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Abstract

In this paper, a multi-objective con-
strained optimization model is pro-
posed to improve interpretability of
TSK fuzzy models. This approach
allows a linguistic approximation of
the fuzzy models. Three differ-
ent multi-objective evolutionary al-
gorithms (MONEA, ENORA and
NSGA-II) are used together with
neural network techniques. These
algorithms are checked out in the ap-
proximation of a dynamic non-linear
system studied in literature. The
results clearly show a real ability
and effectiveness of the proposed ap-
proach to find accurate and inter-
pretable TSK fuzzy models.

Keywords: TSK Fuzzy Models,
Multi-objective Evolutionary Algo-
rithms, RBF Neural Networks.

1 Introduction.

Evolutionary Algorithms (EA) [4] have been
successfully applied to learn fuzzy models [8].
EAs have been also combined with other tech-
niques like fuzzy clustering [5] and neural net-
works [12]. This has resulted in many com-
plex algorithms and, as recognized in [17] and
[15], often interpretability of the resulting rule
base is not considered to be of importance. In
such cases, the fuzzy model becomes a black-
box, and one can question the rationale for
applying fuzzy modeling instead of other tech-
niques.

In the other hand, EAs have been recog-
nized as appropriate techniques for multi-
objective optimization because they perform
a search for multiple solutions in parallel
[2, 3]. Current evolutionary approaches for
multi-objective optimization consist of multi-
objective EAs based on the Pareto optimality
notion, in which all objective are optimized si-
multaneously to find multiple non-dominated
solutions in a single run of the EA. The de-
cision maker can then choose the most ap-
propriate solution according to the current
decision environment at the end of the EA
run. Moreover, if the decision environment
changes, it is not always necessary to run the
EA again. Another solution may be chosen
out of the set of non-dominated solutions that
has already been obtained.

The multi-objective evolutionary approach
can be considered from the fuzzy modeling
perspective [7]. Current research lines in
fuzzy modeling mostly tackle improving ac-
curacy in descriptive models, and improv-
ing interpretability in approximative models
[1]. This paper deals with the second is-
sue approaching the problem by means of
multi-objective optimization in which accu-
racy and interpretability criteria are simulta-
neously considered.

In this paper, we propose a neuro-
evolutionary multi-objective optimization
approach to generate TSK fuzzy models
considering accuracy and interpretability
criteria. Section 2 describes the TSK type
rule-based fuzzy model, and criteria taken
into account for fuzzy modeling. A multi-
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objective constraind optimization model
is proposed. Section 3 shows the main
components of the three multi-objective
neuro-evolutionary algorithms used in this
paper. Section 4 shows the experiments
performed and the results obtained for a
standard test problem. Finally, section 5
concludes the paper.

2 Improving Interpretability in
TSK Fuzzy Models

2.1 Fuzzy Models Identification

We consider Takagi-Sugeno-Kang (TSK) type
rule-based models [16] where rule consequents
are taken to be linear functions of the inputs.
The rules have, therefore, the following ex-
pression:

Ri : If x1 is Ai1 and . . . and xn is Ain

then yi = θi1x1 + . . . + θinxn + θi(n+1)

where i = 1, . . . ,M , M is the number of
rules, x = (x1, . . . , xn) , xi ∈ [li, ui] ⊂ ℜ,
is the input vector, θij ∈ [l, u] ⊂ ℜ are the
consequent parameters, yi is the output of
the ith rule, Aij are fuzzy sets defined in
the antecedent space by membership func-
tions µAij : Xj → [0, 1], being Xj the domain
of the input variable xj.

The total output of the model is computed
by aggregating the individual contributions of
each rule:

y =

M∑
i=1

µi (x) yi

M∑
i=1

µi (x)

where µi (x) is the normalized firing strength
of the ith rule:

µi (x) =
n∏

j=1

µAij (xj)

Each fuzzy set Aij is described by a gaussian
membership function:

µAij (xj) = exp

[
−1

2

(
xj − cij

σij

)2
]

where cij ∈ [lj, uj ] is the center, and σij > 0
is the variance.

This fuzzy model can be defined by a radial
basis function neural network. The number of
neurons in the hidden layer of an RBF neural
network is equal to the number of rules in the
fuzzy model. The firing strength of the ith
neuron in the hidden layer matches the firing
strength of the ith rule in the fuzzy model.
We apply a gaussian membership function de-
fined by two parameters, (c, σ): the center c
and variance σ. Therefore, each neuron in the
hidden layer has these two parameters that
define its firing strength value.

