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Abstract

In this paper, we briefly discuss the
concept of fuzzy logic in broader sense
and its present stage of development.
Furthermore, we introduce a special al-
gebra called EQ-algebra in which the
basic operation is that of fuzzy equal-
ity. Then we introduce axiomatics of a
new core fuzzy type theory — IEQ-FTT
— and demonstrate how three princi-
pal fuzzy type theories, namely IMTL-
,  Lukasiewicz, and BL- can be derived
from it.
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1 Introduction

Fuzzy Logic in Broader Sense (FLb) is an ex-
tension of Fuzzy Logic in Narrow Sense (FLn),
which aims at developing a formal theory of
human reasoning with the stress to utiliza-
tion of vagueness contained in the meaning of
special class of natural language expressions.
This program was initiated by V. Novák in
1995 in [6]. Note that it overlaps with two
other paradigms proposed in the literature:
commonsense reasoning (cf. [3] and the cita-
tions therein) and precisiated natural language
(PNL; [12, 13]) but it is not equal to them.
The main drawback of the up-to-date formal-
izations of commonsense reasoning is neglect-
ing vagueness contained in the meaning of
natural language expressions. On the other
hand, the main drawback of PNL is lack of
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precise, mathematically justified tools. Thus,
our concept of FLb is a glue between both
these paradigms.

FLb consists (so far) of the following theories:

(a) Formal theory of evaluative linguistic ex-
pressions,

(b) formal theory of fuzzy IF-THEN rules,

(c) formal theory of perception-based logical
deduction,

(d) formal theory of intermediate quantifiers.

Formal basis for all these theories is fuzzy
type theory — a higher-order fuzzy logic (see
[7, 9]) which continues the development of
classical type theory (cf. [1, 2, 5]). Expres-
sive power and experiences led us to separa-
tion of a few distinguished kinds of fuzzy logic:
IMTL-logic,  Lukasiewicz logic and Basic fuzzy
logic (BL). All of them have propositional as
well as predicate version and enjoy complete-
ness property (their propositional versions en-
joy even standard completeness). These log-
ics have been extended also to higher order
versions (fuzzy type theories) which enjoy the
generalized completeness property (i.e. com-
pleteness w.r.t. generalized models).

Unlike other formal logical systems where the
fundamental connective is implication, the
fundamental connective in FTT is fuzzy equal-
ity/equalivalence. It is important to note that
this connective emerges incessantly in many
abstract thoughts. Therefore, fuzzy type the-
ory becomes elegant and philosophically in-
teresting. The principal question now raises,
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how fuzzy equality should be interpreted in
the structure of truth values. In [9], we used
the biresiduation operation in residuated lat-
tice. This operation, however, is derived from
implication and therefore we face a method-
ological discrepancy: the basic connective in
syntax is interpreted by a derived operation in
semantics. Therefore, in [? ] we introduced a
new special algebraic structure of truth values
called EQ-algebra in which the basic opera-
tions is fuzzy equality (equivalence) and im-
plication is derived from it. Since the product
operation has been relaxed from the implica-
tion, this algebra generalizes residuated lat-
tices. In this paper we overview EQ-algebras
and develop a formal system of fuzzy type the-
ory on the basis of one special case of them.

2 EQ-algebras

As mentioned, the basic connective in FTT
is fuzzy equality. Hence, a natural question
arises, whether we can introduce an algebra
of truth values specific for FTT. The first at-
tempt has been presented in [10] and also in
[? ] where the concept of EQ-algebra was
introduced. In detail, this concept has been
presented in [? ].

From the point of view of logic, the main dif-
ference between residuated lattices and EQ-
algebras lays in the way how implication op-
eration is obtained. While in residuated lat-
tice, it is obtained from (strong) conjunction,
in EQ-algebra it is obtained from equivalence.
Though properties of both kinds of algebras
are similar, they differ in several essential
points.

Definition 1
An EQ-algebra is an algebra

E = 〈E,∧,⊗,∼,1〉 (1)

of type (2, 2, 2, 0) where the axioms are ful-
filled for all a, b, c ∈ E:

(E1) 〈E,∧,1〉 is a commutative idempotent
monoid (i.e. ∧-semilattice with top el-
ement 1). We put a ≤ b iff a ∧ b = a,
as usual.

