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Abstract

In this paper, we briefly discuss the
concept of fuzzy logic in broader sense
and its present stage of development.
Furthermore, we introduce a special al-
gebra called EQ-algebra in which the
basic operation is that of fuzzy equal-
ity. Then we introduce axiomatics of a
new core fuzzy type theory — IEQ-FTT
— and demonstrate how three princi-
pal fuzzy type theories, namely IMTL-
, Lukasiewicz, and BL- can be derived
from it.
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1 Introduction

Fuzzy Logic in Broader Sense (FLb) is an ex-
tension of Fuzzy Logic in Narrow Sense (FLn),
which aims at developing a formal theory of
human reasoning with the stress to utiliza-
tion of vagueness contained in the meaning of
special class of natural language expressions.
This program was initiated by V. Novék in
1995 in [6]. Note that it overlaps with two
other paradigms proposed in the literature:
commonsense reasoning (cf. [3] and the cita-
tions therein) and precisiated natural language
(PNL; [12, 13]) but it is not equal to them.
The main drawback of the up-to-date formal-
izations of commonsense reasoning is neglect-
ing vagueness contained in the meaning of
natural language expressions. On the other
hand, the main drawback of PNL is lack of
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precise, mathematically justified tools. Thus,
our concept of FLb is a glue between both
these paradigms.

FLD consists (so far) of the following theories:

a) Formal theory of evaluative linguistic ex-
g
pressions,

(b) formal theory of fuzzy IF-THEN rules,

(c) formal theory of perception-based logical
deduction,

(d) formal theory of intermediate quantifiers.

Formal basis for all these theories is fuzzy
type theory — a higher-order fuzzy logic (see
[7, 9]) which continues the development of
classical type theory (cf. [1, 2, 5]). Expres-
sive power and experiences led us to separa-
tion of a few distinguished kinds of fuzzy logic:
IMTL-logic, Lukasiewicz logic and Basic fuzzy
logic (BL). All of them have propositional as
well as predicate version and enjoy complete-
ness property (their propositional versions en-
joy even standard completeness). These log-
ics have been extended also to higher order
versions (fuzzy type theories) which enjoy the
generalized completeness property (i.e. com-
pleteness w.r.t. generalized models).

Unlike other formal logical systems where the
fundamental connective is implication, the
fundamental connective in FTT is fuzzy equal-
ity /equalivalence. It is important to note that
this connective emerges incessantly in many
abstract thoughts. Therefore, fuzzy type the-
ory becomes elegant and philosophically in-
teresting. The principal question now raises,
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how fuzzy equality should be interpreted in
the structure of truth values. In [9], we used
the biresiduation operation in residuated lat-
tice. This operation, however, is derived from
implication and therefore we face a method-
ological discrepancy: the basic connective in
syntax is interpreted by a derived operation in
semantics. Therefore, in [? | we introduced a
new special algebraic structure of truth values
called EQ-algebra in which the basic opera-
tions is fuzzy equality (equivalence) and im-
plication is derived from it. Since the product
operation has been relaxed from the implica-
tion, this algebra generalizes residuated lat-
tices. In this paper we overview EQ-algebras
and develop a formal system of fuzzy type the-
ory on the basis of one special case of them.

2 EQ-algebras

As mentioned, the basic connective in FTT
is fuzzy equality. Hence, a natural question
arises, whether we can introduce an algebra
of truth values specific for FTT. The first at-
tempt has been presented in [10] and also in
[? ] where the concept of EQ-algebra was
introduced. In detail, this concept has been
presented in [? ].

From the point of view of logic, the main dif-
ference between residuated lattices and EQ-
algebras lays in the way how implication op-
eration is obtained. While in residuated lat-
tice, it is obtained from (strong) conjunction,
in EQ-algebra it is obtained from equivalence.
Though properties of both kinds of algebras
are similar, they differ in several essential
points.

Definition 1
An EQ-algebra is an algebra

E=(E,NR®,~,1) (1)

of type (2, 2, 2, 0) where the axioms are ful-
filled for all a,b,c € E:

(E1) (E, A, 1) is a commutative idempotent
monoid (i.e. A-semilattice with top el-
ement 1). We put a <b iff a Ab = a,
as usual.
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(E2) (F,®,1) is a commutative monoid
and ® is isotone w.r.t. <.

