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Abstract

The notion of a semilinear space
over residuated lattice is introduced.
Two problems of solvability of sys-
tems of linear-like equations with
sup−∗ or inf → compositions are
considered in a finite semilinear
space. We prove that each system
of equations is solvable if and only
if its right-hand side is a fixed point
of the respective contraction or di-
lation operator. Sets of fixed points
are characterized as subsemimodules
over respective reducts of the resid-
uated l-monoid.
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1 Introduction

The concept of integral, residuated, commu-
tative l-monoid (the other name is residuated
lattice) has been introduced by U. Höhle in
[7] to create a basic structure for fuzzy al-
gebras. In fact, many fuzzy logic algebras
(MTL-algebra, BL-algebra, MV-algebra, etc.)
are particular cases of that structure. Tra-
ditionally, residuated lattices and fuzzy logic
algebras are considered as structures of truth
values of the respective fuzzy logics. Such “us-
age” determines the prevailing way of investi-
gation of these structures which is influenced
by logic.

On the other hand, the residuated lattice op-
erations are used in modeling of fuzzy systems
or systems of fuzzy IF-THEN rules. In this re-
spect, residuated lattice demonstrates its lin-
ear behavior [4]. This comes through when we
demand correctness of a model of the systems
of fuzzy IF-THEN rules (in the sense of [11]).
In this contribution, we show that a system
of fuzzy relation equations can be considered
as a system of linear-like equations in a semi-
linear space over a residuated lattice. We will
focus on systems with sup−∗ or inf → com-
positions because they are the most popular
in practical applications.

The novelty of this contribution consists in
demonstration of the similarity between prob-
lems of solvability of a system of fuzzy rela-
tion equations and a system of linear equa-
tions in linear algebra which puts an empha-
sis on a matrix of coefficients. We change an
angle under which the problem of solvability
is usually considered (see, e.g., [3, 5, 13, 14])
and concentrate on characterizations of possi-
ble right-hand sides that make the respective
systems solvable. We prove that a right-hand
side vector must be a fixed point of a special
operator (contraction or dilation). Moreover,
systems of fuzzy relation equations with dif-
ferent compositions are considered at a time.

2 Residuated Lattice

The concept of integral, residuated, commu-
tative l-monoid has been introduced by U.
Höhle in [7] to create a basic structure for
fuzzy algebras. In fact, many fuzzy logic alge-
bras (MTL-algebra, BL-algebra, MV-algebra,
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etc.) are particular cases of that structure.
The following definition of a residuated l-
monoid is different from that given in [7]. The
difference is that the operation → is not in-
cluded into the signature of the residuated l-
monoid (our case). However, we will show
that a “natural” extension of the residuated l-
monoid leads to an integral, residuated, com-
mutative l-monoid in Höhle’s sense.

Definition 1
A residuated l-monoid is an algebra

L = 〈L,∨,∧, ∗, 0, 1〉

such that

(i) (L,∨,∧, 0, 1) is a bounded lattice,

(ii) (L, ∗, 1) is a commutative monoid,

(iii) for all x, y, z ∈ L, x∗(y∨z) = x∗y∨x∗z,

(iv) for each λ ∈ L, the mapping hλ : x 7→
λ ∗ x, is residuated, i.e. there exists an
isotone mapping gλ : L −→ L such that
for all x, y ∈ L, x ≤ y implies gλ(x) ≤
gλ(y) and moreover,

(gλ ◦ hλ)(x) ≥ x,

(hλ ◦ gλ)(x) ≤ x.

2.1 Semimodules over Monoids

Modules over rings are usual algebraic struc-
tures. Semimodules over semirings were in-
troduced in [6] and then used in [4]. In this
subsection we will define a semimodule over
a monoid and consider various examples of
semimodules over the monoidal reduct of a
residuated l-monoid. We will see that every
residuated l-monoid has two different semi-
modules.

