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Abstract

This work proposes the use of Multi-
Objective Evolutionary Algorithms
to obtain Fuzzy Rule-Based Systems
with good accuracy-interpretability
trade-off. To do this, we present
a new post-processing method that
performs rule selection and mem-
bership function tuning by focusing
in the Pareto zone containing the
most accurate solutions but with the
least number of possible rules. This
method is based on the well-known
SPEA2 algorithm, applying an in-
telligent crossover operator, consid-
ering some modifications to concen-
trate the search in the desired Pareto
zone and including an incest pre-
vention mechanism in order to ob-
tain more global optima. The results
show that improving the trade-off
between exploration and exploita-
tion in the search process enhances
the SPEA2 algorithm performance.

1 Introduction

A widely-used approach to improve the accu-
racy of linguistic Fuzzy Rule-Based Systems
(FRBSs) is the tuning of Membership Func-
tions (MFs) [2], which refines a previous def-
inition of the data base once the rule base
has been obtained. Although tuning usually

∗ Supported by the Spanish Project TIN-2005-
08386-C05-01.

improves the system performance, sometimes
a large number of rules is used to reach an
acceptable degree of accuracy. To avoid this
problem, some works [2] consider the selec-
tion of rules together with the tuning of MFs
by only considering accuracy criteria. In this
way, rules are extracted only if it is possible
to maintain or even improve the system accu-
racy. A very interesting conclusion from [2]
is that both techniques can present a posi-
tive synergy in most of the cases (similar or
more accurate models could be obtained by
reducing the number of rules) when they are
combined within the same process.

Since this problem presents a multi-objective
nature the use of Multi-Objective Evolution-
ary Algorithms (MOEAs)[4] to obtain a set
of solutions with different degrees of accuracy
and number of rules by using both charac-
teristics as objectives can represent an inter-
esting way to work. In fact, MOEAs have
been recently applied to improve the difficult
trade-off between interpretability and accu-
racy of linguistic FRBSs, by obtaining Mam-
dani type models not only accurate but also
interpretable [3, 6, 10, 11]. However, these
works do not consider learning or tuning [2] of
the MFs, i.e., they are engaged to Linguistic
Fuzzy Modeling (LFM) with improved inter-
pretability which is closer to the interpretabil-
ity than the accuracy (see Figure 1).

Indeed, to directly apply the most recognized
MOEAs for general use in order to perform to-
gether tuning and rule selection could present
some important problems [1]. The main prob-
lem is that it is practically impossible to ob-
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tain the complete optimal Pareto due to the
large search space and due to a faster tun-
ing of the simplest solutions before exploring
more promising rule configurations. However,
by taking into account that non-dominated
solutions with a small number of rules and
high errors are not interesting since they have
not the desired trade-off between accuracy
and interpretability, we could focus the search
only in the Pareto zone with the most accu-
rate solutions trying to obtain the least pos-
sible number of rules.

In this way, a new method was recently
proposed in [1], which by modifying the
Strength Pareto Evolutionary Algorithm 2
(SPEA2) [13] progressively concentrates the
search in the most promising solutions, al-
lowing exploration at first and favoring the
exploitation of the most accurate solutions
at the end (the Accuracy-Oriented SPEA2,
SPEA2Acc). The main objective was to get
almost one improved solution with respect to
the classic single objective algorithm (a solu-
tion that could dominate the one obtained by
such algorithm in terms of the system error
and the number of rules).

This work proposes a new MOEA (called
Exploration-Exploitation based SPEA2,
SPEA2E/E) to improve even more the de-
sired accuracy/interpretability balance (see
Figure 1) by better handling the search space
involved in the tuning of MFs and at the
same time obtaining more compact models.
This algorithm is based on the well known
SPEA2 [13] (the same fitness computation
and selection mechanism are used) and
incorporates the main ideas of SPEA2Acc

proposed in [1] for guiding the search towards
the desired Pareto zone. However, in order to
improve the search ability of these algorithms
the proposed algorithm includes a mechanism
for incest prevention based on the concepts of
CHC [8] (maintaining population diversity)
and a more intelligent crossover operator.
This favors a better trade-off between explo-
ration and exploitation in the more complex
search space of the real parameters and
the derivation of more useful and simple
offspring. The results obtained show that

improving the trade-off between exploration
and exploitation in the search enhances the
SPEA2 performance and outperforms the
results obtained by SPEA2Acc.
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Figure 1: Interpretability-Accuracy Trade-off
in LFM

In the next section, we propose the new
SPEA2E/E describing its main characteristics
and the genetic operators considered. Sec-
tion 3 shows an experimental study of the
proposed method in a real-world problem. Fi-
nally, Section 4 points out some conclusions.