(E3) a~a=1,
(E4) ((aNb) ~c)®

( (d~a) <cn~ (dAb),
(E5) (a~b)®(c

(

(

~d) < (a~c)~ (b~ d),

(E6) (aANbAc)~a<(aAb)~a,

(E7) (aAb) ~a<(aNbAc)~(aNc),
(E8) a®@b<a~b.

The operation “A” is called meet (infimum),

“@” is called product and “~” is a fuzzy
equality

Unlike [10?7 ], which were the first exposition
of the idea, we have weakened axiom (E8) and
added axiom (E5).

Clearly, < is the classical partial order. We
will put

a—b=(aAb)~a, (2)
and
i=a~1 (3)

where a,b € E. The derived operation (2) will
be called implication. Hence, we may rewrite
(E6),(ET7) into

— (bAc)<a—b, (E6)
a—b<(aANc)—b, (E7)
respectively.
Lemma 1

The following properties hold in EQ-algebras:
(a) a~b="0br~ a,

(b) (a~b)®
(c) (a—b)®

(symmetry)
(b~ c)<(an~c), (transitivity)

(b—c)<a-—c,
(transitivity of implication)
(d) a® (a — b) <b.
(e) (a—b)®(b—a)<a~b<
(a—b)A(b—a)
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Let € contain also the bottom element O.
Then we put

—a=a~0, a€kb. (4)

Definition 2
Let £ be EQ-algebra. We say that it is:
(i) semiseparated if for all a € E,
(E9) a~1=1 implies a=1.
(ii) separated if for all a,b € F,
(E10) a ~b=1 implies a =b.
(iii) spanned if
(E11) 0 = 0.
(iv) good if for all a € E,
(E12) a ~ 1 = a.
(v) residuated if for all a,b,c € F,

(E13) (a®@b)ANc=a®b iff
aN((bAc)~b)=a.

(vi) involutive (IEQ-algebra) if for all a € E,

(E14) —=—a = a.

Let £ = (L,A,V,®,=,0,1) be a residu-
ated lattice. We may introduce two kinds of
biresiduation operation:
asb=(a=b)A(b=a), (5)
a&b=(a=b)R (b= a) (6)
Both operations are natural interpretations of

equivalence since they are reflexive, symmet-
ric, and transitive in the following sense:

(a0b) ® (bOc) < aOc
for all a,b,c € L where O € {&, & 1.
Example 1

Let L = (L,\,V,®,=,0,1) be a residuated
lattice. Then

(i) &£ = (L,\,®,<,1) is a separated EQ-
algebra.
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Figure 1: Eight elements IEQ-algebra.

(ii) If L is linearly ordered then also
Er = (L,\,®,4,1) is a separated EQ-
algebra (since both < and < concide).

(iii) Let % be a monoidal operation on L such
that x < ®. Then & = (L, A\, *,<,1) is
a separated EQ-algebra. If x < ® then
£ is not residuated.

Example 2

Example of finite non-trivial non-residuated
IEQ-algebra is the following: its (semi)lattice
structure is in Figure 1. Product and fuzzy
equality are defined as follows:

® 0 a b cde f 1
00 O OO O O 0 O]
a0 0OOO OO O a
b0 O OO O OO D
c|0O OO0 0O OO0 ¢
dlj0 0 0 0 dd d d
e|l0 0 0 0 de d e
flo oo o0 ddadf
1[0 a b ¢ d d f 1]
~ 0 a b cde f 1
01 e f d ¢ a b O]
ale 1 d f ¢ a ¢ a
b|f d 1 e ¢ ¢ b b
cld f e 1 ¢ ¢ ¢ ¢
dlc ¢ ¢ ¢ 1 f e d
ela a ¢ ¢ f 1 d e
flb ¢ b ¢ e d 1 f
1[0 a b ¢ d e f 1]

There are also examples of non-trivial linearly
ordered IEQ-algebras and many other exam-

1047



ples of non-trivial finite EQ-algebras includ-
ing linearly ordered ones. Therefore, in gen-
eral neither non-linear nor linear EQ-algebras
coincide with residuated lattices.