Definition 2
Let A = 〈A,+,0〉 be a commutative monoid
with the neutral element 0 and M = 〈M, ·, 1〉
a (multiplicative) monoid. We say that A is a
left semimodule over M (or M-semimodule)
if a left scalar multiplication by an element
from M is defined and moreover, the following
properties are fulfilled for all a, b ∈ A and
λ, µ ∈ M :

SM1. λ(a + b) = λa + λb,

SM2. (λ · µ)a = λ(µa),

SM3. 1a = a,

SM4. λ0 = 0.

The following two examples of left semimod-
ules over the monoidal reduct of residuated
l-monoid will be used in the sequel.

Example 1
Let L = 〈L,∨,∧, ∗, 0, 1〉 be a residuated l-
monoid and L∗ = 〈L, ∗, 1〉 a monoidal reduct
of L. Moreover, let Ln (n ≥ 1) be the set
of n-dimensional vectors over L, and LX the
set of L-valued functions on X where X is a
non-empty set.

1. The ∨-semilattice Ln∨ = 〈Ln,∨,0〉 with the
neutral element 0 = (0, . . . , 0) is the left
L∗-semimodule where

(a1, . . . , an) ∨ (b1, . . . , bn) =
(a1 ∨ b1, . . . , an ∨ bn),

λ(a1, . . . , an) = (λ ∗ a1, . . . , λ ∗ an).

2. The ∧-semilattice Ln∧ = 〈Ln,∧,1〉 with the
neutral element 1 = (1, . . . , 1) is the left
L∗-semimodule where

(a1, . . . , an) ∧ (b1, . . . , bn) =
(a1 ∧ b1, . . . , an ∧ bn),

λ(a1, . . . , an) = (λ → a1, . . . , λ → an).

3 Semilinear Spaces

Let us remind that a linear space is a com-
mutative module over a field. The notion of
a semilinear space, introduced in [8], followed
the same idea. Opposite to those “natural”
approaches, we propose to consider a semilin-
ear space over a monoid. However, a monoid
does not have an inverse operation and thus,
it is not straightforward how linear-like equa-
tions can be solved or how inverse elements
could be defined. Our proposition is in en-
larging the number of external operations.
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3.1 Semilinear l-Spaces and Principle
of Duality

In this subsection, a semilinear lattice ordered
space or a semilinear l-space, which enjoys
two mutually residuated external operations,
is defined. We will show that thus defined
external operations are connected by the ad-
junction property and moreover, a semilinear
l-space could be split in two different left semi-
modules over one and the same monoid.

Definition 3
Let M = 〈M, ·, 1〉 be a commutative monoid
and 〈A,≤〉 a bounded lattice where 0,1 are
the respective bounds. Let A = 〈A,∨,0〉 be a
left M-semimodule where the scalar product
of λ ∈ M and x ∈ A is denoted by λx, so that
for all λ, µ ∈ M and for all x,y ∈ A

λ(x ∨ y) = λx ∨ λy,

(λ · µ)x = λ(µx),
1x = x,

λ0 = 0.

We say that the left semimodule A is a semi-
linear l-space over M if for each λ ∈ M , the
mapping hλ : x 7→ λx is residuated, i.e. there
exists an isotone mapping gλ : A −→ A such
that for all x,y ∈ A

(gλ ◦ hλ)(x) ≥ x,

(hλ ◦ gλ)(x) ≤ x.

The elements of a semilinear l-space are called
vectors and denoted by bold characters, and
elements of L are called scalars and denoted
by Greek characters. The scalar multiplica-
tion is used to be referred to as external op-
eration.

Let A be a semilinear l-space over M. It can
be proved that for each λ ∈ M , the map-
ping gλ : A −→ A is unique. Therefore, gλ is
the residual of hλ and thus, gλ can be consid-
ered as the second external operation. We will
call it scalar implication and formally denote
gλ(x) by λ → x.

