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Abstract 

A novel multi-objective cooperative 

coevolutionary approach aimed at gen-

erating a set of Mamdani-type fuzzy 

rule-based systems (FRBSs) with opti-

mal trade-offs between accuracy and in-

terpretability is proposed. Interpretabil-

ity is measured both in terms of com-

plexity of the rule base (RB) and of in-

tegrity of the data base (DB). In the 

framework of the cooperative coevolu-

tionary approach, multi-objective opti-

mization of RB and DB is performed in 

two distinct populations. Individuals of 

the two populations cooperate among 

them through representatives properly 

extracted at each generation. Results of 

the application of our approach to the 

well-known Mackey-Glass chaotic time 

series dataset are shown and discussed. 

Keywords: multi-objective evolutionary algo-

rithms, cooperative coevolution, fuzzy rule-

based systems. 

1     Introduction 

In the last years, the issue of automatic genera-

tion of Mamdani-type FRBSs from data has 

been widely studied in the literature and several 

different approaches have been proposed. A 

Mamdani-type FRBS consists of a completely 

linguistic RB, a DB containing the fuzzy sets 

associated with the linguistic terms used in the 

RB and a fuzzy logic-based inference engine. A 

large number of papers have focused on learning 

techniques that guarantee the generation of 

FRBSs which are both accurate and interpret-

able [3]. In the literature, interpretability of an 

FRBS has been defined in different ways. A 

common approach is to distinguish between 

interpretability of fuzzy partitions, also known 

as integrity [6], and interpretability of rules, also 

known as complexity [5]. Complexity is usually 

defined in terms of simple measures, such as 

number of rules in the RB and number of lin-

guistic terms in the antecedent of rules. On the 

other hand, integrity depends on some properties 

of the fuzzy partition, such as coverage, distin-

guishability and normality, which may be diffi-

cult to measure [6].  

Since accuracy and interpretability are in gen-

eral conflicting goals, multi-objective evolution-

ary algorithms (MOEAs) have gained attention 

in the framework of FRBS generation [10]. 

Typically, MOEAs search for Pareto-optimum 

FRBSs by concurrently optimizing accuracy 

(e.g., increasing classification rate in classifica-

tion or decreasing error in regression) and some 

interpretability indices.  

Most of the existing MOEAs evaluate interpret-

ability in terms of either complexity of the RB 

or integrity of the DB; few approaches perform 

RB and DB identification by taking both the 

aspects into account [8][9][13]. On the other 

hand, the RB and DB identification processes 

can be considered as complementary and inter-

dependent subtasks of the same main problem, 

i.e., FRBS generation, and, therefore, they 

should be approached separately, but concur-

rently.  

In this paper, we exploit a multi-objective coop-

erative coevolutionary algorithm (MOCCA) 

[12] to achieve a trade-off among three objec-

tives: accuracy, complexity and integrity. Our 

algorithm concurrently evolves two separate 

populations (species), composed by individuals 
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which, respectively, encode rules and partitions. 

The dependencies between the species are man-

aged by selecting proper representatives that 

concur to compute the fitness of the other spe-

cies. We exploit interpretability measures and 

chromosome coding defined in our previous 

works [1][2][5]. Further, we introduce a novel 

approach to the selection of representatives. To 

test the effectiveness of our approach, we use 

the well-known Mackey-Glass (MG) chaotic 

time series. 

The paper is organized as follows. In Section 2, 

we briefly review previous work on related top-

ics. Section 3 details our proposed algorithm. In 

Section 4, we show the experimental results. 

Finally, in Section 5 we draw conclusions. 

2     Previous Work 

Cooperative coevolutionary techniques are 

based on the observation that splitting complex 

tasks into subtasks may help concentrate the 

exploration of the search space around useful 

niches and prevent loss of diversity in the popu-

lation [12]. Since the cooperative coevolutionary 

approach assigns an isolated species to each 

subtask, splitting must take care of existing de-

pendencies occurring among the subtasks. These 

dependencies are usually critical to fitness 

evaluation. Complete solutions to a problem are 

generated by coupling individuals of a species 

with individuals of the other species. Hence, 

during the evolution, species cooperate with 

each other by means of representatives that are 

used to assess the fitness of complete solutions. 