Lemma 2
Let £ be a good EQ-algebra. Then the fol-
lowing holds for all a,b € E:

(a) It is spanned and separated.

(b) Axiom (E8) is provable from the other ax-
ioms and can be omitted.

(c) a® (a —b) <D,
(d) a<biffa—b=1,
(e) a < (a~0b)~b.

Lemma 3
An EQ-algebra & is residuated iff

(a®b) —c=a— (b—c)
holds for all a,b,c € E.

Theorem 1
Each IEQ-algebra &£ is good, spanned and sep-
arated.

An EQ-algebra & is complete if it is a com-
plete A-semilattice. A lattice ordered EQ-
algebra is an EQ-algebra that is a lattice. The
EQ-algebra & is a lattice EQ-algebra (/EQ-
algebra) if it is lattice ordered and, moreover,
the following additional substitution axiom
holds for all a,b,¢c,d € E:

(E15) ((aVbd) ~c)®(d~a) < ((dVb)~c).

A complete EQ-algebra is a complete lattice
ordered EQ-algebra. Every finite EQ-algebra
is latice ordered. A complete residuated EQ-
algebra is a complete residuated lattice.

In TEQ-algebra &, it is possible to define
aVb=-(-aA-b). (7)

It is easy to prove that each IEQ-algebra is
lattice ordered.

Lemma 4
Let £ be an IEQ-algebra. Then the following
holds for all a,b € E:
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(a) a ~b=-a~ —b,

(b) & is LIEQ-algebra.

Let £ be a spanned EQ-algebra. A delta op-
eration in £ is an operation A : F — E
fulfilling the following axioms:

If £ is, moreover, lattice ordered then A must
also fulfil the following:

(v) A(aVvb) <AaV Ab,
(vi) AaV -Aa =1.

Lemma 5

(a) If a < b then Aa < Ab.
(b) A(a — b) < Ad — Ab.

(c) If € is good then A(a — b) < Aa — Ab.

If the algebra is linearly ordered then we
can define A-operation by A(1) = 1 and
A(z) = 0 otherwise. There is no nontrivial
A-operation (i.e., different from identity) in
the IEQ-algebra from Example 2.

3 Core FTT

From now on, the FTT presented in [9] will be
referred to as IMTL-FTT. In this section, we
introduce a new core fuzzy type theory. It will
be denoted by IEQ-FTT because its structure
of truth values is formed by an IEQa-algebra

gA: <E7/\7®’N70717A> (8)

where A is a delta operation introduced
above. Recall that £a is, in fact, the /IEQ-
algebra and so we can consider also the join
operation V in it.
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We will develop the IEQ-FTT in correspon-
dence with IMTL-FTT introduced in detail in
[9]. The definition of types and formulas re-
mains unchanged. The special constants are:
E(a)a (fuzzy equality) for every a € Types,
C(o0)o (conjunction), S, (strong conjunc-
tion), Dy, (delta connective), and te(oe), Lo(oo)
(description operators).

The definitions of truth T, falsity 1, negation
- and implication = remain unchanged.

(a) Special connectives:

V = A2 AYom (20 A 1Y) (disjunction)
& = )\-To)\yo(s(oo)o Yo)To-

(strong conjunction)

(9)

(b) Quantifiers: Let A, € Form, and x,, be a
variable of type a. Then we put:

(Vaa)Ap i=(Axg Ao = Axo T),
(general quantifier)

(Fxa)Ap = (Vo) A,.

(existential quantifier)
The definition of n-fold strong conjunction is
as usual.

The following formulas of type o are logical
axioms of fuzzy type theory. The types «,
are arbitrary types «a, 8 € Types unless speci-
fied otherwise.

Fundamental axioms

(CFT1) A(za = Ya) = (f8aTa = f3a Ya)
(CFT21) (Vzo)(fga Ta = 98a Ta) =
(fa = 9pa)
(CFT22) (fga = 9pa) = (foa Ta = gga Ta)
(CFT3) (AzaBg)Aa = Cjs

where Cjg is obtained from Bg by re-
placing all free occurrences of x, in
it by Ag, provided that A, is sub-
stitutable to Bg for z, (lambda con-
version).