Example 2
Let L = 〈L,∨,∧, ∗, 0, 1〉 be a residuated l-
monoid and L∗ = 〈L, ∗, 1〉 a monoidal reduct

of L. Then the left L∗-semimodules Ln∨
from Example 1 is a semilinear l-space over
L∗ where the respective scalar implication is
given by

λ → (a1, . . . , an) = (λ → a1, . . . , λ → an).

In what follows, the above considered semilin-
ear l-space will be denoted Ln.

We can obtain that

• the mapping gλ preserves ∧, i.e. for all
x,y ∈ A,

λ → (x ∧ y) = (λ → x) ∧ (λ → y),

• mappings hλ and gλ constitute an adjoint
pair, i.e. for all x,y ∈ A, the adjunction
property holds true:

λx ≤ y iff x ≤ λ → y. (1)

Moreover, the equality

λ → x = sup{y ∈ A | λy ≤ x}

holds true if and only if its right-hand side
exists. Therefore, the following properties of
A can be easily proved:

0 → x = 1, 1 → x = x, λ → 1 = 1.

By (1), other useful properties of semilinear
l-spaces can be established in a similar way
to that used in [7].

Lemma 1
Let M = 〈M, ·, 1〉 be a commutative monoid
and A a semilinear l-space over M. Then for
any λ, µ ∈ M , x ∈ A the following

λ → (µ → x) = (λ · µ) → x.

holds true.

The following theorem shows that a semi-
linear l-space can be equivalently defined as
a structure which consists of two left M-
semimodules connected by the adjunction
property.
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Theorem 1
Let M = 〈M, ·, 1〉 be a commutative monoid
and 〈A,≤〉 a bounded lattice.

(i) Let the ∨-semilattice 〈A,∨,0〉 be a
semilinear l-space over M. Then the
∧-semilattice 〈A,∧,1〉 is a left M-
semimodule where the scalar product of
λ ∈ M and x ∈ A is given by the scalar
implication λ → x. Moreover, the ad-
junction property (1) holds true.

(ii) On the other side, let the ∨-semilattice
〈A,∨,0〉 be a left M-semimodule with
the scalar product λx and the ∧-
semilattice 〈A,∧,1〉 be a left M-
semimodule with the scalar product λ →
x. Let moreover, the scalar products are
connected by (1). Then the left semi-
module A = 〈A,∨,0〉 is a semilinear l-
space over M.

Remark 1
By Theorem 1, each semilinear l-space over
a commutative monoid is comprised of two
left semimodules over the same monoid. We
will further refer to them as to the left ∨-
semimodule and the left ∧-semimodule.

3.2 Homomorphisms in Semilinear
Spaces

Definition 4
Let M = 〈M, ·, 1〉 be a commutative monoid
and A1 and A2 be semilinear l-spaces over
M. A mapping H : A1 −→ A2 is a homomor-
phism if for all λ ∈ M and for all a, c ∈ A1,

H(a ∨ c) = H(a) ∨H(c), (2)
H(λa) = λH(a), (3)

H(0) = 0. (4)

Homomorphism H : A1 −→ A2 is residuated
with the residual G : A2 −→ A1 if for all
a ∈ A1 and b ∈ A2,

(G ◦H)(a) ≥ a, (5)
(H ◦G)(b) ≤ b. (6)

Example 3
Let L = 〈L,∨,∧, ∗, 0, 1〉 be a residuated l-
monoid and L∗ = 〈L, ∗, 1〉 a monoidal reduct

of L. Let Ln, n ≥ 1, and Lm, m ≥ 1, be semi-
linear vector l-spaces over L∗ (see Example 2).
Let R be an n × m matrix with elements rij

from L. We define mappings HR : Lm −→ Ln

and GR : Ln 7→ Lm so that for a ∈ Lm,
b ∈ Ln,

HR(a)i =
m∨

j=1

(rij ∗ aj), i = 1, . . . , n, (7)

GR(b)j =
n∧

i=1

(rij → bi), j = 1, . . . ,m. (8)

It is easy to verify that all properties (2)-(6)
are fulfilled. Therefore, HR is a residuated ho-
momorphism from Lm to Ln with the residual
GR.