The first application of a single-objective coop-

erative coevolutionary algorithm for FRBS gen-

eration from data has been discussed in [11]. 

Here, the FRBS generation task is split into two 

subtasks: learning the DB and learning the RB. 

The two subtasks are performed by two separate 

species: individuals in the RB species identify 

the linguistic rules of the FRBS and individuals 

in the DB species define the meanings associ-

ated with the linguistic terms used in the RB. 

Thus, solutions to the FRBS generation problem 

are obtained by composing an individual be-

longing to the DB species with a representative 

from the RB species, and vice versa. The repre-

sentatives are selected probabilistically accord-

ing to their fitness. The approach proposed in 

[11] takes only accuracy into account and is 

based on simple elitist single-objective genetic 

algorithms that evolve the two species concur-

rently. 

In [8], cooperative coevolution for Takagi-

Sugeno-type FRBS generation is tackled by 

using a hierarchical approach. Here, four species 

at different hierarchical levels encode fuzzy 

partitions, rules, RBs and FRBSs, respectively. 

Since individuals of the FRBS species are com-

posed by an RB and a DB identified by indi-

viduals at the lower levels, collaboration among 

species is performed without the need for repre-

sentatives. Therefore, the fitness of an individual 

of a given species depends upon the fitness of 

individuals at higher levels. Similar to [11], the 

approach proposed in [8] considers accuracy as 

the only objective of the search process. Some 

interpretability and complexity properties, how-

ever, are enforced by means of constrained op-

timization. 

Multi-objective cooperative coevolutionary ap-

proaches to FRBS generation have been recently 

proposed in [15][16]. In [15], a MOCCA was 

used to identify systems of classifiers. In [16], a 

similar algorithm was applied to the generation 

of Takagi-Sugeno-type FRBSs. In both works, a 

species is used to evolve the RB and another 

species is used to evolve parameters of Gaus-

sian-shaped fuzzy sets. Further, in [15], rule 

selection is performed by using a third species. 

As in [11], complete solutions are built by se-

lecting representatives from the species. Al-

though both these works take the accuracy-

interpretability issue into account, integrity is 

not an objective of the evolution, but rather a 

constraint which is enforced by using traditional 

similarity measures (for instance, during evolu-

tion, fuzzy sets similar to a large extent are 

merged). A similarity-based technique is also 

exploited for RB simplification. The three objec-

tives of the evolutionary optimization are accu-

racy and two complexity measures based on 

number of rules and number of fuzzy sets, which 

are strongly dependent on the simplification 

step. 
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3     Proposed approach 

Similar to [11][16], our approach exploits two 

species, namely 
1P  and 

2P , which contain indi-

viduals encoding, respectively, rules and parti-

tions. Thus, 
1P  and 

2P  evolve to determine RBs 

and DBs, respectively. NSGA-II, one of the 

most popular MOEAs [7], is used to evolve the 

two species separately, taking accuracy and 

interpretability into account for each species. 

Accuracy is measured in terms of mean square 

error (MSE) between the real and predicted val-

ues in both 
1P  and 

2P . The interpretability index 

is species-dependent: in 
1P , it is defined in terms 

of complexity of the rules as in [5], i.e., by 

counting the number of linguistic terms in the 

antecedents of all the rules; in 
2P , it is defined 

in terms of integrity and measured by averaging 

the index introduced in [1] over all the parti-

tions. The choice of different objectives for the 

two species allows effectively exploring the 

Pareto-optimum fronts on the overall three ob-

jectives: accuracy, complexity and integrity. 