(CFT4) A, = A,
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(CFT5) (Ao = Ba)&(Ba = Co) =
(Aa

Ch)
for all types a # o.

Axioms of truth values
(CFT6) (A, O B,) = (B, O Ao)
(CFT7) (A, OT)=A4,

(CFT8) (AbOB,) OC,=A4,0O (B, OC,)
where O € {A, &}

(CFT9) (A, A Ay) = A,
(CFT10) =4, = A,

(CFT11) ((Ao A By) = Cp) &(D, = A,) =
(Do A B,) = Cy)

(CFT12) (A, = B,)&(C, = D,) =
(Ay = C,) = (B, = D)

(CFT13) ((A,AB,AC,) = A,) =
(AO A BO) = Ao)

(CFT14) (Ao A B,) = A,) =
(Ag A By A Cy) = (Ag A Cy)

(CFT15) (A,& B,) = (A, = B,)

(CFT16) ((AoABo) = Ao)V ((AoABy) = B,)

Axioms of delta

(CFT17) (goo(Axo) A goo(_'Axo)) =
(Vo) oo (AYo)

(CFT18) A(A, A B,) = AA,AAB,

(CFT19) A(A,V B,) = AA,VAB,

Axioms of quantifiers
(CFT20) (Vzq)(A, = B,) =

(Ao = (Vxo)Bo)
where z,, is not free in A,

Axioms of descriptions
o =o0,€

(CFT21) La(oa)(E(oa)a Yo) = Ya,
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Let us remark that this set of axioms is not
optimized and so, it may contain redundan-
cies. The problem of minimization of the set
of axioms of IEQ-FTT is postponed to some
of the future papers.

The inference rules (R) and (N) remain un-
changed. The core FTT defined above will be
referred to as IEQ-FTT.

Semantics: A frame for J is a tuple M =
(Mo, =a) e Types &) where Ep is a complete
IEQAa-algebra of truth values, =, is a fuzzy
equality on M, (see [9] and elsewhere). Recall
that if Sa is a type then the corresponding set
Mg, contains (not necessarily all) functions
f: My — Mg. We put M, = F and assume
that each set My, U M(,0), contains all the op-
erations from Ea. Let p be an assignment of
elements from M to variables. Interpretation
TM is a function that assigns every formula
Ay, a € Types and every assignment p a cor-
responding element, that is, a function of the

type «.
More specifically:

(i) M (E(oo)o) ="
(i) ZM (E(oa)a) ==a for alla € Types—{o},
(111) IM(C(OO)O) =N,
(iV) IM(S(OO)O) =,
(v) TM(Dyy) = A.

(vi) Semantics of t4(q) is an element ob-
tained by defuzzification of a fuzzy set
in M, which chooses some element from
its kernel.

A general model is a frame M such that
I{.M (Ay) € M, holds true for all a € Types.
This means that each set M, from the frame
M has enough elements so that the interpre-
tation of each formula A, € Form is always
defined in M. If T is a theory, then a gen-
eral model M is a model of T if all its special
axioms are true in the degree 1 in M.

Various properties common with IMTL-FTT
are provable also in IEQ-FTT.
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Theorem 2 (Rule of Two Cases)
IfTF Ay, [T] and T+ Ay y,[L] then T +
Ao,xa [Ayo]-

This theorem enables us to prove important
formula (c) in the following lemma:

Lemma 6

(a) BT,
(b) F(A=T) = A4,

(c) F(AA, = (B, = Cp)) =
(A4, = B,) = (AA, = C,)),

(d) If T+ A, then T - -A-AA,,
(e) = A, = B, implies - B, = A,.

Theorem 3 (Deduction theorem)

Let T be a theory, A, € Form, a formula.

Then
TU{A,}F B, iff T+AA,= B,

holds for every formula B, € Form,.
Let T be a theory. We say that:

(i) T is contradictory if
TH 1.

Otherwise it is consistent.

(ii) T is mazximal consistent if each its ex-
tension 7", T” D T is inconsistent.

(iii) T is complete if for every two formulas

Ao, B,

THA,= B, or TFB,= A,.

(iv) T is extensionally complete if for every
closed formula of the form Ag, = Bg,,
T t/ Agq = Bg, it follows that there
is a closed formula C, such that T F/
Agaca = Bgaca.

