
Computational Efficiency of Parallel Distributed Genetic Fuzzy
Rule Selection for Large Data Sets

Yusuke Nojima
Osaka Prefecture University

Gakuen-cho 1-1, Naka-ku, Sakai
Osaka 599-8531, JAPAN
nojima@cs.osakafu-u.ac.jp

Hisao Ishibuchi
Osaka Prefecture University

Gakuen-cho 1-1, Naka-ku, Sakai
Osaka 599-8531, JAPAN
hisaoi@cs.osakafu-u.ac.jp

Abstract

Genetic fuzzy rule selection is a
two-phase classification rule mining
method. First a large number of
candidate fuzzy rules are generated
by an association rule mining tech-
nique. Then only a small num-
ber of generated rules are selected
by a genetic algorithm. We have
already proposed an idea of paral-
lel distributed implementation of ge-
netic fuzzy rule selection. In this pa-
per, we examine its computational
efficiency for large data sets through
computational experiments using a
cluster system.

Keywords: Pattern Classification,
Genetic Rule Selection, Parallel Dis-
tributed Implementation.

1 Introduction

Genetic algorithms (GAs) have been success-
fully used in the design of fuzzy rule-based
systems under the name of genetic fuzzy sys-
tems [3]. It is, however, difficult to apply ge-
netic fuzzy systems to large data sets. This
is because the evaluation of each individual
needs long computational time in the appli-
cation to large data sets. Thus the scalabil-
ity improvement of genetic fuzzy systems is
an important research issue [4, 5]. There are
two well-known approaches to the decrease in
computational costs for the handling of large
data sets in GAs. One is parallel distributed

implementation of GAs [1, 2]. The other is
data reduction [9, 10, 11]. We have proposed
parallel distributed genetic fuzzy rule selec-
tion using these two approaches [12]. Our
idea is to divide not only population but also
a data set into sub-groups. The number of
the sub-groups is the same as the number
of processors. We have also proposed a sys-
tematic re-assignment of sub-populations and
data subsets to processors in order to keep the
diversity of each sub-population. In this pa-
per, we incorporate an idea of using Pareto
and near Pareto optimal rules [6, 8] into our
method [12]. Through computational experi-
ments using a cluster system, we examine the
computational efficiency of our approach.

2 Genetic Fuzzy Rule Selection

2.1 Fuzzy Rules for Pattern
Classification Problems

Let us assume that we have m training (i.e.,
labeled) patterns xp = (xp1, ..., xpn), p =
1, 2, ...,m from M classes in an n-dimensional
continuous pattern space where xpi is the at-
tribute value of the p-th training pattern for
the i-th attribute (i = 1, 2, ..., n). For the sim-
plicity of explanation, we assume that all the
attribute values have already been normalized
into real numbers in the unit interval [0, 1].

For our pattern classification problem, we use
fuzzy rules of the following type [7]:

Rq : If x1 is Aq1 and ... and xn is Aqn

then Class Cq with CFq,
(1)

where Rq is the label of the q-th fuzzy rule,
x = (x1, ..., xn) is an n-dimensional pattern

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 1137–1142

Torremolinos (Málaga), June 22–27, 2008

Attribute value

1

0 1

1

0 1

1

0 1

1

0 1

M
em
b
er
sh
ip

M
em
b
er
sh
ip

M
em
b
er
sh
ip

M
em
b
er
sh
ip

Attribute value

Attribute value

Attribute value

Figure 1: Four fuzzy partitions used in our
computational experiments.

vector, Aqi is an antecedent fuzzy set (i =
1, 2, ..., n), Cq is a class label, and CF q is a
rule weight (i.e., certainty grade). We denote
the antecedent part of the fuzzy rule Rq by
the fuzzy vector Aq = (Aq1, Aq2, ..., Aqn).

In our computational experiments, we simul-
taneously use four homogeneous fuzzy parti-
tions with triangular fuzzy sets in Figure 1.
Because we usually have no a priori informa-
tion about an appropriate granularity of the
fuzzy discretization for each attribute. We
also use the domain interval [0, 1] as an an-
tecedent fuzzy set in order to represent a don’t
care condition. That is, we use the 15 an-
tecedent fuzzy sets for each attribute in our
computational experiments.

