features from the original set.
The features that are important to maintain
the concepts in the original data are selected
from the entire feature set.

Besides the search algorithm, how to de-
termine the importance of an individual
feature or a feature subset is the key to any
FS technique. Depending on this quality
function, the FS algorithms can be classified
as [10],[12]: filter models, that use evaluation
measures based on separability of classes;
and wrapper models, that use an estimation

of the precision in the classification process
(designing a classification system from the
selected variables).

GAs have been developed for feature selection
by using both filter and wrapper approaches
[1][3][7][14][19][23].

2.2 Classification with Radial Basis
Function Networks

An RBFN is a feed-forward neural network
with three layers: an input layer with n nodes,
a hidden layer with m neurons or RBFs, and
an output layer with one or several nodes.
The m neurons of the hidden layer are acti-
vated by a radially-symmetric basis function,
φi : Rn → R, which can be defined in sev-
eral ways, being the Gaussian function the
most widely used: φi(~x) = φi(e−(‖~x−~ci‖/di)

2
),

where ~ci ∈ Rn is the center of basis function
φi, di ∈ R is the width (radius), and ‖‖ is
typically the Euclidean norm on Rn. This ex-
pression is the one used in this paper as Ra-
dial Basis Function (RBF). The output nodes
implement the following function:

fi(~x) =
m∑

i=1

wijφi(~x) (1)

In a classification environment, the RBFN has
to perform a mapping from an input space Xn

to a finite set of classes Y with k classes. For
this, a typical training set S is defined as:

S = {(~xu, yu)|xu ∈ Xn,

y ∈ Y, u = 1, . . . , p} (2)

where ~xu is the feature vector and yu is the
class it belongs to. Usually, in the classifica-
tion scenario, the number of outputs of the
RBFN corresponds to the number of classes
(k). In order to train the network, the class
membership yu is encoded into a binary vec-
tor through the relation ~zi

u = 1 iff yu = i, and
~zi
u = 0 otherwise. The output class of the net-

work will be the output node with maximum
activation.

1152 Proceedings of IPMU’08



3 Feature Selection and
Evolutionary RBFNs considered
algorithms

3.1 Feature Selection

In this paper we have used six FS algorithms
[12]:

• The FS-LVF algorithm. It is a clas-
sic, non-evolutionary filter stochastic
method, which uses the inconsistency
measure as quality function, and Las Ve-
gas as search procedure.

• The FS-Focus algorithm. It is a classic,
non-evolutionary filter method, which
uses the inconsistency measure as qual-
ity function and considers all the combi-
nation among N features, starting from
an empty subset.

• The FS-Forward and FS-Backward al-
gorithms. They are two classic, non-
evolutionary wrapper greedy methods.
As quality function they use the precision
estimation provided by the K-NN algo-
rithm [4] using the selected features.

• The FS-GGA algorithm. It is a gen-
erational GA filter with binary repre-
sentation, that uses k-tournament selec-
tion, one-point crossover, and one-point
binary mutation. The fitness function is
defined as ((1−λ)∗ inconsistency rate+
λ ∗ selected features), where λ and
inconsistency rate are given as input pa-
rameters.

• The FS-SSGA algorithm. It is a steady
state GA wrapper with integer codifica-
tion. It uses the one-point crossover op-
erator, random integer mutation, and as
fitness function, the precision estimation
provided by the K-NN algorithm [4] us-
ing the selected variables represented in
the chromosome.

3.2 CO2RBFN: a
cooperative-competitive hybrid
algorithm for RBFNs design

In the specialized bibliography few
cooperative-competitive procedures have
been implemented up to now [17],[20],[21]
for RBFNs design. The difficulty of this
kind of methods lies in the credit assignment
strategy which must promote competition
among similar RBFs and cooperation among
different ones at the same time.

A cooperative-competitive design of RBFNs
(CO2RBFN) for solve classification problems
was proposed in [15]. In this approach, each
individual of the population represents a ba-
sis function, thus the entire population rep-
resents the final solution, and the individuals
cooperate towards a definitive solution. How-
ever, they also compete for survival, since if
their performance is poor they will be elimi-
nated. This cooperation-competition scenario
reinforces the local operation (neurons with
local response) and the interpretability of this
kind of network, and establishes an important
design guideline in this algorithm.
In order to measure the credit assignment of
an individual, three factors have been pro-
posed to evaluate the role of the i-th RBF
in the network:

Contribution, ai: is determined by consid-
ering the weight, wi, and the number
of patterns of the training set inside its
width.

Error, ei: is obtained as the proportion of
wrongly classified patterns inside the i-
th RBF radius.

Overlapping, oi: the overlapping of the i-th
RBF is calculated as the sum of the over-
lapping between the i-th RBF and the
others.

In this proposal four operators have been pro-
posed:

Remove: it substitutes bad individuals by
new ones located in the center of the
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largest zones wrongly classified outside of
any RBF width or by new ones randomly
created.

Mutation with Information: it modifies
the RBFs width and coordinates of their
centers. The objective of the width mod-
ification is that most of the patterns be-
longing to the RBF class will be inside
the RBF radius. The center is varied in
order to approximate it to the average
of the patterns which belong to the RBF
class and are inside its radius.

