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Abstract

Representable uninorms form a spe-
cial class of uninorms that have an
additive generator over the whole
real line bounded by −∞,+∞. Al-
gebras based on left-continuous and
conjunctive representable uninorms,
called RU-algebras, form a subvari-
ety of commutative bounded residu-
ated lattices, and are strictly related
to Abelian `-groups.

In this work, we study this rela-
tion by showing that the category
of Abelian `-groups is equivalent to
a full subcategory of RU-algebras.
Moreover we prove that the variety
of RU-algebras is generated by ev-
ery single infinite RU-chain. Finally,
we briefly study some simple model-
theoretic properties of the class of
RU-chains that are related to or-
dered divisible Abelian groups.
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`-Groups, Ordered Divisible Abelian
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1 Introduction

A uninorm ∗ is a binary, commutative, as-
sociative and monotone operation over [0, 1],
having a neutral element e ∈ [0, 1] (see [14]).
Note that each uninorm ∗ behaves like a t-
norm over [0, e], like a t-conorm over [e, 1],
and min(x, y) ≤ x∗y ≤ max(x, y) if x ≤ e ≤ y

or y ≤ e ≤ x (see [2]). Moreover, a uninorm
which is continuous necessarily is either a t-
norm or a t-conorm (see [7]), hence, in a cer-
tain sense, there is no continuous uninorm.

Whenever 0∗1 = 0 we call ∗ a conjunctive uni-
norm. A uninorm ∗ admits a residual implica-
tion→ iff it is conjunctive and left-continuous
(see [3]). In this case

〈[0, 1], ∗,→,min,max, e, f, 0, 1〉,

with f ∈ [0, 1], is a commutative bounded
pointed residuated lattice (see below and
[12]).

A remarkable class of uninorms is given by
representable uninorms, i.e. uninorms that
can be represented by means of a one-variable
bijective function h : [0, 1] → R, with R =
R ∪ {+∞,−∞}, h(0) = −∞, h(e) = 0, and
h(1) = +∞ such that:

x ∗ y = h−1(h(x) + h(y)).

These uninorms are also called almost-
continuous being continuous on (0, 1).

Theorem 1.1 ([2, 11]). Given a uninorm ∗
with neutral element e ∈ (0, 1), the following
are equivalent:

(i) ∗ is representable,

(ii) ∗ is strictly increasing and continuous on
(0, 1).

Any two conjunctive representable uninorms
are order isomorphic, and in particular they
are isomorphic to the Cross Ratio uninorm:
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x ∗ y =
{ xy

xy+(1−x)(1−y) (x, y) ∈ [0, 1]−

0 otherwise
,

where [0, 1]− is [0, 1]2\{(0, 1), (1, 0)}.
A pointed bounded commutative residuated
lattice ([12]) is a structure

A = 〈A, ∗,→,u,t, t, f, 0, 1〉,

where f ∈ A is an arbitrary element used
to define a negation operator ¬x as x → f ,
and such that 〈A, ∗,→,u,t, 0, 1〉 is a bounded
residuated lattice with top element 1 and bot-
tom element 0, and 〈A, ∗, t〉 is a commutative
monoid.

An RU-algebra is a pointed bounded commu-
tative residuated lattice satisfying the follow-
ing conditions:

- t ≤ ((x→ y) u t) t ((y → x) u t),

- t ≤ (1 → x) t (x → 0) t (y → (x ∗ (x →
y))),

- (x→ t)→ t = x,

- 1→ t = 0,

- f = t.

It is easy to see that the class of RU-algebras
forms a variety.

RU standard algebras are structures
〈[0, 1], ∗,→,min,max, t, 0, 1〉, where ∗ is
a representable left-continuous conjunctive
uninorm, → its residuum, and t its neutral
element. The prototypical standard RU-
algebra is the RU-algebra based on the real
unit interval where the monoidal operation
corresponds to the Cross Ratio uninorm, its
residuum is given by

x→ y =

{
(1−x)y

x(1−y)+(1−x)y (x, y) ∈ [0, 1]−−

1 otherwise
,

where [0, 1]−− is [0, 1]2\{(0, 0), (1, 1)}, and t =
1
2 . Every standard RU-algebra is isomorphic
to the algebra based on the Cross Ratio uni-
norm, which can be also shown to generate

the whole variety, as proven by Gabbay and
Metcalfe in [3]1.