The consequent class Cq and the rule weight
CF q of each fuzzy rule Rq can be heuristically
specified by the compatible training patterns
with its antecedent part Aq in the following
manner. First we calculate the compatibil-
ity grade of each training pattern xp with the
antecedent part Aq of the fuzzy rule Rq using
the product operation as:

µAq(xp) = µAq1(xp1) · ... · µAqn(xpn), (2)

where µAqi(·) is the membership function of
Aqi. Next we calculate the confidence of the
fuzzy rule “Aq ⇒ Class h” for each class (h =
1, 2, ...,M) as follows:

c(Aq ⇒ Class h) =

∑
xp∈Class h

µAq(xp)

m∑
p=1

µAq(xp)
. (3)

The consequent class Cq is specified by identi-
fying the class with the maximum confidence:

c(Aq ⇒ Class Cq)

= max
h=1, 2, ..., M

{c(Aq ⇒ Class h)} . (4)

When there is no pattern in the fuzzy sub-
space defined by Aq, we do not generate any
fuzzy rules with Aq in the antecedent part.
When multiple classes have the same max-
imum value in (4), we do not generate any
fuzzy rules with Aq, either.

The rule weight CF q of each fuzzy rule Rq

has a large effect on the performance of fuzzy
rule-based classifiers. Different specifications
of the rule weight have been proposed and ex-
amined in the literature. We use the follow-
ing specification because good results were re-
ported by this specification in [7]:

CFq = c(Aq ⇒ Class Cq)

−
M∑

h=1
h 6=Cq

c(Aq ⇒ Class h). (5)

When the CF q is negative, we do not generate
any fuzzy rules with Aq.

In the same manner as the confidence, the
support of the fuzzy rule “Aq ⇒ Class h” is
calculated as follows:

s(Aq ⇒ Class h) =

∑
xp∈Class h

µAq(xp)

m
. (6)

The confidence and support of each rule are
used for rule evaluation in rule extraction.

2.2 Fuzzy Rule Evaluation

Using the above-mentioned procedure, we can
generate a large number of fuzzy rules by
specifying the consequent class and the rule
weight for each of the 15n combinations of the
antecedent fuzzy sets. It is, however, very dif-
ficult for human users to handle such a large
number of generated fuzzy rules. It is also
very difficult for human users to intuitively
understand long fuzzy rules with many an-
tecedent conditions. Thus we only generate

1138 Proceedings of IPMU’08

short fuzzy rules with a few antecedent condi-
tions. It should be noted that don’t care con-
ditions with the antecedent interval [0, 1] can
be omitted from fuzzy rules. Thus the rule
length means the number of antecedent con-
ditions excluding don’t care condition. In the
field of data mining, two rule evaluation cri-
teria (i.e., confidence and support) have often
been used. We examine only short fuzzy rules
of length Lmax or less (e.g., Lmax = 3) which
satisfy the minimum confidence and support.
This restriction is to find a small number of
short fuzzy rules.

In our previous work [6], we showed that
most of selected fuzzy rules by genetic fuzzy
rule selection are Pareto-optimal and near
Pareto-optimal rules in terms of confidence
and support. Thus we use those fuzzy rules
as candidate rules in genetic fuzzy rule se-
lection, which are defined by the following
ε-dominance. A rule Ri is said to be ε-
dominated by another rule Rj when both the
two inequalities in (7) hold and at least one
of the two inequalities in (8) holds:

Confidence(Ri) + ε ≤ Confidence(Rj),

Support (Ri) + ε ≤ Support (Rj). (7)

Confidence(Ri) + ε < Confidence(Rj),

Support (Ri) + ε < Support (Rj). (8)

When a rule Ri is not dominated by any other
rules in the sense of ε-dominance in (7) and
(8), we call Ri an ε-non-dominated rule.