The neurons in the output layer perform
the computations for the first order lin-
ear function described in the consequents
of the fuzzy model, therefore, the ith neu-
ron of the output layer has the parameters
θi =

(
θi1, . . . , θi(n+1)

)
that correspond to the

linear function defined in the ith rule of the
fuzzy model.

2.2 Criteria for Fuzzy Modeling

We consider three main criteria: accuracy,
transparency, and compactness. It is nec-
essary to define quantitative measures for
these criteria by means of appropriate objec-
tive functions which define the complete fuzzy
model identification.

Accuracy. The accuracy of a model can be
measured with the mean squared error:

MSE =
1
N

N∑
k=1

(yk − tk)2 (1)

where yk is the model output for the kth input
vector, tk is the desired output for the kth
input vector, and N is the number of data
samples.

Transparency. For transparency, there are
many possible measures, however we consider
one of the most used, the similarity [14]. The
similarity S among distinct fuzzy sets in each
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variable can be expressed as follows:

S = max
i = 1, . . . , M
j = 1, . . . , n
k = 1, . . . , M

Aij 6= Akj

S (Aij , Akj)

(2)

Similarity between two different fuzzy sets A
and B can be measured using different crite-
ria. In our case we use the following measure:

S (A, B) = max
{ |A ∩B|

|A| ,
|A ∩B|
|B|

}
(3)

Compactness. Measures for compactness
are the number of rules (M), and the number
of different fuzzy sets (L) of the fuzzy model.
It is assumed that models with a small num-
ber of rules and fuzzy sets are compact.

2.3 An Optimization Model for Fuzzy
Modeling

According to the previous remarks, we pro-
pose the following multi-objective constrained
optimization model:

Minimize f1 = MSE
Minimize f2 = M
Subject to S < gs

(4)

where gs ∈ [0, 1] is a threshold for similarity
defined by the decision maker (we use gs =
0.25).

An “a posteriori” articulation of preferences
applied to the non-dominated solutions of the
problem is used to obtain the final compro-
mise solution.

3 Multi-objective
Neuro-Evolutionary Algorithms

We propose an hybrid learning system to
find multiple Pareto-optimal solutions simul-
taneously, considering accuracy, transparency
and compactness criteria. We study differ-
ent multi-objective evolutionary algorithms to
evolve the structure and parameters of TSK-
type rule sets, together with gradient-based
learning to train rule consequents. Addition-
ally, a rule set simplification operator is used

Common characteristics
Pittsburgh approach, real-coded representation.
Trainning of the RBF network consequents.
Constraint-handling technique.
Variation operators.
Rule-set simplification technique.
Elitist generational replacement strategy.
Specific characteristics
MONEA: Preselection over 10 children,

steady-state replacement (n = 2).
ENORA: Non-dominated radial slots sorting.
NSGA-II: Non-dominated crowded sorting.

Table 1: Common and specific characteristics
of MONEA, ENORA and NSGA-II.

to encourage rule base transparency and com-
pactness. This method may be applied to a
wide variety of classification and control prob-
lems.

Considering the multi-objective constrained
optimization model (4), we use three
Pareto-based multi-objective evolutionary al-
gorithms: MONEA, ENORA and NSGA-II.
MONEA and ENORA are algorithms pro-
posed by authors in [6], and [13] respectively,
while NSGA-II is the well-known MOEA pro-
posed by Deb in [3].

Table 1 summarizes common and specific
characteristics of the algorithms MONEA,
NSGA-II and ENORA.

3.1 Representation of Solutions

The EAs have a variable-length, real-coded
representation using a Pittsburgh approach.
Each individual of a population contains a
variable number of rules between 1 and max,
where max is defined by a decision maker.
Fuzzy numbers in the antecedents and param-
eters in the consequent are coded by floating-
point numbers cij, σij and θij.

3.2 Initial Population

The population is initialized by generating
individuals with different numbers of rules.
Each individual is generated randomly with
a uniform distribution within the boundaries
of the search space, defined by the learning
data and trained with the gradient technique
described in 3.3.
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3.3 Training of the RBF Neural
Networks

In RBF neural networks, each neuron in the
hidden layer can be associated with a fuzzy
rule, therefore RBF neural networks are suit-
able to describe fuzzy models. The RBF neu-
ral networks associated with the fuzzy mod-
els can be trained with a gradient method to
obtain more accuracy. However, in order to
maintain the transparency and compactness
of the fuzzy sets, only the consequent param-
eters are trained. The training algorithm in-
crementally updates the parameters based on
the currently presented training pattern. The
network parameters are updated by applying
the gradient descent method to the MSE er-
ror function. The error function for the ith
training pattern is given by the MSE func-
tion error defined in equation (1).