Individuals in 
1P  and 

2P  represent partial solu-

tions. A complete FRBS is generated by cou-

pling any of the individuals in 1P  with any of the 

individuals in 2P . Obviously, assessing the fit-

ness values of each possible FRBS at each gen-

eration is computationally very expensive. Thus, 

to speed up computation, we limit the fitness 

evaluation to a subset of possible FRBSs. This 

subset is obtained by first extracting two indi-

viduals from each species and then combining 

these individuals with all the individuals of the 

other species. One of the two individuals is cho-

sen randomly, while the other corresponds to the 

representative (selected as explained below) of 

the previous generation. Hence, we perform a 

number of evaluations equal to two times the 

sum of 
1P  and 

2P  sizes rather than to the prod-

uct of the two sizes. Finally, for each population, 

we select as representative the individual which 

generates the FRBS with the lowest MSE. The 

motivation for this single-objective choice of the 

representative is the same as in [9]: we aim to 

explore the three-dimensional objective-space so 

as to focus on a region where FRBSs achieve 

high accuracy. Further, the use of NSGA-II 

ranking in each separate species guarantees to 

obtain FRBSs with few and simple rules and 

with transparent partitions. 

3.1     The MOCCA 

Let species 
11 1,1 1,( ) { ( ),..., ( )}NP t p t p t=  and 

22 2,1 2,( ) { ( ),..., ( )}NP t p t p t=  be composed by 
1N  

and 
2N  individuals, respectively. We denote the 

representatives of 
1( )P t  and 

2 ( )P t  as 
1

ˆ ( )p t  and 

2
ˆ ( )p t , respectively. 

For each generation t, t = 1..T, the steps per-

formed by the MOCCA are detailed in Figure 1. 

Steps from 1 to 4 are used to select the represen-

tatives of the current species, while step 5 im-

plements a customized version of the NSGA-II 

algorithm for cooperative coevolution. After the 

species have evolved for T  generations, we 

generate a three-dimensional Pareto front ap-

proximation by extracting non-dominated 

FRBSs from the set of 1 2N N⋅  complete solu-

tions obtained by combining each individual of 

1( )P T  with each individual of 
2 ( )P T . 

In the MOCCA, a complete solution represents a 

Mamdani-type FRBS with F  input variables 

1,..., FX X , one output variable 
1FX +  and at most 

maxM  rules in the RB. Let fU , 1,..., 1f F= + , 

and { },1 ,,...,
ff f f TO A A=  be the universe of vari-

able fX  and a fuzzy partition of fT  fuzzy sets 

on variable fX , respectively. We assume to 

have a data set ˆ ˆ{( , )}d dS y= x  of D  real-world 

examples, where ˆ
dx  is a vector of F  input val-

ues, and ˆ
dy  is the corresponding output. The 

MSE used in MOCCA is given by 

 ( )
2

1

1
ˆ ˆ( ) ,

2

D

d d

d

MSE F y
D =

= −
⋅
∑ x  (1) 

where ˆ( )dF x  is the output computed by the 

Mamdani-type FRBS when ˆ
dx  is the input. 

In the following, we describe the chromosome 

coding and the genetic operators used to evolve 

species 1P  and 2P . A detailed analysis of all the 

techniques introduced in the following two Sec-

tions can be found in our previous works 

[1][2][5]. 

3.2     The RB species 

The RB of an FRBS is represented by the inte-

ger chromosome shown in Figure 2, where 

, [1, ]m f fj T∈  identifies the index of the fuzzy set 

(among the fT  fuzzy sets of partition fO ), 
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which has been selected for the input variable 

fX  in rule mR . In the experiments, we set fT  to 

5 for all partitions fO . 

 

Figure 1: The steps of the MOCCA 

As regards the RB species evolution, we exploit 

the classical one-point crossover and three ad-

hoc mutation operators [5]. The first mutation 

operator adds γ  rules to RB, where γ  is ran-

domly chosen in {1,…,
maxγ }. The upper bound 

maxγ  (5 in the experiments) is fixed by the user. 

The second mutation operator removes λ  rules 

from the RB, where λ  is randomly chosen in 

{1,…, maxλ }. In the experiments, we used 

max max minmin( , )M Mλ φ= − , where maxφ  (5 in the 

experiments) is fixed by the user, and M and 

Mmin are, respectively, the number of rules of the 

individual and the minimum number of rules 

allowed for all individuals. The third mutation 

operator randomly changes δ  elements of the 

chromosome. The number δ  is randomly gen-

erated in {1,…, maxδ }. The upper bound maxδ  (5 

in the experiments) is fixed by the user. 