Further on, formulas (7) and (8) will be used
in their vector forms as follows:

HR(a) = R ◦ a,

GR(b) = R → b.

Theorem 2
Let Ln, n ≥ 1, and Lm, m ≥ 1, be semilin-
ear vector l-spaces over the monoidal reduct
L∗ = 〈L, ∗, 1〉 of a residuated l-monoid L. A
mapping H : Lm −→ Ln is a residuated ho-
momorphism with the residual G : Ln −→ Lm

if and only if there exists an n × m ma-
trix RH such that for all a ∈ Lm, b ∈ Ln,
H(a) = RH ◦ a and G(b) = RH → b.

4 Systems of Equations in
Semilinear Spaces

In what follows, we fix a residuated l-monoid
with a support L and consider semilinear vec-
tor l-spaces Lm and Ln over L∗ (see Exam-
ple 2).

Throughout this section, let A = (aij) be
a fixed n × m matrix and b = (b1, . . . , bn),
d = (d1, . . . , dm) vectors, all have components
from L. The following two systems of equa-
tions

a11 ∗ x1 ∨ · · · ∨ a1m ∗ xm = b1,

. . . . . . . . . . .
an1 ∗ x1 ∨ · · · ∨ anm ∗ xm = bn,
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and

(a11 → y1) ∧ · · · ∧ (an1 → yn) = d1,

. . . . . . . . . . .
(a1m → y1) ∧ · · · ∧ (anm → yn) = dm,

are considered with respect to unknown vec-
tors x = (x1 . . . , xm) and y = (y1 . . . , yn).
Matrix A and vectors b and d will be further
referred to as the matrix of coefficients and
vectors of right-hand sides or right-hand side
vectors.

It is easy to see that both systems represent
two inverse problems with respect to two ho-
momorphisms: HA : Lm 7→ Ln (7) and its
residual GA : Ln 7→ Lm (8), i.e.

A ◦ x = b, (9)
A → y = d. (10)

In the foregoing text, systems of equations
will be represented shortly by (9) and (10).

We say that x0 ∈ Lm is a solution of (9)
if this (vector) equality becomes true after
substitution of x0 for x. Similarly, we de-
fine a solution of (10). In the literature,
which is related to fuzzy sets and systems, the
above considered systems are known as sys-
tems of fuzzy relation equations with sup−∗
composition or inf → composition, see e.g.
[1, 3, 5, 9, 10, 13, 12]. From these sources
we took the following results which are put
together in the Proposition below.

Proposition 1
Let A = (aij) be an n × m matrix of coeffi-
cients and b = (b1, . . . , bn), d = (d1, . . . , dm)
vectors of of right-hand sides in (9) and (10),
all have components from L. Then

(i) system (9) is solvable if and only if the
vector x̂ = A → b is its solution;

(ii) if (9) is solvable then x̂ = A → b is its
greatest solution;

(iii) system (10) is solvable if and only if the
vector y̌ = A ◦ d is its solution;

(iv) if (10) is solvable then y̌ = A ◦ d is its
least solution.

Further on, x̂ (respectively, y̌) will always de-
note the vector expressed by A → b (respec-
tively, A ◦ d).

If x1 ∈ Lm and x2 ∈ Lm are solutions of (9)
then x1∨x2 is a solution of (9) too. Therefore,
the set of solutions of (9) form a ∨-semi-lattice
with “unit” element.

If y1 ∈ Ln and y2 ∈ Ln are solutions of (10)
then y1 ∧ y2 is a solution of (10) too. There-
fore, the set of solutions of (10) form a ∧-semi-
lattice with “zero” element.

Proposition 1 turns the problem of finding so-
lutions to (9) or (10) (with given A and b or
given A and d) to the investigation whether
these systems are solvable (then the extreme
solutions are known).