3.4 Constraint-Handling

The EAs use the following constraint-
handling rule proposed in [9]. This rule con-
siders that an individual I is better than an
individual J if any of the following conditions
is true:

• I is feasible and J is not.

• I and J are both unfeasible, but SI < SJ .
(SI and SJ are similarity of I and J)

• I and J are feasible and I dominates J .

3.5 Variation Operators

In order to achieve an appropriate exploita-
tion and exploration of the potential solutions
in the search space, variation operators work-
ing in the different levels of the individuals are
necessary. In this way, we consider three lev-
els of variation operators: rule set level, rule
level and parameter level. Table 2 summarizes
the variation operators.

3.6 Rule Set Simplification Technique

Automated approaches to fuzzy modeling of-
ten introduce redundancy in terms of several
similar fuzzy sets and fuzzy rules that describe
almost the same region in the domain of some

variable. According to some similarity mea-
sure, two similar fuzzy sets can be merged or
separated. The merging-separation process is
repeated until fuzzy sets for each model vari-
able are not similar. This simplification may
results in several identical rules, which must
be removed from the rule set. The proposed
algorithm is the following:

1. While there be i, j, k such that S (Aij , Akj) > η2

If S (Aij , Akj) > η1 then merge Aij and Akj

in other case, split Aij and Akj

2. While there be i, k such that the antecedentes
of rules Ri and Rk are the same

Substitute the consequent of Ri by the av-
erage of the consequents of Ri and Rk and
eliminate Rk

Similarity between two fuzzy sets, S (A,B)
is measure using the expression in equation
(3). The values η1 and η2 are the threshold
to perform the merging or the separation and
must be 0 < η2 < η1 < 1. We use the values
η1 = 0.9 and η2 = 0.6.

4 Experiments and Results.

We consider the second order non-linear plant
studied by Wang and Yen in [18, 19]:

y (k) = g (y (k − 1) , y (k − 2)) + u (k)
with

g (y (k − 1) , y (k − 2)) = y(k−1)y(k−2)(y(k−1)−0.5)
1+y2(k−1)+y2(k−2)

The objective is the approximation of
the non-linear component of the plant
g (y (k − 1) , y (k − 2)) using a fuzzy model.
200 trainning values and 200 evaluation val-
ues are obtained starting at the initial state
(0, 0) with a random input signal u(k) uni-
formly distributed in the interval [−1.5, 1.5].

MONEA, ENORA and NSGA-II are executed
100 times for 10000 evaluation, with a pop-
ulation of 100 individuals, cross and muta-
tion probabilities of 0.8 and 0.4. The dif-
ferent variation operators are applied with
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Rule Set Level Variation Operators
Rule Set Crossover. Exchanges a random number of rules.
Rule Set Increase Crossover. Adds a random number of rules of the parents to children.
Rule Set Mutation. Adds or deletes, with the same probability, a rule.
Rule Level Variation Operators
Rule Arithmetic Crossover. Performs an arithmetic crossover of two random rules.
Rule Uniform Crossover. Performs an uniform crossover of two random rules.
Parameter Level Variation Operators.
Arithmetic and Uniform Crossover These operators have been studied and described by other authors [4].
Uniform and Non-Uniform Mutation The small mutation produces a small change in the individual and it is
Small Mutation suitable for fine tuning of the real parameters.

Table 2: Variation Operators.

Ref. M L T rain Eval
MSE MSE

[18] 40 (initial) 40 3.3 · 10−4 6.9 · 10−4

28 (optimized) 28 3.3 · 10−4 6.0 · 10−4

[19] 36 (initial) 12 1.9 · 10−6 2.9 · 10−3

24 (optimized) 12 2.0 · 10−6 6.4 · 10−4

[11] 7 (initial) 14 1.8 · 10−3 1.0 · 10−3

5 (optimized) 5 5.0 · 10−4 4.2 · 10−4

Table 3: Fuzzy models for the second order
non-linear plant reported in literature.