The probability of applying the crossover 

operator is 0.05. When the application of the 

crossover operator is selected, the mutation is 

applied with probability 0.01, otherwise it is 

always applied. When the application of the 

mutation is selected, the three operators are 

applied with a probability of 0.85, 0.05 and 0.1 

respectively. 

The initial population of the RB species was 

generated by executing the RB identification 

algorithm based on NSGA-II introduced in [5]. 

In the experiments, NSGA-II was executed for 

2000 generations on fuzzy partitions composed 

of five uniformly distributed trapezoidal fuzzy 

sets. Further, the same crossover and mutation 

operators, and the same above-mentioned cross-

over and mutation probabilities were used.  

The complexity of an RB is computed as the 

sum of the conditions which compose the ante-

cedents of the rules. Since FRBSs with a high 

number of rules are generally of scarce interest, 

 

Figure 2: Chromosome for species 1P  

Set t = 1. Generate species 1( )P t  and 2( )P t  as de-

scribed in Sections 3.2 and 3.3. Set 
1̂(0)p  and 

2̂(0)p  to 

two individuals randomly chosen in 1( )P t  and 2( )P t , 

respectively. 

1) Randomly extract two individuals, 1̂ ( )rp t  and 

2̂ ( )rp t , from 1( )P t  and 2( )P t , respectively. 

2) Generate a set 1( )C t  of ⋅ 12 N  complete solutions 

obtained by combining 2̂ ( )rp t  and representative 

−2̂( 1)p t  of −2( 1)P t with each individual in 1( )P t . It 

follows that 

= − −
1

1

1 1,1 2 1, 2

1,1 2 1, 2

ˆ ˆ( ) {( ( ), ( 1)),...,( ( ), ( 1)),

ˆ ˆ              ( ( ), ( )),...,( ( ), ( ))}.

N

r r
N

C t p t p t p t p t

p t p t p t p t
 

3) Generate a set 2( )C t  of ⋅ 22 N  complete solutions 

obtained by combining 1̂ ( )rp t  and representative 

−1̂( 1)p t  of −1( 1)P t  with each individual in 2( )P t . It 

follows that 

= − −
2

2

2 1 2,1 1 2,

1 2,1 1 2,

ˆ ˆ( ) {( ( 1), ( )),...,( ( 1), ( )),

ˆ ˆ              ( ( ), ( )),...,( ( ), ( ))}.

N

r r
N

C t p t p t p t p t

p t p t p t p t
 

4) Compute the MSEs of all solutions in 1( )C t  and 

2( )C t . Choose as representatives 
1̂( )p t  and 

2̂( )p t

of species 1( )P t  and 2( )P t  the components 1, ( )ap t

and 
2, ( )bp t  of the solutions a and b  which achieve 

the lowest MSEs among all solutions in 1( )C t  and 

2( )C t , respectively.  

5) Apply NSGA-II to 
1( )P t  and 

2( )P t  as follows: 

a) For each individual in 
1( )P t  and in

2( )P t , evaluate 

complexity and integrity, respectively.  

b) Combine each individual of 1( )P t  with 2̂( )p t  and 

each individual of 
2( )P t  with 

1̂( )p t  and evaluate 

the MSEs of all the combinations.  

c) Apply to 1( )P t  and 2( )P t  the species-dependent 

genetic operators defined in Sections 3.2 and 

3.3 so as to generate the offspring species 1( )Q t

and 
2( )Q t , respectively. 

d) For each individual in 
1( )Q t  and in

2( )Q t , evaluate 

complexity and integrity, respectively.  

e) Combine each individual of 1( )Q t  with 2̂( )p t  and 

each individual of 
2( )Q t  with 

1̂( )p t  and evaluate 

the MSEs of all the combinations.  

f) Use the NSGA-II ranking on MSE and complexity 

objectives, and on MSE and integrity objectives 

to assess the ranking of ∪1 1( ) ( )P t Q t  and 

∪2 2( ) ( )P t Q t , respectively. 

g) Extract the sets 
1( )B t  and 

2( )B t  of the best −1 1N

and −2 1N  ranked individuals in ∪1 1( ) ( )P t Q t  and 

∪2 2( ) ( )P t Q t , respectively, by adopting the elitist 

strategy implemented in NSGA-II. 

h) Set + = ∪1 1 1̂( 1) ( ) ( )P t B t p t  and +2( 1)P t  = 

∪2 2̂( ) ( )B t p t . 