Mutation without Information: it modi-
fies the width and some coordinates of
the center by means of a random quan-
tity.

Null: no operator is applied to the RBF
when this operator is selected .

These operators will be applied to the whole
population of RBFs. In order to decide the
operators’ application probability over a cer-
tain RBF, the algorithm uses a Mamdani
FRBS whose inputs are the parameters which
determine the credit assignment to each RBF
and the outputs are the probability of apply-
ing the operators. To design the set of rules,
we take into account the fact that an RBF is
worse if its contribution (ai) is low, its error
(ei) is high, and its overlapping (oi) is also
high. On the other hand, an RBF is better
when its contribution is high, its error is low
and its overlapping is also low. Therefore as
the associated RBF becomes worse, the elimi-
nation probability increases. However, as the
associated basis function improves the null
operator application probability increases.
The main steps of CO2RBFN are shown in
figure 1. In step 2, the well-known LMS algo-
rithm is used.

3.3 The EvRBF algorithm

EvRBF [16] is a steady state evolutionary al-
gorithm that includes elitism. It follows the
Pittsburgh scheme, in which each individual

1. Initialize RBFN
2. Train RBFN
3. Evaluate RBFs
4. Apply operators to RBFs
5. Substitute the RBFs that were

eliminated
6. Select the best RBFs
7. If the stop-condition is not

verified go to step 2

Figure 1: Main steps of CO2RBFN.

is a full RBFN whose size can vary, while pop-
ulation size remains equal.

EvRBF codifies in a straightforward way the
parameters that define each RBFN, using an
object-oriented paradigm; for this reason, it
includes operators for recombination and mu-
tation that directly deal with the neurons,
centers and widths themselves.

Recombination operators (X FIX and
X MULTI) interchange information between
individuals, trying to find the building blocks
of the solution.

X FIX: replaces a sequence of hidden neu-
rons in RBFN R1 by a sequence of the
same size taken from RBFN R2.

X MULTI: replaces with probability
px multi every hidden neuron in RBFN
R1 by a randomly chosen neuron coming
from net R2.

Mutation operators (centers and width modi-
fication: C RANDOM and R RANDOM) use
randomness to increase diversity generating
new individuals so that local minima can be
avoided. Furthermore, EvRBF tries to deter-
mine the correct size of the hidden layer using
the operators ADDER and DELETER to cre-
ate and remove neurons, respectively.

C RANDOM: modifies RBF centers, al-
lowing to explore the input space. It
swaps the current value, ci, for a ran-
dom value following an uniform proba-
bility function.

R RANDOM: modifies the widths using an
uniform probability function.
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ADDER: adds a single neuron with random
center and width, using an uniform prob-
ability function. Selection pressure will
reward or penalize nets containing the
new neuron according to its effect in the
fitness function.

DELETER: randomly removes neurons
from the RBFN to which is applied.

The exact number of neurons affected by these
operators (except ADDER) is determined by
their internal application probabilities.

EvRBF incorporates tournament selection
for reproduction. The skeleton of EvRBF,
showed in figure 2, is commonly used in evolu-
tionary algorithms. The fitness function mea-
sures the generalization capability of each in-
dividual as the percentage of samples it cor-
rectly classifies. When comparing two indi-
viduals, if and only if both two individuals
have exactly the same error rate, the one
with less neurons is said to be better. As
in CO2RBFN the LMS algorithm is used in
order to train individuals.

1. Create, train, evaluate and set
fitness of first generation.

2. Until stop condition is reached
(a) Select and copy individuals

from current population.
(b) Modify, train, and set

fitness of the copies.
(c) Replace worst individuals by

the copies.
3. Train last generation with

training and validation data
4. Use test data set to obtain the

generalization ability of each
individual.

Figure 2: General skeleton of EvRBF.

4 Experimentation and analysis of
results

For the experimentation carried out, four
databases1 have been used: Ionosphere (351
instances, 34 features, 2 classes);Sonar (208
instances, 60 features, 2 classes);Vehicle (846
instances, 18 variables, 4 classes) and Wdbc
(570 instances, 30 features, 2 classes).

The 10-fold cross-validation (10-fcv) method
has been used to estimate the accuracy of
FS and RBFNs design algorithms and every
algorithm has been run five times.

The preprocess methods have been executed
as follows: in all necessary cases, the num-
ber of nearest neighbours used to estimate the
accuracy is 1. Particularly, for the FS-LVF
algorithm the number of loops executed be-
fore obtain the final solution has been 77*n
and the inconsistency rate has been set to 0
(too for the FS-Focus algorithm). For both
genetic algorithms the number of evaluations
performed has been established to 5000 and
the population size to 100. For the FS-GGA
algorithm the parameter λ used in the fit-
ness function that weighs up the precision rate
and the feature reduction has been 0.1, the
crossover probability: 0.6, the mutation prob-
ability: 0.01 and the number of best features
selected before applying the random tourna-
ment to selected one of them 5. Finally, for
the FS-SSGA, the number of features to be se-
lected was established for each data set as the
same number obtained by the LVF method.