It is easy to see that any standard RU-algebra
is isomorphic to the Abelian `-group of reals
bounded by −∞ and +∞, i.e.:

R = 〈R,+,−,min,max, 0,−∞,+∞〉.

Indeed, any two RU-standard algebras are iso-
morphic to each other, and, in particular,
to the RU-algebra based on the Cross Ra-
tio uninorm, which, in turn, is isomorphic to
R through the mapping h : [0, 1] → R such
that x 7→ log( x

1−x), whenever x ∈ (0, 1), while
0 7→ −∞ and 1 7→ +∞2.

The above mentioned connection with
Abelian `-groups will be generalized in the
next section. Indeed, we will show that there
is an equivalence between the category of
Abelian `-groups and a full subcategory of
RU-algebras satisfying certain conditions3.

Furthermore, we will prove, in Section 3, that
the variety of RU-algebras is generated by
each single infinite RU-chain. This will be
done by exploiting a translation into the uni-
versal theory of ordered Abelian groups. As
an immediate consequence, we will obtain
that both the RU-algebra related to the addi-
tive group of integers, the RU-algebra based
on the rational unit interval [0, 1]∩Q, and the
standard RU-algebra over the reals generate
the whole variety.

In Section 4, we will prove some easily deriv-
able model-theoretic properties of the first-
order theory of RU-chains related to ordered
divisible Abelian groups.

We will end this work with some comments

1Actually, Gabbay and Metcalfe do not explicitly
show that the algebra based on the Cross Ratio uni-
norm generates the whole variety, but this result is
implicit in their work. In this paper, we give an alter-
native and more general proof of this fact.

2This allows to prove that the equational theory
of RU-algebras is decidable and its satisfiability prob-
lem is in NP, as shown in [9]. The same result was
also previously achieved by proof-theoretic means by
Gabbay and Metcalfe in [3].

3While working on this paper we realized that some
similar work was previously done by Gabbay, Met-
calfe, and Olivetti in the forthcoming book [4], but in
a different setting.
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on our future work on this subject.

2 Categorical equivalence

Let ALG be the category of Abelian `-groups
and let RU? be the full subcategory of RU-
algebras satisfying the following condition for
all 0 < x < 1:

(?) 1→ x = x→ 0 = 0.

For both categories, morphisms are homor-
phisms of their respective objects.

Let G = 〈G,+,−,∧,∨, 0G〉 be an Abelian `-
group. Let ⊥ and > be two elements not be-
longing to G, and define the set Ĝ = G ∪
{⊥,>} so that for every x ∈ G, ⊥ < x < >.
Let Υ(G) be the following structure

Υ(G) = 〈Ĝ,+,	,∧,∨, 0G,⊥,>〉,
where x	y = y−x, for all x ∈ G, x+⊥ = ⊥,
x+> = >, >	x = ⊥, ⊥	x = >, x	> = >,
and x	⊥ = ⊥. Moreover

⊥+⊥ = ⊥+> = >	⊥ = ⊥,

and

>+> = ⊥	> = ⊥	⊥ = >	> = >.

Then we have:

Lemma 2.1. Given an Abelian `-group G,
the structure Υ(G) is an RU-algebra satisfy-
ing condition (?).

Proof. It is clear that 〈Ĝ,∧,∨,⊥,>〉 is a
bounded lattice, and that 〈Ĝ,+, 0G〉 is a com-
mutative monoid. Moreover, an easy inspec-
tion easily shows that the following conditions
hold

- x+ y ≤ z iff x ≤ y 	 z,
- 0G ≤ ((x	 y) ∧ 0G) ∨ ((y 	 x) ∧ 0G),

- 0G ≤ (>	x)∨(x	⊥)∨((x+(y−x))−y),

- (x	 0G)	 0G = x,

- >	 0G = ⊥,

- >	 x = x	⊥ = ⊥, for all x ∈ G.