In order to remove weak Pareto-optimal rules
with small support values, we modify the min-
imum support for each class depending on
Pareto-optimal rules and the value of ε as fol-
lows [8]:

sClass h = max{Support (Rq) | Cq = Class h,

Confidence(Rq) = 1} − ε, (9)

where sClass h is the modified minimum sup-
port for class h.

Figure 2 shows extracted candidate fuzzy
rules for the Pendig data in the UCI machine
learning repository. We specified the mini-
mum confidence and support, and ε as 0.5,
0.02, and 0.01, respectively.

0.10

0.08

0.06

0.04

0.02

0.5 0.6 0.7 0.8 0.9 1.0

Rules ε-non-dominated rules

Confidence

S
u
p
p
o
rt

Figure 2: Candidate fuzzy rules with Class 1
consequent for the Pendig data. All rules sat-
isfying the minimum confidence and support,
and the maximum rule length are shown by
grey dots. ε-non-dominated rules satisfying
the modified minimum support are shown by
open circles.

2.3 Combinatorial Optimization of
Rule Sets by a Genetic Algorithm

Let us assume that N candidate fuzzy rules
have already been extracted. The task of ge-
netic fuzzy rule selection is to design an accu-
rate and compact fuzzy rule-based classifier
from the N candidate fuzzy rules.

Any subset S of the N candidate fuzzy rules
can be denoted by a binary string of length
N as S = s1s2 · · · sN where si = 1 and si =
0 mean that the i-th candidate fuzzy rule is
included in and excluded from the rule set S,
respectively. Such a binary string is used as
an individual in genetic fuzzy rule selection.

In this paper, we use the following weighted
sum fitness function:

fitness(S) = w1 ·f1(S)−w2 ·f2(S)−w3 ·f3(S),
(10)

where w1, w2, and w3 are pre-specified non-
negative weights, and each objective function
fi is
f1(S) : The number of correctly classified

training patterns by S,

f2(S) : The number of fuzzy rules in S,

f3(S) : The total number of antecedent con-
ditions in S.

When the first objective is calculated, each
pattern is classified by a single winner rule

Proceedings of IPMU’08 1139

with the maximum product of the rule weight
and the compatibility grade in S. We use the
single winner-based method without random
tiebreak to evaluate the accuracy of the rule
set S. Thus only a single rule is responsible
for the classification of each training pattern.
As a result, some fuzzy rules may be used
for the classification of no training patterns.
Whereas the existence of such an unnecessary
fuzzy rule in S has no effect on the first ob-
jective, it deteriorates the second and third
objectives. Thus we remove from S all the
unnecessary rules responsible for the classifi-
cation of no training patterns before the sec-
ond and third objectives are calculated. After
removing all the unnecessary rules, the second
and third objectives are calculated. By max-
imizing (10), we can obtain an accurate and
compact fuzzy classifier.

2.4 Parallel Distributed
Implementation

We use a cluster system with a single server
and a number of clients. Concretely saying,
six workstations are used as clients in our
computational experiments. Each worksta-
tion has two CPUs (Xeon 3.6GHz × 2). Thus
this cluster system has 12 clients.

Our idea is to divide not only a population
but also a training data set. They are divided
into the same number of sub-populations and
training data subsets, which is also the same
as the number of clients. Thus, the train-
ing data set and the population are divided
into 12 training data subsets and 12 sub-
populations, respectively.

Since each sub-population is likely to over-
fit to the corresponding training data sub-
set, we change the assignment of the training
data subsets to the clients after a pre-specified
number of generations (every ten generations
in this paper).

Our parallel distributed implementation of ge-
netic fuzzy rule selection is written as follows:

Phase I: Candidate Rule Extraction

Step 1: Extract candidate fuzzy rules in the
same manner as in Section 2. This phase is ex-

ecuted on the clients by using all the training
data. Let the number of extracted candidate
fuzzy rules be N .

Phase II: Genetic Optimization

Step 2: Randomly generate binary strings
of length N as an initial population on the
server.

Step 3: Randomly divide the current pop-
ulation and the training data set into sub-
populations and training data subsets, respec-
tively, on the server.