Theorem 4

A theory T is contradictory iff each formula
A, € Form, is provable in it.
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Theorem 5

To every consistent theory T there is an exten-
sionally complete consistent theory T which is
extension of T.

We now have to consider the concept of safe
general model, that is a model in which all the
necessary suprema and infima exist (cf. [4]).
The reason is that till now it is not known
whether we can complete the IEQ-algebra of
truth values.

Theorem 6
A theory T of IEQ-FTT is consistent iff it has
a safe general model M.

4 Principal FTT’s

We have discussed in [11] that most important
fuzzy type theories for further development of
FLb are those based on IMTL-algebra, MV-
algebra (standard Lukasiewicz algebra), BL-
algebra, and in a sense also LII-algebra. All
these algebras are residuated lattices. It is
difficult to guess in the present stage of de-
velopment whether we can replace them by
IEQ-FTT.

To obtain residuated lattice-based FTT, we
need to add the following axiom to IEQ-FTT:

(RFT1) (A& B,) = C,) =
(Ao = (By = C,))

The resulting fuzzy type theory is IMTL-
FTT.

4.1 Lukasiewicz-fuzzy type theory

This is a leading kind of fuzzy type theory
that is (up to now) fundamental for the de-
velopment of FLb. It differs from IEQ-FTT

by the following definitions:

V= A2o(AYo (o = Yo) = Yo),
(disjunction)

& = Azo(Ayo(=(20 => =0)))-
(strong conjunction)

Logical axioms of L-FTT are (CFT1)-
(CFT21), (RFT1) and also the axiom

Proceedings of IPMU'08

(LFT1) (4, V B,) = (B, V A,).

There is also simpler alternative which uses
Rose-Rosser implication axioms for character-
ization of the structure of truth values. Then,
axioms (CFT6)-(CFT16) should be replaced
by the following axioms:

Implication axioms

(LFT'1) A, = (B, = A,)

(LFT'2) (A, = B,) = (B, = C,) =
(Ao = C)))

(LFT’3) (B, = 1A4,) = (Ao = B,)
(LFT’4) (A,V B,) = (B, V A,)

Theorem 7
A theory T of L-FTT is consistent iff it has a
general model M.

4.2 BL-fuzzy type theory

Recall that BL stands for basic fuzzy logic de-
veloped by P. Héjek in [4]. We may introduce
also BL-fuzzy type theory (BL-FTT).

Axioms of BL-FTT are (CFT1)-(CFT9),
(CFT11)—-(CFT21), (RFT1) and also the fol-

lowing:

(BL-FT1) (A, A B,) = A&(A, = B,)
(BL-FT2) & Bog, [Aa] = (324)Bo.

(BL-FT3) (Vza)(A4, = B,) =
((3za)A, = B,)

(BL-FT4) (Vxq)(AoVB,) = ((Vx)AsV By)

Theorem 8
A theory T of BL-FT'T is consistent iff it has
a safe general model M.

Let us remark that in [8], also axioms for LII
fuzzy type theory have been formulated. It is
discussible whether such a complicated theory
is a proper formal system to be used in FLb.
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5 Conclusion

In this paper, we have introduced axiomatics
of a new core fuzzy type theory — IEQ-FTT
— and demonstrated how it can be modified
to obtain three principal fuzzy type theories
that are IMTL-, Lukasiewicz and BL-FTT.
The motivation for introducing new axiomat-
ics follows from the requirement to establish
FTT on the basis of an algebra of truth values
that is more natural than the residuated lat-
tice because the basic operation (connective)
in the latter is implication while the basic con-
nective in FTT is fuzzy equality /equivalence.
Therefore, we have developed a special alge-
bra of truth values called EQ-algebra and in-
troduced it briefly in Section 2. This serves
as the background for introducing IEQ-FTT
in Section 4 which is a core fuzzy type theory
based on EQ-algebra with double negation.
When modifying the list of its axioms and
some of the definitions of special formulas, we
obtain IMTL-, Lukasiewicz and BL-FTT. The
reasons why we take them as principal fuzzy
type theories follow from the initial require-
ments of fuzzy logic in broader sense.
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