2 Using Incest Prevention to Evol-
ve Accuracy-Oriented Pareto
Sets: SPEA2E/E Algorithm

This section proposes SPEA2E/E to get solu-
tions with higher accuracy and the least pos-
sible number of rules by performing rule selec-
tion together with a tuning of the MF param-
eters. In the next subsections, the main com-
ponents of this algorithm are described and
then the specific characteristics and its main
steps are presented.

2.1 Coding Scheme and Initial Gene
Pool

A double coding scheme for both rule selec-
tion (CS) and tuning (CT ) is used:

Cp = Cp
SC

p
T

In the Cp
S = (cS1, . . . , cSm) part, the coding

scheme consists of binary-coded strings with
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size m (with m being the number of initial
rules). Depending on whether a rule is se-
lected or not, values ‘1’ or ‘0’ are respectively
assigned to the corresponding gene. In the
CT part, a real coding is considered, being mi

the number of labels of each of the n variables
comprising the data base,

Ci = (ai
1, b

i
1, c

i
1, . . . , a

i
mi , b

i
mi , c

i
mi),

i = 1, . . . , n ,
Cp

T = C1C2 . . . Cn .

The initial population is obtained with all in-
dividuals having all genes with value ‘1’ in the
CS part. And in the CT part the initial data
base is included as first individual. The re-
maining individuals are generated at random
within the corresponding variation intervals.
Such intervals are calculated from the initial
data base. For each MF, Cj

i = (aj , bj , cj), the
variation intervals are calculated in the fol-
lowing way:

[I l
aj , Ir

aj ] = [aj − (bj − aj)/2, aj + (bj − aj)/2]
[I l

bj , Ir
bj ] = [bj − (bj − aj)/2, bj + (cj − bj)/2]

[I l
cj , Ir

cj ] = [cj − (cj − bj)/2, cj + (cj − bj)/2]

Besides, we have to highlight that the way to
create the solutions of the initial population
for the part of rule selection is a very impor-
tant factor. In order to to get solutions with
a high accuracy, we should start with solu-
tions selecting all the possible rules, which by
means of the mutation at the beginning and
then by means of the crossover favors a pro-
gressive extraction of bad rules (those that
can not be improved).

2.2 Objectives

Two objectives are minimized for this prob-
lem: the number of rules (interpretability)
and the Mean Squared Error (accuracy),

MSE =
1

2 · |E|
|E|∑
l=1

(F (xl)− yl)2,

with |E| being the data set size, F (xl) being
the output obtained from the FRBS decoded
from such chromosome when the l-th example
is considered and yl being the known desired

output. The fuzzy inference system consid-
ered to obtain F (xl) is the center of gravity
weighted by the matching strategy as defuzzi-
fication operator and the minimum t-norm as
implication and conjunctive operators.

2.3 Crossover and Mutation

In this subsection, we propose an intelligent
crossover based on our experience in this con-
crete problem that is able to adequately profit
from the corresponding parents. To obtain
each offspring the following steps are applied:

1. BLX-0.5 [9] crossover is applied to obtain
the CT part of the offspring.

2. Once the real parameters are obtained
determining a whole data base, for each
gene in the CS part the corresponding
rule is independently extracted from each
individual involved in the crossover (off-
spring and parents 1 and 2). In this way,
the same rule is obtained three times with
different MFs (those concerning these
three individuals).

3. Euclidean normalized distances are com-
puted between offspring and each par-
ent by only considering the center points
(vertex) of the MFs involved in the ex-
tracted rules. The differences between
each pair of centers are normalized their
respective variation interval amplitudes.

4. The nearest parent is the one that deter-
mines if this rule is selected or not for the
offspring by directly copying its value in
CS for the corresponding gene.

5. This process is repeated until all the CS

values are assigned for the offspring.