CO2RBFN has been executed using its typical
value parameters [15]: 200 generations and 8
individual per generation. The random quan-
tities used in mutation operators are set be-
tween 0.05 and 0.25 of the widths. As in pre-
vious works [16], EvRBF has been executed
using 100 generations and 100 individuals per
generation; the probabilities of operators were
0.4 for recombination (2 operators), and 0.05
for mutation (4 operators); internal applica-
tion probabilities (for mutator that required

1Obtained from the UCI Repository
http://www.ics.uci.edu/∼mlearn/MLRepository.html
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Table 1: Experimental Result with Ionosphere database

Preprocessing
CO2RBFN EvRBFN

Nodes Param. Test (%) Nodes Param. Test (%)
none 8 296 93.25 10 370 96.65
FS-GGA 8 80 83.39 12 120 93.55
FS-LFV 8 96 87.95 10 120 93.56
FS-SSGA 8 96 89.98 9 108 95.16
FS-BackwardLVO 8 256 91.61 14 448 96.34
FS-Focus 8 56 88.57 15 105 93.70
FS-ForwardLVO 8 48 92.49 9 54 95.05

Table 2: Experimental Result with Sonar database

Preprocessing
CO2RBFN EvRBFN

Nodes Param. Test (%) Nodes Param. Test (%)
none 8 504 75.27 6 378 70.20
FS-GGA 8 136 70.47 8 136 80.49
FS-LFV 8 160 73.42 8 160 79.30
FS-SSGA 8 160 72.45 9 180 81.40
FS-BackwardLVO 8 336 73.68 10 420 81.34
FS-Focus 8 56 75.80 6 42 82.94
FS-ForwardLVO 8 72 74.51 4 36 80.90

them) were set to 0.5; tournament size was
set to 2, and 30% of individuals were replaced
in every new generation.

Tables 1, 2, 3, and 4 show the results obtained
by CO2RBFN and EvRBFN algorithms, with
and without a preprocess FS method. An
analysis of the results shows that:

• The evolutive algorithms for the RBFNs
design have obtained good results with
high-dimensional problems, and reach
precise solutions without using a FS
method.

• The coevolutive proposal, CO2RBFN,
obtains good results without FS.

• The evolutive proposal, EvRBFN, some-
times improves with preprocessing since
its Pittsburgh evolutionary scheme is
more sensitive to increases in the dimen-
sionality; thus, it yields better results
when FS is used to reduce the dimension-
ality.

• The best results are obtained using the
FS-SSGA and the FS-ForwardLVO algo-
rithms due to their fitness function is

based on distances, this is, in the same
way RBFNs operate.

• In all the databases the inclusion of a
FS stage before the evolutionary RBFN
design approaches reduces the execution
time in the design process, leads to less
complicated network structure and thus
increases efficiency in processing data.

• Even more, although the evolutionary
proposals in most of the databases con-
sidered do not require a preprocessing
stage to address high-dimensional prob-
lems, it is needed for obtaining a sim-
pler fuzzy system, with fewer conditions
in the rule antecedents, maintaining good
classification rates.

5 Conclusions

In this paper, the behaviour of RBFNs de-
sign methods including a previous preprocess-
ing stage (with six different feature selection
algorithms) have been analyzed.

Three filter and three wrapper feature selec-
tion algorithms have been applied, and two
types of RBFNs design algorithms have been
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Table 3: Experimental Result with Vehicle database

Preprocessing
CO2RBFN EvRBFN

Nodes Param. Test (%) Nodes Param. Test (%)
none 8 184 58.35 44 1012 57.48
FS-GGA 8 56 51.96 50 600 59.72
FS-LFV 8 104 53.36 55 715 60.29
FS-SSGA 8 104 58.56 47 611 61.33
FS-BackwardLVO 8 144 60,09 56 1008 68.08
FS-Focus 8 96 50.26 58 696 61.92
FS-ForwardLVO 8 96 60.85 54 648 65.11

Table 4: Experimental Result with Wdbc database

Preprocessing
CO2RBFN EvRBFN

Nodes Param. Test (%) Nodes Param. Test (%)
none 8 264 96.27 7 231 95.51
FS-GGA 8 80 95.85 12 120 96.42
FS-LFV 8 88 94.51 8 88 92.76
FS-SSGA 8 88 95.53 6 66 94.97
FS-BackwardLVO 8 240 96.37 8 240 95.47
FS-Focus 8 72 94.76 10 90 93.60
FS-ForwardLVO 8 104 96.48 9 117 95.40

considered: a cooperative-competitive scheme
where each individual is a neuron, and a Pitts-
burgh evolutionary scheme where individuals
are networks.

The experimentation carried out have shown
that the algorithms used to design RBFNs
deal well with high dimensionality and the
results obtained by these algorithms with or
without preprocessing stage are similar. Nev-
ertheless, the FRBSs extracted from the solu-
tion reached by the RBFN design algorithms
is simpler when a feature selection stage is
applied. The use of a FS wrapper approach
and a quality measure based on distance (as
the k-nearest neighbour rule) is important as
preprocessing stage in the RBFN design.
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