(E2) 〈E,⊗,1〉 is a commutative monoid
and ⊗ is isotone w.r.t. ≤.

(E3) a ∼ a = 1,

(E4) ((a ∧ b) ∼ c)⊗ (d ∼ a) ≤ c ∼ (d ∧ b),

(E5) (a ∼ b)⊗ (c ∼ d) ≤ (a ∼ c) ∼ (b ∼ d),

(E6) (a ∧ b ∧ c) ∼ a ≤ (a ∧ b) ∼ a,

(E7) (a ∧ b) ∼ a ≤ (a ∧ b ∧ c) ∼ (a ∧ c),

(E8) a⊗ b ≤ a ∼ b.

The operation “∧” is called meet (infimum),
“⊗” is called product and “∼” is a fuzzy
equality

Unlike [10? ], which were the first exposition
of the idea, we have weakened axiom (E8) and
added axiom (E5).

Clearly, ≤ is the classical partial order. We
will put

a→ b = (a ∧ b) ∼ a, (2)

and

ã = a ∼ 1 (3)

where a, b ∈ E. The derived operation (2) will
be called implication. Hence, we may rewrite
(E6),(E7) into

a→ (b ∧ c) ≤ a→ b, (E6’)
a→ b ≤ (a ∧ c)→ b, (E7’)

respectively.

Lemma 1
The following properties hold in EQ-algebras:

(a) a ∼ b = b ∼ a, (symmetry)

(b) (a ∼ b)⊗ (b ∼ c) ≤ (a ∼ c), (transitivity)

(c) (a→ b)⊗ (b→ c) ≤ a→ c,
(transitivity of implication)

(d) a⊗ (a→ b) ≤ b̃.

(e) (a→ b)⊗ (b→ a) ≤ a ∼ b ≤
(a→ b) ∧ (b→ a)
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Let E contain also the bottom element 0.
Then we put

¬a = a ∼ 0, a ∈ E. (4)

Definition 2
Let E be EQ-algebra. We say that it is:

(i) semiseparated if for all a ∈ E,

(E9) a ∼ 1 = 1 implies a = 1.

(ii) separated if for all a, b ∈ E,

(E10) a ∼ b = 1 implies a = b.

(iii) spanned if

(E11) 0̃ = 0.

(iv) good if for all a ∈ E,

(E12) a ∼ 1 = a.

(v) residuated if for all a, b, c ∈ E,

(E13) (a⊗ b) ∧ c = a⊗ b iff
a ∧ ((b ∧ c) ∼ b) = a.

(vi) involutive (IEQ-algebra) if for all a ∈ E,

(E14) ¬¬a = a.

Let L = 〈L,∧,∨,⊗,⇒,0,1〉 be a residu-
ated lattice. We may introduce two kinds of
biresiduation operation:

a⇔ b = (a⇒ b) ∧ (b⇒ a), (5)
a ⇔̂ b = (a⇒ b)⊗ (b⇒ a). (6)

Both operations are natural interpretations of
equivalence since they are reflexive, symmet-
ric, and transitive in the following sense:

(a2b)⊗ (b2c) ≤ a2c

for all a, b, c ∈ L where 2 ∈ {⇔, ⇔̂}.

Example 1
Let L = 〈L,∧,∨,⊗,⇒,0,1〉 be a residuated
lattice. Then

(i) EL = 〈L,∧,⊗,⇔,1〉 is a separated EQ-
algebra.

1

0

c

ba

d

e f

Figure 1: Eight elements IEQ-algebra.

(ii) If L is linearly ordered then also
ÊL = 〈L,∧,⊗, ⇔̂,1〉 is a separated EQ-
algebra (since both ⇔ and ⇔̂ concide).

(iii) Let ∗ be a monoidal operation on L such
that ∗ ≤ ⊗. Then E = 〈L,∧, ∗,⇔,1〉 is
a separated EQ-algebra. If ∗ < ⊗ then
E is not residuated.