Four offspring are obtained repeating this pro-
cess four times (after considering mutation,
only the two most accurate are taken as de-
scendant). By applying this operator, explo-
ration is performed in the CT part and the CS

part is directly obtained based on the previous
knowledge each parent has about the use or
not of a specific configuration of MFs for each
rule. This avoid to recover a bad rule that
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was discarded for a concrete configuration of
MFs, or allow to recover a good rule that is
still considered for a concrete configuration of
MFs, increasing the probability of succeed in
the selection or elimination of a rule for each
concrete configuration of MFs. Since a bet-
ter exploration is performed for the CS part,
the mutation operator does not need to add
rules. In this way, once an offspring is gen-
erated the mutation operator changes a gene
value at random in the CT part and directly
sets to zero a gene selected at random in the
CS part (one gene is considered in each part)
with probability Pm.

Applying these operators two problems are
solved. Firstly, crossing individuals with very
different rule configurations is more produc-
tive. And secondly, this way to work favors
rule extraction since mutation is only engaged
to remove unnecessary rules.

2.4 Main Characteristics and Steps of
SPEA2E/E

In order to focus the search on the desired
Pareto zone, high accuracy with least possible
number of rules, and to obtain a more global
optimum we propose several mechanisms that
give more selective pressure to those solutions
that have a high accuracy and favor a better
exploration for the tuning process:

• A restarting operator is applied by only
maintaining the most accurate individual
as a part of the new population (exter-
nal population is forced to be empty) and
obtaining the remaining individuals with
the same rule configuration and tuning
parameters generated at random within
the corresponding variation intervals. In
this way, we concentrate the search only
in the desired Pareto zone (similar solu-
tions in a zone with high accuracy) and
get away from local optima or specific
configurations in the CT part.

• This algorithm includes an incest preven-
tion mechanism based on the concepts
of CHC [8] in order to avoid premature
convergence in the CT part (real cod-

ing), that is the main responsible of ac-
curacy improvements and represents a
more complicated search space than the
CS part (binary coding). In CHC, only
those parents whose hamming distance
divided by 4 is higher than a threshold
are crossed. Since we consider a real cod-
ing scheme (only CT parts are consid-
ered), we have to transform each gene
considering a Gray Code with a fixed
number of bits per gene (BGene) deter-
mined by the system expert. In this way,
the threshold value is initialized as:

L = (#CT ∗BGene)/4,

where #CT is the number of genes in the
CT part of the chromosome.

At each generation of the algorithm, the
threshold value is decremented by one al-
lowing to cross closer solutions.

• CHC performs restarting when L is 0
(moment in which similar solutions have
been crossed to locally exploit the infor-
mation in the parents). However, the
transformation to Gray Code is a dis-
cretization and we detected all crossovers
were allowed with still high values of L,
obtaining when L is 0 very specific pa-
rameters that make difficult next restarts
to get away from local optima.

Since each problem presents different val-
ues of L we propose to detect when all
crossovers are allowed in order to perform
restart. In fact, to avoid local conver-
gence we apply first restart if 50 percent
of crossovers are detected at any gener-
ation. This value is updated each time
restarting is performed as %Required =
(100+%Required)/2. Moreover, the most
accurate solution should be improved be-
fore each restarting. On the other hand,
to preserve a well formed Pareto at the
end, it is determined that restarting is
not applied in the last evaluations. The
number of evaluations without restart
can be estimated as the number of eval-
uations needed to apply the first restart
multiplied by 4. Additionally, restart is
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disabled if it was never applied and the
mid of the total number of evaluations
are used. See Steps 5 and 7 in Figure 2.

• In each stage of the algorithm (between
restarting points), the number of solu-
tions in the external population (P t+1)
considered to form the mating pool is
progressively reduced, by focusing only
on those with the best accuracy. To do
that, the solutions are sorted from the
best to the worst (considering accuracy
as sorting criterion) and the number of
solutions considered for selection is re-
duced progressively from 100% at the be-
ginning to 50% at the end of each stage
by taking into account the value of L.

Based on the descriptions of SPEA2 in [13],
the main steps of SPEA2E/E algorithm are
finally presented in Figure 2.

3 Experiments

To evaluate the usefulness of the method pro-
posed, we have considered a real-world prob-
lem [5] with 4 input variables that consists of
estimating the maintenance costs of medium
voltage lines in a town. SPEA2E/E has been
compared with several single objective based
methods, with SPEA2, SPEA2Acc and with
the paradigm of MOEAs, NSGA-II [7] and a
version of NSGA-II analyzed in [1] considering
the same modifications of SPEA2Acc. Meth-
ods considered for the experiments are briefly
described in Table 1. WM [12] method is con-
sidered to obtain the initial rule base to be
tuned. T and S methods perform the tuning
of parameters and rule selection respectively.
TS indicates tuning together with rule selec-
tion in the same algorithm. All of them con-
sider the accuracy of the model as the sole
objective. MOEAs considered perform rule
selection from a given fuzzy rule set together
with a tuning of the MFs considering two ob-
jectives, system error and number of rules.