Therefore Υ(G) is an RU-algebra satisfying
(?).

Now, let A = 〈A, ∗,→,u,t, t, 0, 1〉 be a non-
trivial RU-algebra satisfying (?). Let Υ−1(A)
be the following structure:

Υ−1(A) = 〈A−,+,−,∧,∨, u〉,

where A− is A\{0, 1}, x + y is x ∗ y, −x is
x → t, u is t, and ∧ and ∨ correspond to u
and t, respectively.

Lemma 2.2. Υ−1(A) is an Abelian `-group
such that Υ(Υ−1(A)) ∼= A.

Proof. It is easy to see that Υ−1(A) satisfies
the properties of Abelian `-groups. We just
show that x+ (−x) = u. Notice that trivially
x ∗ (x→ t) ≤ t, and from the condition

t ≤ (1→ x) ∨ (x→ 0) ∨ (y → (x ∗ (x→ y))),

we have that t = t ∗ t ≤ x ∗ (x → t), since
1→ x = x→ 0 = 0 for all x ∈ A−.

Moreover, by construction, it immediately fol-
lows that Υ(Υ−1(A)) ∼= A.

Now, for every morphism h : G → H in ALG,
define Υ(h) : Υ(G) → Υ(H) as Υ(h)(x) =
h(x), for all x ∈ G, and Υ(h)(>) = >,
Υ(h)(⊥) = ⊥. For every morphism φ : A → B
in RU?, define Υ−1(φ) : Υ−1(A) → Υ−1(B)
as the restriction of φ on A−.

Theorem 2.3. The pair of functors Υ :
ALG → RU?, and Υ−1 : RU? → ALG con-
stitutes an equivalence of the categories ALG
and RU?

Proof. It is easy to see that Υ is a faithful
and full functor, hence injective and surjective
w.r.t. morphisms. The rest of the proof is
easily derivable from Lemma 2.1 and Lemma
2.2. This proves the equivalence of categories
(see [8]).

As an immediate consequence we have:

Corollary 2.4. For every non-trivial linearly
ordered RU-algebra A there exists an ordered
Abelian group G such that A ∼= Υ(G).
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3 Infinite Chains

It is easy to see that the smallest non-
trivial RU-algebra is the three-element chain
{0, t, 1}, which also is isomorphic to the RU-
algebra obtained from the trivial Abelian `-
group composed by one element. For all the
remaining chains we can prove the following:

Proposition 3.1. The algebra Υ(Z) can be
embedded into any RU-chain with more than
three elements.

Proof. We know that every non-trivial RU-
chain A is isomorphic to the RU-algebra
Υ(Υ−1(A)) of the Abelian `-group Υ−1(A)
obtained from A, as shown in Lemma 2.2.
Abelian `-groups are torsion-free, and so the
Abelian `-group over the integers Z is embed-
dable in any non-trivial Abelian `-group [5].
Then we have that Υ(Z) is embeddable into
any Υ(Υ−1(A)).

Now, our aim will be to show that every sin-
gle infinite RU-chain generates the whole vari-
ety. To prove this, we will exploit the connec-
tion with ordered Abelian groups, and with
their universal theory, in the following lan-
guage 〈+,−, 0, <〉 (i.e. the language of or-
dered groups). We will need the following re-
sult proven by Gurevich and Kokorin (see also
[13]).

Theorem 3.2 ([6]). Any two non-trivial or-
dered Abelian groups satisfy the same univer-
sal sentences.

Let A be an RU-chain, we say that a ∈ A
is extremal if either a = 0 or a = 1. Let
a1, . . . , an and b1, . . . , bn be tuples of elements
from any two RU-chains A and B (not neces-
sarily different). We say that a1, . . . , an and
b1, . . . , bn are coherent if, for each j, either
aj = 0 and bj = 0, or aj = 1 and bj = 1, or
aj ∈ A− and b ∈ B−. If a term ε(x1, . . . , xn)
does not contain the bottom ⊥ nor the top >
as a subterm, then we call such a term bound-
free.