Step 4: Distribute the sub-populations and
the training data subsets from the server to
the clients.

Step 5: Evaluate each string in the assigned
sub-population using the assigned training
data subset on each client.

Step 6: Execute genetic fuzzy rule selection
for a pre-specified computation load (which
is specified by the total number of evaluated
strings in this paper) on each client using the
assigned training data subset and the assigned
sub-population.

Step 7: Systematically change the assign-
ment of the training data subsets to the clients
(e.g., from the first client to the second one,
from the second one to the third one, ..., and
from the 12th one to the first one in the case
of 12 clients).

Step 8: If a pre-specified termination condi-
tion (the total number of evaluated strings in
this paper) is not satisfied, return to Step 5.
Otherwise go to Step 9.

Step 9: Calculate the fitness value of each
string in each sub-population using the whole
training data set on the server. Choose the
best string as the final solution (i.e., as the
finally obtained fuzzy rule-based classifier).

Our parallel distributed implementation de-
creases the computational time by the mag-
nitude of the square of the number of clients.
For example, it is ideally 144 times faster than
the original non-parallel algorithm when we
have 12 clients. This is because both the pop-
ulation size and the number of training pat-
terns at each client are 1/12 of those in the
original non-parallel algorithm.

1140 Proceedings of IPMU’08

Table 1: Data sets used in our experiments.

Data set Attributes Patterns Classes

Pendig 16 10992 10
Letter 16 20000 26

Table 2: Minimum confidence and support,
the ε value, and the number of generated can-
didate rules for each data set.

Data set Conf. Supp. ε Rules

Pendig 0.5 0.02 0.01 5080.9
Letter 0.5 0.001 0.001 2268.0

3 Computational Experiments

Through computational experiments on two
benchmark data sets in the UCI machine
learning repository, we examined the compu-
tational efficiency of the proposed parallel dis-
tributed implementation.

Table 1 shows the two benchmark data sets
used in our computational experiments. We
evaluated the generalization ability of ob-
tained fuzzy rule-based classifiers by a sin-
gle ten-fold cross validation procedure (i.e.,
10 runs).

We first extracted candidate fuzzy rules using
the ε-dominance in terms of confidence and
support. Table 2 shows the minimum sup-
port, the minimum confidence, and ε used
for each data set. We also show the aver-
age number of extracted candidate rules in
Table 2. The weight vector in the weighted
sum fitness function in (10) was specified as
w = (100, 1, 1). We examined four specifica-
tions of the population size and the termina-
tion condition in this paper. The first spec-
ification is for non-parallel genetic fuzzy rule
selection. The population size and the termi-
nation condition were 240 and 240240 string
examinations (i.e., an initial population with
240 strings plus 1000 generation updates), re-
spectively.

The other three specifications are for parallel
genetic fuzzy rule selection. We specified the
population sizes as 120, 240, and 480, respec-

tively. Thus the sub-population sizes were 10,
20, and 40, respectively. We specified the
termination condition 240120, 240240, and
240480 string evaluations for each case.

Tables 3 and 4 show the average training data
accuracy, the average test data accuracy, the
average number of selected fuzzy rules, the av-
erage total rule length, and the average CPU
time (hour: minute: second) over the ten-
fold cross validation procedure (i.e., over 10
runs) for each specification. The first column
shows the population and sub-population size
of each specification. Thus, the case of 240
(240) means non-parallel genetic fuzzy rule se-
lection. The case of 120 (10) means that the
total population size and the sub-population
size are 120 and 10, respectively.

From these tables, we can see that the aver-
age training and test data accuracy of parallel
distributed genetic fuzzy rule selection were
worse than those of non-parallel ones. But
the accuracy of parallel distributed ones be-
came close to that of non-parallel one when
we specified the sub-population size larger.
We can also see that our parallel distributed
implementation drastically decreased the av-
erage CPU time of the original non-parallel
algorithm.

An interesting observation is that fuzzy rule-
based classifiers with lower complexity (i.e.,
a smaller number of rules and a shorter to-
tal rule length) were obtained by our par-
allel distributed implementation. While the
number of rules in the classifier obtained by
non-parallel algorithm was about 63, that
obtained by parallel distributed implementa-
tion with small sub-populations (e.g., 10) was
about 25 for the Pendig data set.