Example 2
Example of finite non-trivial non-residuated
IEQ-algebra is the following: its (semi)lattice
structure is in Figure 1. Product and fuzzy
equality are defined as follows:

⊗ 0 a b c d e f 1

0
a
b
c
d
e
f
1



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 a
0 0 0 0 0 0 0 b
0 0 0 0 0 0 0 c
0 0 0 0 d d d d
0 0 0 0 d e d e
0 0 0 0 d d d f
0 a b c d d f 1



∼ 0 a b c d e f 1

0
a
b
c
d
e
f
1



1 e f d c a b 0
e 1 d f c a c a
f d 1 e c c b b
d f e 1 c c c c
c c c c 1 f e d
a a c c f 1 d e
b c b c e d 1 f
0 a b c d e f 1


There are also examples of non-trivial linearly
ordered IEQ-algebras and many other exam-
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ples of non-trivial finite EQ-algebras includ-
ing linearly ordered ones. Therefore, in gen-
eral neither non-linear nor linear EQ-algebras
coincide with residuated lattices.

Lemma 2
Let E be a good EQ-algebra. Then the fol-
lowing holds for all a, b ∈ E:

(a) It is spanned and separated.

(b) Axiom (E8) is provable from the other ax-
ioms and can be omitted.

(c) a⊗ (a→ b) ≤ b,

(d) a ≤ b iff a→ b = 1,

(e) a ≤ (a ∼ b) ∼ b.

Lemma 3
An EQ-algebra E is residuated iff

(a⊗ b)→ c = a→ (b→ c)

holds for all a, b, c ∈ E.

Theorem 1
Each IEQ-algebra E is good, spanned and sep-
arated.

An EQ-algebra E is complete if it is a com-
plete ∧-semilattice. A lattice ordered EQ-
algebra is an EQ-algebra that is a lattice. The
EQ-algebra E is a lattice EQ-algebra (`EQ-
algebra) if it is lattice ordered and, moreover,
the following additional substitution axiom
holds for all a, b, c, d ∈ E:

(E15) ((a∨ b) ∼ c)⊗ (d ∼ a) ≤ ((d∨ b) ∼ c).

A complete EQ-algebra is a complete lattice
ordered EQ-algebra. Every finite EQ-algebra
is latice ordered. A complete residuated EQ-
algebra is a complete residuated lattice.

In IEQ-algebra E , it is possible to define

a ∨ b = ¬(¬a ∧ ¬b). (7)

It is easy to prove that each IEQ-algebra is
lattice ordered.

Lemma 4
Let E be an IEQ-algebra. Then the following
holds for all a, b ∈ E:

(a) a ∼ b = ¬a ∼ ¬b,

(b) E is `IEQ-algebra.

Let E be a spanned EQ-algebra. A delta op-
eration in E is an operation ∆ : E −→ E
fulfilling the following axioms:

(i) ∆1 = 1,

(ii) ∆a ≤ a,

(iii) ∆a ≤ ∆∆a,

(iv) ∆(a ∼ b) ≤ ∆ã ∼ ∆b̃,

(v) ∆(a ∧ b) = ∆a ∧∆b.

If E is, moreover, lattice ordered then ∆ must
also fulfil the following:

(v) ∆(a ∨ b) ≤ ∆a ∨∆b,

(vi) ∆a ∨ ¬∆a = 1.

Lemma 5
(a) If a ≤ b then ∆a ≤ ∆b.

(b) ∆(a→ b) ≤ ∆ã→ ∆b̃.

(c) If E is good then ∆(a→ b) ≤ ∆a→ ∆b.

If the algebra is linearly ordered then we
can define ∆-operation by ∆(1) = 1 and
∆(x) = 0 otherwise. There is no nontrivial
∆-operation (i.e., different from identity) in
the IEQ-algebra from Example 2.

3 Core FTT

From now on, the FTT presented in [9] will be
referred to as IMTL-FTT. In this section, we
introduce a new core fuzzy type theory. It will
be denoted by IEQ-FTT because its structure
of truth values is formed by an IEQ∆-algebra

E∆ = 〈E,∧,⊗,∼,0,1,∆〉 (8)

where ∆ is a delta operation introduced
above. Recall that E∆ is, in fact, the `IEQ-
algebra and so we can consider also the join
operation ∨ in it.
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We will develop the IEQ-FTT in correspon-
dence with IMTL-FTT introduced in detail in
[9]. The definition of types and formulas re-
mains unchanged. The special constants are:
E(oα)α (fuzzy equality) for every α ∈ Types,
C(oo)o (conjunction), S(oo)o (strong conjunc-
tion), Doo (delta connective), and ιε(oε), ιo(oo)
(description operators).