It is easy to prove the following:

Lemma 3.3. Let ε(x1, . . . , xn) be any term
in the language of RU-algebras. We have:

(i) If ε(x1, . . . , xn) is not bound-free, then
either ε(x1, . . . , xn) is extremal for
every a1, . . . , an, or there exists a
bound-free term ε′(x′1, . . . , x′m), where
{x′1, . . . , x′m} ⊆ {x1, . . . , xn}, such that
ε(x1, . . . , xn) and ε′(x′1, . . . , x′m) are
equivalent.

(ii) For any RU-chain A and any a1, . . . , an,
with each aj being non-extremal,
and ε(x1, . . . , xn) being bound-free,
ε(a1, . . . , an) is non-extremal.

(iii) For any two RU-chains A and B
(not necessarily different), if for
a1, . . . , an ∈ A, ε(a1, . . . , an) is ex-
tremal (non-extremal, resp.), then
for any b1, . . . , bn ∈ B coherent with
a1, . . . , an, ε(a1, . . . , an) is extremal
(non-extremal resp.) as well.

Now, we proceed with another lemma that
makes direct use of the connection with the
universal theory of ordered Abelian groups.

Lemma 3.4. Let A be any RU-chain and
Υ−1(A) its associated ordered Abelian group.
Let ε(x1, . . . , xn) = τ(x1, . . . , xn) be any equa-
tion in the language of RU-algebras where
both members are bound-free. There exists
a universal formula ϕ in the language of or-
dered groups, such that ϕ is true in Υ−1(A),
iff ε(a1, . . . , an) = τ(a1, . . . , an) holds for all
a1, . . . , an ∈ A−.

Proof. For each � ∈ {∗,→,u,t}, let
ψ�(x, y, z) be the definition of � in the lan-
guage of ordered groups.

Let ε = τ be any equation in A (in the lan-
guage of RU-algebras). Let

Γε = {γε1, . . . , γεm} and Γτ = {γτ1 , . . . , γτs }

be the sets of subterms of ε and τ , respec-
tively (with γεm corresponding to ε, and γτs
corresponding to τ).

Now, to each γεj and γτk associate a variable
vεj and vτk , respectively (different variables for
different subterms). For each �, let

Σε� = {(vεσ, vεσ1
, vεσ2

) | vεσ = (vεσ1
� vεσ2

)},
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and

Στ� = {(vτσ, vτσ1
, vτσ2

) | vτσ = (vτσ1
� vτσ2

)},

where each vεσj and vτσk is a variable associated
to a subterm.

Now, for each (vεσ, v
ε
σ1
, vεσ2

) ∈ Σε� and
(vτσ, v

τ
σ1
, vτσ2

) ∈ Στ� , introduce the formulas
ψ�(vεσ, vεσ1

, vεσ2
) and ψ�(vτσ, vτσ1

, vτσ2
), for each

operation �.
For each �, denote by Θε� and Θτ� the conjunc-
tion of all the above formulas. Let ϕε=τ be the
following universal formula:

∀vε1 . . . vεmvτ1 . . . vτs ((
∧

Θε
�) ∧ (

∧
Θτ
�)) ⇒ (vεm = vτs ),

where vεm and vτs are the variables correspond-
ing to ε and τ , respectively (taken as sub-
terms), and ⇒ is the classical implication.

Now, ϕε=τ is a universal formula in the lan-
guage of ordered groups, and ε = τ holds in
A for every a1, . . . , an ∈ A− iff ϕε=τ is true in
Υ−1(A).

Finally, we can prove the following:

Theorem 3.5. Every infinite RU-chain gen-
erates the whole variety RU.

Proof. To prove the theorem, it suffices to
show that every infinite RU-chain generates
the same variety.