The initial linguistic partitions are comprised
by five linguistic terms with equally dis-
tributed triangular shape MFs. The values of
the input parameters considered by S, T and

Input:

N (population size), N (external population size),
E (maximum number of evaluations), BGene
(bit per gene for gray code).

Output:

A (non-dominated set).

Terminology:

#CT (number of genes in the real part CT ),
L (threshold for incest prevention),
InitL = (#CT ∗BGene)/4 (initial threshold),
R% (descendant % required to perform restart),
Rst (internal variable to activate restart),
Nded (evaluations needed to form a Pareto),
Evs (current number of evaluations),
Acc+ (accuracy improvement is detected in the
most accurate solution from the latest restart).

Algorithm:

1. Generate P0 (initial population) and create

P 0 = ∅ (empty external population).

2. Evaluate individuals in P0 (MSE) and set:

• L = InitL; R% = 0.5; Rst = false;

• Evs = N ; Nded = 0; t = 0;

3. Calculate fitness values of individuals in Pt and
P t. Copy all non-dominated individuals in Pt∪P t

to P t+1. If |P t+1| > N apply truncation oper-

ator. If |P t+1| < N fill with dominated in Pt∪P t.

4. If Evs ≥ E, return A and stop.

5. If (Rst) and (Evs < E −Nded) and (Acc+):

• L = InitL; R% = (R% + 1)/2.0;

• Rst = false; Evs + = N − 1;

• If Nded is 0, Nded = Evs ∗ 4.

• Copy the most accurate individual to Pt.
Empty P t (P t = ∅). Fill remaining N − 1
individuals in Pt with CT at random and CS

equal to the most accurate individual.

• Evaluate N −1 new individuals in Pt (MSE)
and go to Step 3.

6. Generate the next population:

• Set P = (L/(InitL∗2.0)+0.5). Perform bi-
nary tournament selection with replacement
on the

⌊
N ∗ P

⌋
most accurate solutions of

P t+1 in order to fill the mating pool.

• Apply crossover (BLX-Specific) and muta-
tion for each two parents in the mating pool
if the hamming distance between their CT

part Gray codings divided by 4 is over L.

• Set Pt+1 to the resulting population
with the obtained G descendant. Set
evs + = G ∗ 2.

7. Variables updating:

• If L > 0, L = L− 1.

• If G ≥ N ∗R%, Rst = true.

• If Nded is 0 and evs ≥ E/2, Nded = E.

8. Go to Step 3 with t = t + 1.

Figure 2: SPEA2E/E Algorithm Scheme
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Table 1: Methods Considered for Comparison
Method Ref. Description

WM [12] Wang & Mendel Algorithm
WM+T [2] Tuning of Parameters
WM+S [2] Rule Selection

WM+TS [2] Tuning and Rule Selection
WM+TS-NSGA-II [1] Tuning & Selection by NSGA-II

WM+TS-NSGA-IIAcc [1] Accuracy-Oriented NSGA-II
WM+TS-SPEA2 [1] Tuning & Selection by SPEA2

WM+TS-SPEA2Acc [1] Accuracy-Oriented SPEA2
WM+TS-SPEA2E/E — Exploration/Exploitation based SPEA2

TS are: population size of 61, 100000 evalua-
tions, 0.6 as crossover probability and 0.2 as
mutation probability per chromosome. The
values of the input parameters considered by
the MOEAs are: population size of 200 (61
in the case of NSGA-II based algorithms),
external population size of 61 (in the case
of SPEA2 based approaches), 100000 evalu-
ations, 0.2 as mutation probability per chro-
mosome and 30 bits per gene for the Gray
codification in SPEA2E/E .

3.1 Problem Description

Estimating the maintenance costs of the
medium voltage electrical network in a town
[5] is a complex but interesting problem.
Since a direct measure is very difficult to ob-
tain, it is useful to consider models. These
estimations allow electrical companies to jus-
tify their expenses. Moreover, the model must
be able to explain how a specific value is
computed for a certain town. Our objective
will be to relate the maintenance costs of the
medium voltage lines with the following four
variables: sum of the lengths of all streets in
the town, total area of the town, area that is
occupied by buildings, and energy supply to the
town. We will deal with estimations of mini-
mum maintenance costs based on a model of
the optimal electrical network for a town in a
sample of 1,059 towns.