The latter problem will be considered in a new
formulation which emphasizes that solvability
of (9) or (10) means the expressibility of the
right-hand side vectors by “linear combina-
tions” of the column-vectors of A. The new
formulation is

• Given n × m matrix A, characterize all
vectors b ∈ Ln (all vectors d ∈ Lm) such
that (9) (respectively, (10)) is solvable.

Let us remark that the formulation above is
similar to the formulation of the problem of
solvability of a system of linear equations in
linear algebra which puts an emphasis on a
matrix of coefficients.

5 Fixed points of contraction and
dilation operators

In this section, we will introduce two oper-
ators of contraction and dilation, connected
with the matrix A of coefficients in systems
(9) and (10). We will show that the prob-
lem of solvability of (9) and (10) is equiva-
lent with the problem of characterizing fixed
points of contraction and dilation operators.
Throughout this section, A = (aij) will be a
n × m matrix with components from L, b =
(b1, . . . , bn) ∈ Ln, d = (d1, . . . , dm) ∈ Lm.
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Definition 5
• AA→ : Ln 7→ Ln is a contraction op-

erator on Ln if it assigns (AA→)b =
A◦(A → b) to every element b ∈ Ln such
that if b = (b1, . . . , bn) then (AA→)(b) =
((AA→)b1, . . . , (AA→)bn) where

(AA→)bi =
m∨

j=1

(aij ∗
n∧

l=1

(alj → bl)),

i = 1, . . . , n.

• A→A : Lm 7→ Lm is a dilation opera-
tor on Lm if it assigns (A→A)d = A →
(A◦d) to every element d ∈ Lm such that
if d = (d1, . . . , dm) then (A→A)(d) =
((A→A)d1, . . . , (A→A)dm) ∈ Lm where

(A→A)dj =
n∧

i=1

(aij →
m∨

l=1

(ail ∗ dl)),

j = 1, . . . ,m.

The following proposition easily follows from
Proposition 1.

Proposition 2
Let systems of equations (9) and (10) be
specified by the n × m matrix of coefficients
A = (aij) and the respective right-hand side
vectors b = (b1, . . . , bn) and d = (d1, . . . , dm),
all have components from L. Then

(i) system A ◦ x = b (9) is solvable if and
only if

(AA→)b = b

or if and only if b ∈ Ln is a fixed point
of the operator AA→;

(ii) system A → y = d (10) is solvable if
and only if

(A→A)d = d

or if and only if d ∈ Lm is a fixed point
of the operator A→A.

Remark 2
Easy to see that fixed points of AA→ (respec-
tively, A→A) are eigenvectors of the contrac-
tion (respectively, dilation) operator.

Denotation. F(AA→) (F(A→A)) is a set of
fixed points of AA→ (A→A).

Let us remark that transformations of Ln or
Lm given by contraction or dilation opera-
tors, are not completely new. They were in-
vestigated in different structures by different
names: in lattices and max-plus algebras [2, 8]
they are called as compositions of a mapping
and its residual and vice versa. In Theorems 3
and 4 below we will combine the known and
new facts and reformulate them according to
our terminology.

Theorem 3
Let A = (aij) be an n×m matrix with com-
ponents from L. Let AA→ : Ln 7→ Ln be the
corresponding contraction operator. Then the
following holds true:

a) for all b ∈ Ln, (AA→)b ≤ b,

b) for all x ∈ Lm, A ◦ x is a fixed point of
AA→,

c) for all b ∈ Ln, b0 = (AA→)b is a fixed
point of AA→,

d) for each b ∈ Ln there exists a uniquely
determined fixed point b0 ∈ Ln of AA→

such that A → b0 = A → b.

e) for all b1,b2 ∈ Ln, b1 ≤ b2 implies
(AA→)(b1) ≤ (AA→)(b2),

f) if b1,b2 ∈ Ln are fixed points of AA→ then
b1 ∨ b2 is a fixed point of AA→ too.

Corollary 1
Let A = (aij) be an n×m matrix with com-
ponents from L. Then for all b ∈ Ln,

A → (A ◦ (A → b)) = A → b.