Let ε(x1, . . . , xn) = τ(x1, . . . , xn) be an equa-
tion in the language of RU-algebras, and let A
and B be any two different infinite RU-chains.
Let us assume that the above equation does
not hold in A: i.e. there are some a1, . . . , an ∈
A such that ε(a1, . . . , an) 6= τ(a1, . . . , an). We
show that there are some b1, . . . , bn ∈ B such
that ε(b1, . . . , bn) 6= τ(b1, . . . , bn). By Lemma
3.3(i), we can easily see that we can simply re-
strict ourselves to the case where both mem-
bers of the equation are bound-free.

Suppose that at least one among ε(a1, . . . , an)
and τ(a1, . . . , an) is extremal. Then, by
Lemma 3.3(ii), some aj are extremal, and
consequently, by Lemma 3.3(iii), it suffices to
take b1, . . . , bn ∈ B coherent with a1, . . . , an ∈
A.

Suppose that neither ε(a1, . . . , an) nor
τ(a1, . . . , an) is extremal. If no aj is ex-
tremal, then the fact that there must
be some b1, . . . , bn ∈ B− such that
ε(b1, . . . , bn) 6= τ(b1, . . . , bn) is guaranteed by
Lemma 3.4.

Suppose that some aj ’s are extremal. An
easy adaptation of Lemma 3.3(i) shows that
for any ε(x1, . . . , xn), if some xj ’s take ex-
tremal values, then either ε(x1, . . . , xn) is ex-
tremal itself, or there exists ε′(x′1, . . . , x′m),
with {x′1, . . . , x′m} ⊆ {x1, . . . , xn}, such
that ε(x1, . . . , xn) = ε′(x′1, . . . , x′m) for all
a1, . . . , am ∈ A− (and the extremal values of
some xj ’s are fixed). In that case, once again
we can safely apply Lemma 3.4.

This proves that any two different infinite RU-
chains generate the same variety. Hence the
proof of the Theorem is complete.

As a consequence, we obtain:

Corollary 3.6. The only proper subvariety
of RU is the variety generated by the three-
element chain.

4 Some Model-Theoretic
Properties

In this section, we investigate RU-algebras
from a model-theoretic point of view.

Recall that a first-order theory admits
quantifier-elimination in a given language iff
every formula is equivalent to a quantifier-
free formula. Furthermore, recall that a
first-order theory T is model-complete if for
all M,N |= T , M ⊆ N implies that
M is an elementary substructure of N . It
is well-known that quantifier-elimination im-
plies model-completeness. We immediately
obtain:

Proposition 4.1. The theory of RU-algebras
does not admit quantifier elimination in the
language of RU-algebras.

Proof. It is easy to see that Υ(Z) is not an
elementary substructure of Υ(G). Then, the
theory of RU-algebras is not model-complete
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and consequently it does not enjoy quantifier
elimination.

Now, we focus on the subclass of RU-chains
that are related to ordered divisible Abelian
groups. Let A be a RU-chain such that
Υ−1(A) is an ordered divisible Abelian group.
We call each such a chain a divisible RU-
chain. It is a well-known fact that the the-
ory of ordered divisible Abelian groups ad-
mits quantifier elimination in the language of
ordered groups [10]. This suggests that also
the theory of divisible RU-chains must enjoy
quantifier elimination. In order to prove this
fact, we rely on the following:

Lemma 4.2 (Corollary 3.1.6, [10]). Let T
be a theory in a given language L. Suppose
that for all quantifier-free formulas φ(v, w), if
M,N |= T , A is a common substructure of
M and N , a ∈ A, and there is b ∈ M such
that M |= φ(a, b), then there is c ∈ N such
that N |= φ(a, c). Then T has quantifier elim-
ination.

Then we have:

Theorem 4.3. The first-order theory of di-
visible RU-chains admits quantifier elimina-
tion in the language of RU-algebras.

Proof. Let A be any divisible RU-chain, and
let Υ−1(A) be its related divisible ordered
Abelian group. Let h be a mapping from
Υ−1(A) into A∩ ((⊥,−1]∪ 0∪ [1,>)) defined
as follows:

h(x) =


−1 x = ⊥
x− 1 x ∈ (⊥, 0)
0 x = 0
x+ 1 x ∈ (0,>)
1 x = >

.