The definitions of truth >, falsity ⊥, negation
¬¬¬ and implication⇒⇒⇒ remain unchanged.

(a) Special connectives:

∨∨∨ :=λxoλyo¬¬¬(¬¬¬xo ∧∧∧¬¬¬yo) (disjunction)
&&& :=λxoλyo(S(oo)o yo)xo.

(strong conjunction)

(9)

(b) Quantifiers: Let Ao ∈ Formo and xα be a
variable of type α. Then we put:

(∀xα)Ao := (λxαAo ≡ λxα>),
(general quantifier)

(∃xα)Ao :=¬¬¬(∀xα)¬¬¬Ao.
(existential quantifier)

The definition of n-fold strong conjunction is
as usual.

The following formulas of type o are logical
axioms of fuzzy type theory. The types α, β
are arbitrary types α, β ∈ Types unless speci-
fied otherwise.

Fundamental axioms

(CFT1) ∆∆∆(xα ≡ yα)⇒⇒⇒ (fβα xα ≡ fβα yα)

(CFT21) (∀xα)(fβα xα ≡ gβα xα)⇒⇒⇒
(fβα ≡ gβα)

(CFT22) (fβα ≡ gβα)⇒⇒⇒ (fβα xα ≡ gβα xα)

(CFT3) (λxαBβ)Aα ≡ Cβ
where Cβ is obtained from Bβ by re-
placing all free occurrences of xα in
it by Aα, provided that Aα is sub-
stitutable to Bβ for xα (lambda con-
version).

(CFT4) Aα ≡ Aα

(CFT5) (Aα ≡ Bα)&&&(Bα ≡ Cα)⇒⇒⇒
(Aα ≡ Cα)

for all types α 6= o.

Axioms of truth values

(CFT6) (Ao©Bo) ≡ (Bo©Ao)

(CFT7) (Ao©>) ≡ Ao

(CFT8) (Ao©Bo)©Co ≡ Ao© (Bo©Co)

where © ∈ {∧∧∧,&&&}

(CFT9) (Ao ∧∧∧Ao) ≡ Ao

(CFT10) ¬¬¬¬¬¬Ao ≡ Ao

(CFT11) ((Ao ∧∧∧ Bo) ≡ Co)&&&(Do ≡ Ao) ⇒⇒⇒
((Do ∧∧∧Bo) ≡ Co)

(CFT12) (Ao ≡ Bo)&&&(Co ≡ Do)⇒⇒⇒
(Ao ≡ Co) ≡ (Bo ≡ Do)

(CFT13) ((Ao ∧∧∧Bo ∧∧∧ Co) ≡ Ao)⇒⇒⇒
(Ao ∧∧∧Bo) ≡ Ao)

(CFT14) ((Ao ∧∧∧Bo) ≡ Ao)⇒⇒⇒
(Ao ∧∧∧Bo ∧∧∧ Co) ≡ (Ao ∧∧∧ Co)

(CFT15) (Ao&&&Bo)⇒⇒⇒ (Ao ≡ Bo)

(CFT16) ((Ao∧∧∧Bo) ≡ Ao)∨∨∨((Ao∧∧∧Bo) ≡ Bo)

Axioms of delta

(CFT17) (goo(∆∆∆xo)∧∧∧ goo(¬¬¬∆∆∆xo)) ≡
(∀yo)goo(∆∆∆yo)

(CFT18) ∆∆∆(Ao ∧∧∧Bo) ≡∆∆∆Ao ∧∧∧∆∆∆Bo

(CFT19) ∆∆∆(Ao ∨∨∨Bo)⇒⇒⇒∆∆∆Ao ∨∨∨∆∆∆Bo

Axioms of quantifiers

(CFT20) (∀xα)(Ao⇒⇒⇒ Bo)⇒⇒⇒
(Ao⇒⇒⇒ (∀xα)Bo)

where xα is not free in Ao

Axioms of descriptions

(CFT21) ια(oα)(E(oα)α yα) ≡ yα, α = o, ε
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Let us remark that this set of axioms is not
optimized and so, it may contain redundan-
cies. The problem of minimization of the set
of axioms of IEQ-FTT is postponed to some
of the future papers.