6) Set = +1t t . If t < T, go to step 1; else terminate.  
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in order to constrain the search space, we set the 

maximum number Mmax of rules to 25. 

3.3     The DB species 

To represent the DB species, we exploit the 

same operators introduced in [2]. For each lin-

guistic variable fX , 1,..., 1f F= + , we start from 

a partition fO  composed by fT  trapezoidal 

fuzzy sets uniformly distributed in the [0,1]  

universe. We obtain the tuned partition fO  by 

applying the following operators: a non-linear 

scaling function and four fuzzy modifiers, 

namely the core-width modifier, the core-

position modifier, the support-width modifier 

and the generalized positively modifier.  

Each modifier acts on the core, on the support or 

on the boundary elements of the fuzzy sets, thus 

allowing generating a wide range of configura-

tions of fO  with few tuning parameters. To 

actually tune fO , we need to determine which 

operators should be applied and the values of 

their parameters. We remark that the operators 

are applied with the same intensity on the over-

all partition, i.e., a single value of each parame-

ter is needed for all the fuzzy sets in a partition. 

Thus, each individual in 
2P  is represented by a 

chromosome composed by 1F +  strings of 77 

bits, where each string encodes five control 

genes and nine 8-bit parameters. The first five 

bits, one for each operator, control whether the 

corresponding operator is applied or not on each 

fuzzy partition fO . The other 72 bits are organ-

ized in sub-strings of 8 bits: each sub-string 

determines the value of a different parameter, 

via Gray decoding and quantization. Figure 3 

shows the structure of the chromosome of an 

individual of the DB species. 

Parents to be mated are chosen by standard bi-

nary tournament selection, as proposed in the 

original version of NSGA-II [7]. Then, the off-

spring population is generated by applying uni-

form crossover and uniform mutation operators 

to parents, with a mutation rate of 0.05. 

The initial population is composed as follows. 

The first individual encodes a uniform partition 

defined in fU . One-fifth of the population is 

generated by applying the uniform mutation 

operator to the first individual with a mutation 

rate of 0.1. The rest of the population is ran-

domly generated. 

The integrity of a DB is evaluated by means of 

the index YΦ  defined in [1]. The index takes 

coverage, distinguishability and ordering of 

fuzzy sets into account and, therefore, guaran-

tees an evaluation of the actual integrity which 

approximates the human perception more faith-

fully than simple similarity-based approaches. 

We recall that YΦ  ranges in [0,1] : in our ex-

periments, 0YΦ =  corresponds to the maximum 

degree of integrity, and 1YΦ =  corresponds to 

the minimum degree of integrity.  

4     Experimental results 

We tested our approach on one of the most 

popular regression datasets, namely the MG 

chaotic time series. The MG differential delay 

equation 

 
10

( ) ( )
( )

1 (1 )

dx t ax t
bx t

dt x

τ

τ

−
= −

+ −
 (2) 

has been used by a number of researchers for 

comparing the learning and generalization capa-

bilities of different models [4]. The MG dataset 

was generated by extracting 500 points from the 

series generated by solving equation (2) with the 

Runge-Kutta method. As in previous works 

available in the literature, we predicted ( 6)x t +  

 

Figure 3: Chromosome for species 
2P  
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using the input variables ( )x t , ( 6)x t − , 

( 12)x t −  and ( 18)x t − . The dataset was ran-

domly divided into a training set and a test set of 

the same size.  

We executed the MOCCA algorithm for 300 

iterations with species sizes 
1N  = 

2N  = 30. 

Figures 4 and 5 show the non-dominated partial 

solutions in the final RB and DB species, re-

spectively (MSEs are computed by using the 

representatives of the last generation). In Figure 

6, we plot the MSEs achieved by the two repre-

sentatives of RB and DB against the genera-

tions. We note that the trend of MSE is mono-

tonically decreasing. This behavior is typically 

observed for the best individual in single-

objective genetic algorithms. On the other hand, 

selection of representatives is guided only by the 

MSE. 