M L Train MSE Eval MSE S
MONEA
1 2 0.041882 0.043821 0.000000
2 3 0.004779 0.005533 0.249887
3 4 0.002262 0.002749 0.232016
4 4 0.000216 0.000248 0.249021
ENORA
1 2 0.041882 0.043821 0.000000
2 3 0.004951 0.005722 0.242090
3 4 0.001906 0.002411 0.249391
4 4 0.000161 0.000194 0.249746
NSGA-II
1 2 0.041882 0.043821 0.000000
2 3 0.004870 0.005639 0.249998
3 4 0.001885 0.002343 0.249999
4 4 0.000249 0.000314 0.250000

Table 4: Non-dominated solutions (best re-
sults over 100 runs) obtained in this paper for
the second order non-linear plant.

equal probability. We can compare our re-
sults with the results obtained by other ap-
proaches proposed in [18], [19] and [11] which
are shown in Table 3. Table 4 shows the best
non-dominated solutions in the last popula-
tion over 100 runs. Solutions with 4 rules are
chosen which are shown in Figure 1.

To compare the algorithms, we use the hy-
pervolume indicator (ν) which calculates the
fraction of the objective space which is non-

dominated by any of the solutions obtained
by the algorithm [3, 10, 20]. Algorithms were
executed 100 times, so we have obtained a 100
sample for each algorithm.

The statistics showed in Table 6 indicate that
MONEA and ENORA obtain lower localiza-
tion values than NSGA-II while NSGA-II ob-
tains the greatest dispersion values. Finally,
the 90% confidence intervals for the mean ob-
tained with t-test show that ENORA obtains
lower values than MONEA and this obtains
lower than NSGA-II. That is, the approxima-
tion sets obtained by ENORA are preferable
to those of MONEA and those of NSGA-II un-
der hypervolume indicator ν. t-test is robust
with no normal samples which are greater
than 30 individuals, so the results are signifi-
cant and we can conclude that there is statis-
tical difference between the hypervolume val-
ues obtained by the algorithms. The Boxplots
showed in Figure 2 confirm the above conclu-
sions.

Taking all the above, we can conclude that the
hypervolume values obtained with ENORA
are significantly better than the values ob-
tained with MONEA and NSGA-II. The sta-
tistical analysis shows, therefore, that for the
kind of multi-objective problems we are con-
sidering, Pareto search based on the space
search partition in linear slots is most ef-
ficient than general search strategies exclu-
sively based on diversity functions, as in
NSGA-II.
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R1 If yk−1 is LOW and yk−2 is LOW then g = 0.4327yk−1 + 0.0007yk−2 − 0.2008
R2 If yk−1 is LOW and yk−2 is HIGH then g = −0.4545yk−1 − 0.0131yk−2 + 0.2368
R3 If yk−1 is HIGH and yk−2 is LOW then g = −0.3968yk−1 − 0.0044yk−2 + 0.1859
R4 If yk−1 is HIGH and yk−2 is HIGH then g = 0.43645yk−1 − 0.0052yk−2 − 0.2110

yk−1 LOW = (−1.5966, 2.0662) HIGH = (1.7679, 2.6992)
yk−2 LOW = (−1.7940, 3.1816) HIGH = (1.5271, 2.1492)

Table 5: Fuzzy model with 4 rules for the non-linear dynamic plant obtained by ENORA.

MONEA ENORA NSGA-II
Minimum 0.3444 0.3337 0.3318
Maximum 0.4944 0.4591 0.9590

Mean 0.3919 0.3799 0.5333
S.D. 0.0378 0.0334 0.1430

C.I. Low 0.3856 0.3743 0.5096
C.I. High 0.3982 0.3854 0.5571
S.D = Standard Deviation of Mean
C.I. = Confidence Interval for the Mean (90%)

Table 6: Statistics for the hypervolume ob-
tained with 100 runs of MONEA, ENORA
and NSGA-II for the second order non-linear
plant.

5 Conclusions.

This paper remarks on some results in the
combination of Pareto-based multi-objective
evolutionary algorithms, neural networks and
fuzzy modeling. A multi-objective con-
strained optimization model is proposed in
which criteria such as accuracy, transparency
and compactness have been taken into ac-
count. Three multi-objective evolutionary al-
gorithms (MONEA, ENORA and NSGA-II)
have been implemented in combination with
neural network based and rule simplification
techniques. The results obtained improve on
other more complex techniques reported in lit-
erature, with the advantage that the proposed
technique identifies a set of alternative solu-
tions. Statistical tests have been performed
over the hypervolume quality indicator val-
ues to compare the algorithms and it has
shown that, for the non linear plant problem,
ENORA obtains better results than MONEA
and NSGA-II algorithms.
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Figure 2: Boxplots for the hypervolume ob-
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Figure 1: Solutions with 4 rules obtained in this paper for the second order non-linear plant.
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