Theorem 4
Let A = (aij) be an n×m matrix with com-
ponents from L. Let A→A : Lm 7→ Lm be
the corresponding dilation operator. Then
the following holds true:

a) for all d ∈ Lm, (A→A)d ≥ d,

b) for all y ∈ Ln, A → y is a fixed point of
A→A,
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c) for all d ∈ Lm, d0 = (A→A)d is a fixed
point of of A→A,

d) for each d ∈ Lm there exists a uniquely
determined fixed point d0 ∈ Lm of A→A
such that A ◦ d0 = A ◦ d.

e) for all d1,d2 ∈ Lm, d1 ≤ d2 implies
(A→A)d1 ≤ (A→A)d2,

f) if d1,d2 ∈ Lm are fixed points of A→A
then d1 ∧ d2 is a fixed point of A→A too.

Corollary 2
Let A = (aij) be an n×m matrix with com-
ponents from L. Then for all d ∈ Lm,

A ◦ (A → (A ◦ d)) = A ◦ d.

The following theorem shows how fixed points
of contraction and dilation operators are re-
lated.

Theorem 5
Let A = (aij) be an n×m matrix with com-
ponents from L.

(i) If b0 ∈ Ln is a fixed point of AA→ on Ln

then there exists a uniquely determined
fixed point d0 ∈ Lm of A→A on Lm such
that A ◦ d0 = b0 and d0 = A → b0.

(ii) If d0 ∈ Lm is a fixed point of A→A
on Lm then there exists a uniquely de-
termined fixed point b0 ∈ Ln of AA→

on Ln such that A → b0 = d0 and
b0 = A ◦ d0.

Corollary 3
Let A = (aij) be an n × m matrix with
components from L. Let HA |F(A→A),
GA |F(AA→) be restrictions of the respec-
tive homomorphisms on the respective sets of
fixed points. Then HA |F(A→A) isomorphi-
cally maps F(A→A) onto F(AA→). More-
over, GA |F(AA→) is inverse to HA |F(A→A) so
that for all d0 ∈ F(A→A), b0 ∈ F(AA→)

A ◦ d0 = b0 iff A → b0 = d0.

Remark 3
It is worth to be noticed that homomorphic
images of fixed points are fixed points too.

This is not always true for preimages. This
means that if a fixed point b0 ∈ Ln of AA→

is represented by A ◦ x = b0 (or b0 is an
image of x) then x ∈ Lm is not necessarily
a fixed point of A→A. Similarly for a fixed
point d0 ∈ Lm of A→A and its representation
A → y = d0.

5.1 Fixed Points of AA→ and A→A as
Subsemimodules

Let A = (aij) be an n×m matrix with com-
ponents from L. In the following theorems
we will characterize the set of fixed points
of AA→ as a ∨-subsemimodule over L∨ and
the set of fixed points of A→A as a dual ∧-
subsemimodule over L∧.

Theorem 6
Let A = (aij) be a n × m− matrix with
components from L, AA→ : Ln 7→ Ln the
corresponding contraction operator. Then
F(AA→) is a ∨-subsemimodule over L∨.

Theorem 7
Let A = (aij) be a n×m− matrix with com-
ponents from L, A→A : Lm 7→ Lm the corre-
sponding dilation operator. Then F(A→A) is
a dual ∧-subsemimodule over L∧.
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[7] U. Höhle, Commutative residuated l-
monoids, in: U. Höhle, E. P. Klement
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relation equations with inf-¿ composi-
tion: complete set of solutions, Fuzzy
Sets and Systems (2008) to appear.

[13] I. Perfilieva, A. Tonis, Compatibility of
systems of fuzzy relation equations, Int.
J. of General Systems 29 (2000) 511–528.

[14] E. Sanchez, Resolution of composite
fuzzy relation equations, Information and
Control 30 (1976) 38–48.

Proceedings of IPMU’08 1029