The inference rules (R) and (N) remain un-
changed. The core FTT defined above will be
referred to as IEQ-FTT.

Semantics: A frame for J is a tuple M =
〈(Mα,=α)α∈Types , E∆〉 where E∆ is a complete
IEQ∆-algebra of truth values, =α is a fuzzy
equality on Mα (see [9] and elsewhere). Recall
that if βα is a type then the corresponding set
Mβα contains (not necessarily all) functions
f : Mα −→Mβ. We put Mo = E and assume
that each set Moo∪M(oo)o contains all the op-
erations from E∆. Let p be an assignment of
elements fromM to variables. Interpretation
IM is a function that assigns every formula
Aα, α ∈ Types and every assignment p a cor-
responding element, that is, a function of the
type α.

More specifically:

(i) IM(E(oo)o) =∼,

(ii) IM(E(oα)α) ==α for all α ∈ Types−{o},

(iii) IM(C(oo)o) = ∧,

(iv) IM(S(oo)o) = ⊗,

(v) IM(Doo) = ∆.

(vi) Semantics of ια(oα) is an element ob-
tained by defuzzification of a fuzzy set
in Mα which chooses some element from
its kernel.

A general model is a frame M such that
IMp (Aα) ∈ Mα holds true for all α ∈ Types.
This means that each set Mα from the frame
M has enough elements so that the interpre-
tation of each formula Aα ∈ Form is always
defined in M. If T is a theory, then a gen-
eral modelM is a model of T if all its special
axioms are true in the degree 1 in M.

Various properties common with IMTL-FTT
are provable also in IEQ-FTT.

Theorem 2 (Rule of Two Cases)
If T ` Ao,xα [>] and T ` Ao,xα [⊥] then T `
Ao,xα [∆∆∆yo].

This theorem enables us to prove important
formula (c) in the following lemma:

Lemma 6
(a) ` >,

(b) ` (A ≡ >) ≡ A,

(c) ` (∆∆∆Ao⇒⇒⇒ (Bo⇒⇒⇒ Co))⇒⇒⇒
((∆∆∆Ao⇒⇒⇒ Bo)⇒⇒⇒ (∆∆∆Ao⇒⇒⇒ Co)),

(d) If T ` Ao then T ` ¬¬¬∆∆∆¬¬¬∆∆∆Ao,

(e) ` Aα ≡ Bα implies ` Bα ≡ Aα.

Theorem 3 (Deduction theorem)
Let T be a theory, Ao ∈ Formo a formula.
Then

T ∪ {Ao} ` Bo iff T `∆∆∆Ao⇒⇒⇒ Bo

holds for every formula Bo ∈ Formo.

Let T be a theory. We say that:

(i) T is contradictory if

T ` ⊥.

Otherwise it is consistent.

(ii) T is maximal consistent if each its ex-
tension T ′, T ′ ⊃ T is inconsistent.

(iii) T is complete if for every two formulas
Ao, Bo

T ` Ao⇒⇒⇒ Bo or T ` Bo⇒⇒⇒ Ao.

(iv) T is extensionally complete if for every
closed formula of the form Aβα ≡ Bβα,
T 6` Aβα ≡ Bβα it follows that there
is a closed formula Cα such that T 6`
AβαCα ≡ BβαCα.

Theorem 4
A theory T is contradictory iff each formula
Ao ∈ Formo is provable in it.
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Theorem 5
To every consistent theory T there is an exten-

sionally complete consistent theory T which is
extension of T .

We now have to consider the concept of safe
general model, that is a model in which all the
necessary suprema and infima exist (cf. [4]).
The reason is that till now it is not known
whether we can complete the IEQ-algebra of
truth values.

Theorem 6
A theory T of IEQ-FTT is consistent iff it has
a safe general model M.

4 Principal FTT’s

We have discussed in [11] that most important
fuzzy type theories for further development of
FLb are those based on IMTL-algebra, MV-
algebra (standard  Lukasiewicz algebra), BL-
algebra, and in a sense also LΠ-algebra. All
these algebras are residuated lattices. It is
difficult to guess in the present stage of de-
velopment whether we can replace them by
IEQ-FTT.