To develop the different experiments, we con-
sider a 5-folder cross-validation model, i.e.,
5 random partitions of data each with 20%,
and the combination of 4 of them (80%) as

training and the remaining one as test. For
each one of the 5 data partitions, the tun-
ing methods have been run 6 times, showing
for each problem the averaged results of a to-
tal of 30 runs. In the case of methods with
multi-objective approach (the last five), the
averaged values have been calculated consid-
ering the most accurate solution from each
Pareto obtained. In this way, since our main
objective is to reduce the number of rules but
maintaining or improving the accuracy of the
obtained models we propose as final solution
the most accurate one of each Pareto.

The results obtained by the analyzed methods
are shown in Table 2, where #R stands for the
number of rules, MSEtra/tst for the averaged
error obtained over the training/test data, σ
for their respective standard deviations and
t for the results of applying a test t-student
(with 95 percent confidence) in order to ascer-
tain whether differences in the performance of
the best results are significant when compared
with that of the other algorithms in the table.
A run of the algorithms in the table takes ap-
proximately 8 minutes in a Core 2 Duo 2GHz
CPU (by only using one of the two proces-
sors). The interpretation of this column is:

? represents the best averaged result.

+ means that the best result has better per-
formance than that of the related row.

3.2 Results and Analysis

Analysing the results showed in table 2 we can
highlight the following facts:
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Table 2: Results obtained by the studied methods
Method #R MSEtra σtra t-test MSEtst σtst t-test
WM 65 57605 2841 + 57934 4733 +
T 65 17020 1894 + 21027 4225 +
S 40.9 41158 1167 + 42988 4442 +
TS 41.3 13387 1153 + 17784 3344 +
TS-NSGAII 31.4 11827 1354 + 16047 4070 +
TS-NSGAIIAcc 36.4 11167 1464 + 14986 2769 +
TS-SPEA2 28.9 11630 1283 + 15387 3108 +
TS-SPEA2Acc 32.3 10714 1392 + 14252 3181 +
TS-SPEA2E/E 29.8 9688 942 * 12671 1796 *
TS-SPEA2†E/E 31.0 10276 974 = 13318 1999 =

† Results after 50000 evaluations

• The models obtained by SPEA2E/E show
an important reduction of the error in
training and test with respect with those
obtained by the others methods.

• A large number of rules have been re-
moved from the initial rule base (more
or less 35 rules have been eliminated). In
this way, SPEA2E/E improves the accu-
racy and obtain simpler models than TS
and SPEA2Acc, being the second method
with less rules.

• Although it is natural to expect a slow
convergence of SPEA2E/E (forcing explo-
ration before allowing exploitation), this
method is faster than the remaining, pre-
senting very good results even after 50000
evaluations.

• Moreover, SPEA2E/E presents the lowest
standard deviations in both, training and
specially in test.

In Figure 3, we can see the Pareto evolution
in a representative run with SPEA2Acc and
SPEA2E/E , and also the evolution of the best
solution in the population in a representa-
tive run of WM+TS. We can observe as the
Pareto moves along without having a wide ex-
tension but dominating the solution obtained
by WM+TS at the end. Pareto at 30000
in SPEA2E/E represents a still not formed
Pareto after a restarting point.
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Figure 3: Pareto evolution with SPEA2Acc &
SPEA2E/E , and of the best solution with TS.

4 Concluding Remarks

Taking into account the obtained results, we
can conclude that the models obtained by the
proposed method present a better trade-off
between interpretability and accuracy than
the remaining ones. By searching for a good
configuration of rules and by tuning the pa-
rameters for a proper subset of rules, the pro-
posed algorithm has obtained models even
with a better accuracy than those obtained
by methods only guided by accuracy mea-
sures. Moreover, the results show that to im-
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prove the trade-off between exploration and
exploitation by means of incest prevention in
the search process allows the derivation of
more global optima.

On the other hand, the proposed algorithm
could be of interest in problems that consid-
ering real coding and although presenting a
multi-objective nature, need as solution not
all the Pareto frontier but only a specific area
of it.
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