In Figure 7, we show the final three-dimensional 

Pareto front approximation obtained by extract-

ing non-dominated FRBSs from the set of 

1 2N N⋅  complete solutions. As expected, sys-

tems with high complexity and low integrity, 

i.e., high values of 
YΦ , are associated with low 

MSEs, and, vice-versa, systems with low com-

plexity and high integrity are associated with 

high MSEs. 

Figures 8 and 9 show the projections of the 

Pareto front approximation on the complexity-

MSE plane and on the integrity-MSE plane, 

respectively. For the sake of readability, we 

report only the solutions which are non-

dominated in the plane.  

To show the significance of a well-managed DB 

optimization to MSE reduction, we performed 

300 further iterations of NSGA-II starting from 

1(1)P  and continuing the RB identification proc-

ess with uniform partitions, that is, without DB 

optimization. Figure 10 compares the Pareto 

front approximation provided by NSGA-II with 

the solutions obtained by our approach on the 

test set. We note that the Pareto front approxi-

mation provided by our approach is wider and 

 

Figure 4: Final RB species (training set) 

 

Figure 5: Final DB species (training set) 

 

Figure 6: Representatives errors 

 

Figure 7: Three-dimensional Pareto front ap-

proximation on training set 
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more accurate than the one generated by NSGA-

II. Further, we have also compared our results 

with the learn-by-example technique proposed 

in [14], using the same uniform partitions that 

we exploited in NSGA-II. The FRBS provided 

by this technique achieves MSEs of 0.00746 and 

0.00838 on the training and on the test sets, re-

spectively, and comprises 44 rules for a total 

complexity of 176. We observe that this FRBS 

is Pareto-dominated by all solutions shown in 

Figure 8. Finally, in Figure 11, we show the 

fuzzy partitions generated by our MOCCA for 

two FRBSs: the FRBS, which achieved the low-

est MSE (Figure 11a), and the FRBS, which 

achieved the highest integrity on the final spe-

cies (Figure 11b). The effects of the modifiers 

are evident in Figure 11a, where non-adjacent 

fuzzy sets in partitions ( 12)x t −  and ( )x t  over-

lap and, therefore, the overall value of YΦ  is 

high. However, thanks to the effects of the co-

operative algorithm and to the use of our index, 

all the partitions show good integrity even when 

the value of 
YΦ  increases. 

5     Conclusion 

We have introduced a multi-objective coopera-

tive coevolutionary approach aimed at generat-

ing a set of Mamdani-type fuzzy rule-based 

systems (FRBSs) with optimal trade-offs be-

tween accuracy and interpretability. Interpret-

ability is evaluated in terms of both complexity 

of the RB and integrity of the DB. Thanks to 

coevolution, RB and DB evolve separately 

within different species. This has allowed us to 

adopt RB generation and DB tuning techniques 

we proposed in our previous works. Unlike 

standard approaches to cooperative coevolution, 

which adopt single-objective optimization of 

species, we use a multi-objective optimization. 

Thus, for each of the two species, we determine 

a Pareto-optimum set of possible solutions, that 

 

Figure 10: NSGA-II vs. MOCCA on the com-

plexity-MSE plane (test set) 

  

(a) (b) 

Figure 11: Fuzzy partitions of the FRBSs with 

the lowest MSE (a) and the lowest 
YΦ  (b) 

 

Figure 8: Non dominated solutions on the 

complexity-MSE plane 

 

Figure 9: Non-dominated solutions on the 

integrity-MSE plane 
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is, a set of RBs and a set of DBs. At the end of 

the execution of the algorithm, by combining all 

the possible RBs with all the possible DBs we 

obtain a set of FRBSs with different trade-offs 

between accuracy, complexity and integrity. 

Experiments carried out on the Mackey-Glass 

dataset have shown that our approach is very 

promising. Nevertheless, we think that some 

aspects of the algorithm, such as the strategy for 

selecting the representatives of the species and 

the dependencies between individuals of the two 

species, deserve further investigation. 
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