Let A′ be an isomorphic copy of A over
A ∩ ((⊥,−1] ∪ 0 ∪ [1,>)) defined through the
mapping h. It is easy to see that the opera-
tions of A′ can be defined by open formulas
in the language 〈+,−, 0, 1, <〉 over Υ−1(A).

Now, let A, B, and C be divisible RU-chains
with A being a subalgebra of both B and C.
Let A′, B′, and C′ be isomorphic copies of A,

B, and C defined as above through the map-
ping h. Let Υ−1(A),Υ−1(B) and Υ−1(C) be
the divisible ordered Abelian groups associ-
ated to A, B, and C, respectively.

Let ϕ(x, y) be a quantifier-free formula in the
language of RU-algebras. Following a trans-
lation similar to the one carried out in the
previous section, it is easy to see that there
exists a quantifier-free formula ϕ′(x, y) in the
language of ordered groups (possibly with in-
teger coefficients) such that for any divisible
RU-chain A, and any b, a ∈ A, ϕ(b, a) holds
in A iff ϕ′(h(b), h(a)) holds in Υ−1(A). Let
a ∈ A and b ∈ B such that B |= ϕ(b, a). Note
that we also have h(a) ∈ Υ−1(A) and h(b) ∈
Υ−1(B), hence Υ−1(A) |= ϕ′(h(b), h(a)). Or-
dered divisible Abelian groups are elementar-
ily equivalent to each other, and so, there
must be some h(c) ∈ Υ−1(C) such that
Υ−1(C) |= ϕ′(h(c), h(a)). Hence it easily fol-
lows, by applying the above lemma, that the
theory of divisible RU-chains has quantifier
elimination.

We briefly recall now, some notions from
Model Theory.

An amalgam is a tuple (A,B, C, f, g) such
that A,B, C are structures of the same sig-
nature, and f : A → B, g : A → C are
embeddings. A class K of structures is said
to have the amalgamation property if for ev-
ery amalgam with A,B, C ∈ K and A 6= ∅
there exist a structure D ∈ K and embed-
dings f ′ : B → D, g′ : C → D such that
f ′ ◦ f = g′ ◦ g. A class K of structures is said
to have the strong amalgamation property, if
it has the amalgamation property and, more-
over, f ′[B] ∩ g′[C] = (f ′ ◦ f)[A] = (g′ ◦ g)[A],
where for any set X and function h on X,
h[X] = {h(x) | x ∈ X}.
An ordered structure 〈A,<, . . . 〉 is o-minimal
if every definable X ⊆ A is a finite union of
points and intervals.

Let Th(RU) denote the first-order theory of
divisible RU-chains, and let Th∀(RU) de-
note the the universal theory of divisible RU-
chains. From the above quantifier-elimination
result, we easily obtain the following conse-
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quences, easily derivable from general results
in Model Theory (see [1, 10]):

Corollary 4.4.

(i) Th(RU) is model-complete.

(ii) Th(RU) is complete.

(iii) Th(RU) is equivalent to a ∀∃-theory.

(iv) The class of divisible RU-chains enjoys
the strong amalgamation property.

(v) The class of models of Th∀(RU) enjoys
the amalgamation property.

(vi) Each divisible RU-chain is o-minimal.

5 Final Remarks

In this work we have briefly studied some al-
gebraic and model-theoretic properties of RU-
algebras by exploiting their strong connec-
tion with Abelian `-groups. In particular we
have shown that the category of Abelian `-
groups is equivalent to the full subcategory
of RU-algebras satisfying condition (?); we
have shown that every single infinite RU-
chain generates the whole variety; and, finally
we have dealt with some simple model theo-
retic properties related to quantifier elimina-
tion for those RU-chains related to ordered
divisible Abelian groups.

RU-algebras certainly form an interesting
class of structures, and seem to be easy to
investigate due to their relation to Abelian `-
groups. For these reasons, we aim at develop-
ing and extending the work presented in this
paper, and studying other properties of RU-
algebras. In particular, we will study the free
objects in the variety both from an algebraic
and from a geometric point of view.
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