4 Conclusions

In this paper, we demonstrated the compu-
tational efficiency of our parallel distributed
implementation of genetic fuzzy rule selec-
tion for large data sets. Through compu-
tational experiments, it was shown that the
proposed parallel distributed implementation
found fuzzy rule-based classifiers with almost
the same test data accuracy as the origi-
nal non-parallel algorithm while the computa-

Proceedings of IPMU’08 1141

Table 3: Results on Pendig data set.

Pop. size Training acc. Test acc. Number of rules Total rule length CPU Time

240 (240) 90.71 89.88 62.6 185.4 22:47:37
120 (10) 88.99 88.67 25.4 75.0 0:14:47
240 (20) 89.47 89.16 27.5 81.6 0:10:08
480 (40) 89.83 89.20 29.1 86.6 0:09:54

Table 4: Results on Letter data set.

Pop. size Training acc. Test acc. Number of rules Total rule length CPU Time

240 (240) 52.97 52.36 72.8 217.5 35:34:41
120 (10) 51.20 50.86 39.2 117.0 0:17:46
240 (20) 51.29 50.78 40.3 119.2 0:13:23
480 (40) 51.52 51.16 43.2 128.9 0:14:22

tional time can be drastically decreased (i.e.,
more than 100 times faster than non-parallel
genetic fuzzy rule selection.).

Acknowledgements

This work was partially supported by Grant-
in-Aid for Young Scientists (B): KAKENHI
(18700228).

References

[1] E. Alba, M. Tomassini, Parallelism and
Evolutionary Algorithms, IEEE Trans-
actions on Evolutionary Computation, 6
5 (2002) 443-462.

[2] E. Cantu-Paz, A survey of parallel ge-
netic algorithms, IlliGAL Report No.
95003 (1997).

[3] O. Cordon, F. Herrera, F. Hoffman,
L. Magdalena, Genetic Fuzzy Systems,
World Scientific (2001).

[4] F. Herrera, Genetic fuzzy systems: Sta-
tus, critical considerations and future di-
rections, International Journal of Com-
putational Intelligence Research, 1 1
(2005) 59-67.

[5] H. Ishibuchi, Evolutionary multiobjec-
tive design of fuzzy rule-based systems,
Proc. of 1st IEEE Symposium on Foun-
dations of Computational Intelligence,
(2007) 9-16.

[6] H. Ishibuchi, I. Kuwajima, Y. Nojima,
Use of Pareto-optimal and near Pareto-
optimal rules as candidate rules in ge-
netic fuzzy rule selection, P. Melin et al
(eds.): Analysis and Design of Intelli-
gent Systems using Soft Computing Tech-
niques, Springer, Berlin (2007) 387-396.

[7] H. Ishibuchi, T. Nakashima, M. Nii,
Classification and Modeling with Lin-
guistic Information Granules: Advanced
Approaches to Linguistic Data Mining,
Springer, Berlin, (2004).

[8] H. Ishibuchi, I. Kuwajima, Y. No-
jima, Prescreening of candidate rules us-
ing association rule mining and Pareto-
optimality in genetic rule selection, Proc.
of 11th International Conference on
Knowledge Based Intelligent Information
& Engineering Systems, (2007) 509-516.

[9] H. Liu, H. Motoda, Instance Selec-
tion and Construction for Data Mining,
Kluwer, (1998).

[10] H. Liu, H. Motoda, Feature Selection for
Knowledge Discovery and Data Mining,
Kluwer, (1998).

[11] J. R. Cano, F. Herrera, M. Lozano,
Stratification for scaling up evolutionary
prototype selection, Pattern Recognition
Letters, 26 7 (2005) 953-963.

[12] Y. Nojima, H. Ishibuchi, I. Kuwajima,
Parallel Distributed Genetic Fuzzy Rule
Selection, Soft Computing, (accepted).

1142 Proceedings of IPMU’08