To obtain residuated lattice-based FTT, we
need to add the following axiom to IEQ-FTT:

(RFT1) ((Ao&&&Bo)⇒⇒⇒ Co) ≡
(Ao⇒⇒⇒ (Bo⇒⇒⇒ Co))

The resulting fuzzy type theory is IMTL-
FTT.

4.1  Lukasiewicz-fuzzy type theory

This is a leading kind of fuzzy type theory
that is (up to now) fundamental for the de-
velopment of FLb. It differs from IEQ-FTT
by the following definitions:

∨∨∨ := λxo(λyo(xo⇒⇒⇒ yo)⇒⇒⇒ yo),
(disjunction)

&&& := λxo(λyo(¬¬¬(xo⇒⇒⇒¬¬¬yo))).
(strong conjunction)

Logical axioms of  L-FTT are (CFT1)–
(CFT21), (RFT1) and also the axiom

(LFT1) (Ao ∨∨∨Bo) ≡ (Bo ∨∨∨Ao).

There is also simpler alternative which uses
Rose-Rosser implication axioms for character-
ization of the structure of truth values. Then,
axioms (CFT6)–(CFT16) should be replaced
by the following axioms:

Implication axioms

(LFT’1) Ao⇒⇒⇒ (Bo⇒⇒⇒ Ao)

(LFT’2) (Ao ⇒⇒⇒ Bo) ⇒⇒⇒ ((Bo ⇒⇒⇒ Co) ⇒⇒⇒
(Ao⇒⇒⇒ Co))

(LFT’3) (¬¬¬Bo⇒⇒⇒¬¬¬Ao) ≡ (Ao⇒⇒⇒ Bo)

(LFT’4) (Ao ∨∨∨Bo) ≡ (Bo ∨∨∨Ao)

Theorem 7
A theory T of  L-FTT is consistent iff it has a
general model M.

4.2 BL-fuzzy type theory

Recall that BL stands for basic fuzzy logic de-
veloped by P. Hájek in [4]. We may introduce
also BL-fuzzy type theory (BL-FTT).

Axioms of BL-FTT are (CFT1)–(CFT9),
(CFT11)–(CFT21), (RFT1) and also the fol-
lowing:

(BL-FT1) (Ao ∧∧∧Bo) ≡ A&&&(Ao⇒⇒⇒ Bo)

(BL-FT2) ` Bo,xα [Aα]⇒⇒⇒ (∃xα)Bo.

(BL-FT3) (∀xα)(Ao⇒⇒⇒ Bo)⇒⇒⇒
((∃xα)Ao⇒⇒⇒ Bo)

(BL-FT4) (∀xα)(Ao∨∨∨Bo)⇒⇒⇒ ((∀xα)Ao∨∨∨Bo)

Theorem 8
A theory T of BL-FTT is consistent iff it has
a safe general model M.

Let us remark that in [8], also axioms for  LΠ
fuzzy type theory have been formulated. It is
discussible whether such a complicated theory
is a proper formal system to be used in FLb.
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5 Conclusion

In this paper, we have introduced axiomatics
of a new core fuzzy type theory — IEQ-FTT
— and demonstrated how it can be modified
to obtain three principal fuzzy type theories
that are IMTL-,  Lukasiewicz and BL-FTT.
The motivation for introducing new axiomat-
ics follows from the requirement to establish
FTT on the basis of an algebra of truth values
that is more natural than the residuated lat-
tice because the basic operation (connective)
in the latter is implication while the basic con-
nective in FTT is fuzzy equality/equivalence.
Therefore, we have developed a special alge-
bra of truth values called EQ-algebra and in-
troduced it briefly in Section 2. This serves
as the background for introducing IEQ-FTT
in Section 4 which is a core fuzzy type theory
based on EQ-algebra with double negation.
When modifying the list of its axioms and
some of the definitions of special formulas, we
obtain IMTL-,  Lukasiewicz and BL-FTT. The
reasons why we take them as principal fuzzy
type theories follow from the initial require-
ments of fuzzy logic in broader sense.
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