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Abstract

We present two methods which allow
to reconstruct the multiplicative and
the additive generator of a contin-
uous Archimedean triangular norm
from its partial derivatives. The
methods can be used for a strict tri-
angular norm whose multiplicative
generator has a non-zero derivative
at 0, resp. for a continuous Archime-
dean triangular norm whose additive
generator has a derivative continu-
ous at ]0, 1] and non-zero at 1.
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1 Introduction

Each continuous Archimedean triangular
norm1 (t-norm) T is characterized by its mul-
tiplicative, resp. additive, generator.

A multiplicative generator of a strict t-norm T
is an increasing bijection θ : [0, 1]→ [0, 1] such
that T (x, y) = θ−1(θ(x) ·θ(y)). (In the follow-
ing text, we will not deal with multiplicative
generators of nilpotent t-norms.)

An additive generator of a continuous Archi-
medean t-norm T is a strictly decreasing con-
tinuous function t : [0, 1] → [0,∞] such that
t(1) = 0 and T (x, y) = t(−1)(t(x) + t(y)),

1See e.g. [3, 5] for the definition.

where the pseudoinverse t(−1) is defined as
t(−1)(z) = t−1(min(z, t(0)). (For our purpose,
we have simplified the definition of the pseu-
doinverse given in [6, 8].)

If we have a generator, the procedure of get-
ting the t-norm is straightforward. Neverthe-
less, the inverse procedure, i.e., determining
the generator from the t-norm, is a difficult
task and so far there has not been introduced
any intuitive method. It is known since [6, 8]
that every continuous Archimedean t-norm
has a multiplicative and an additive genera-
tor. However, the proof of this crucial theo-
rem is difficult, despite numerous attempts to
optimize it (see [1, 5, 11]).

This paper brings two methods which allow
to reconstruct both multiplicative and addi-
tive generators for a subclass of continuous
Archimedean t-norms. In these special cases,
the generators are derived directly from par-
tial derivatives of the t-norm.

The following lemma can be found in any
book on calculus.

Lemma 1.1 Let f be a function that is dif-
ferentiable on an interval I. Let f possess an
inverse function g. Each point x ∈ I where g
is differentiable and f ′(g(x)) 6= 0 satisfies

g′(x) =
1

f ′(g(x))
.

The consequences will be used to determine
the generators in special cases.
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2 Multiplicative generators of
strict t-norms

We shall derive a procedure allowing to de-
termine multiplicative generators of strict t-
norms easily in a special case which, however
is general enough to be of interest.

Lemma 2.1 Let T be a strict t-norm and let
θ be its multiplicative generator. Then

∂T (x, y)
∂y

=
θ(x) · θ′(y)
θ′(T (x, y))

whenever both sides are defined.

Remark 2.2 The expression θ′(T (x, y)) is
the value of the derivative θ′ at the point
T (x, y), not a derivative of a compound ex-
pression.

Proof (of Lemma 2.1): Observe that if the
first partial derivative of T at (x, y) is defined,
then also the first derivative of θ−1(θ(x)·θ(y))
is defined.

According to Lemma 1.1, we can evaluate the
expression given by the multiplicative gener-
ator:

∂T (x, y)
∂y

=
∂θ−1(θ(x) · θ(y))

∂y

=
1

θ′(T (x, y))
· ∂(θ(x) · θ(y))

∂y

=
θ(x) · θ′(y)
θ′(T (x, y))

.

Theorem 2.3 Let T be a strict t-norm which
has a multiplicative generator θ satisfying
lim
y→0+

θ′(y) = c ∈ ]0,∞[. Then

θ(x) = lim
y→0+

∂T (x, y)
∂y

for all x ∈ [0, 1].

Proof : According to Lemma 2.1 and the fact
that T (x, y)→ 0 for y → 0, we obtain:

lim
y→0+

∂T (x, y)
∂y

= lim
y→0+

θ(x) · θ′(y)
θ′(T (x, y))

=
θ(x) · c
c

= θ(x) .

Corollary 2.4 Under the assumptions of
Th. 2.3, the multiplicative generator θ of T
can be also expressed as

θ(x) = lim
y→0+

T (x, y)
y

.

Proposition 2.5 Let T be a strict t-norm
and let MT be the set of its multiplicative
generators. If there exists a multiplicative
generator θ ∈ MT satisfying the constraint
lim
x→0+

θ′(x) = c ∈ ]0,∞[, then it is unique.

Proof : Suppose we have a multiplicative
generator θ ∈MT satisfying lim

x→0+

θ′(x) = c ∈
]0,∞[. It is known that any other multiplica-
tive generator σ ∈MT is given by σ = θp for
some p ∈ ]0, 1[∪ ]1,∞[. Its first derivative can
be expressed as

lim
x→0+

σ′(x) = lim
x→0+

(θp(x))′

= lim
x→0+

p · (θp−1(x)
) · θ′(x)

= p · c · lim
x→0+

θp−1(x) .

This limit is ∞ if p < 1 and 0 if p > 1.

Proposition 2.6 Let T be a strict t-norm.
The multiplicative generator θ of T satisfy-
ing the constraint lim

x→0+

θ′(x) ∈ ]0,∞[ exists if

and only if lim
x,y→0+

∂2T
∂x ∂y ∈ ]0,∞[. Note that in

such a case lim
x,y→0+

∂2T
∂x ∂y = lim

x→0+

θ′(x).

3 Additive generators of
continuous Archimedean t-norms

Here we shall derive an analogue of
Lemma 2.1 for additive generators. We shall
use partial derivatives of T for one argument
going to 1 instead of 0.

Lemma 3.1 Let T be a continuous Archime-
dean t-norm and let t be its additive generator.
Then

∂T (x, y)
∂y

=
t′(y)

t′(T (x, y))
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whenever both sides are defined and
T (x, y) 6= 0.

Remark 3.2 Again, t′(T (x, y)) is the value
of the derivative t′ at the point T (x, y), not a
derivative of a compound expression.

Proof (of Lemma 3.1): For each z ∈ [0, t(0)],
the pseudoinverse t(−1)(z) coincides with the
inverse t−1(z) and the same holds for their
derivatives. Under the assumptions of the
Lemma,

∂T (x, y)
∂y

=
∂t(−1)(t(x) + t(y))

∂y

=
∂t−1(t(x) + t(y))

∂y
.

According to Lemma 1.1,

∂T (x, y)
∂y

=
1

t′(T (x, y))
· ∂(t(x) + t(y))

∂y

=
t′(y)

t′(T (x, y))
.

Theorem 3.3 Let T be a continuous Archi-
medean t-norm with an additive generator t
which has a continuous derivative at ]0, 1] and
satisfies lim

y→1−
t′(y) = b ∈ ]−∞, 0[. Then

t(x) =

1∫
x

−b
lim
y→1−

∂T (u,y)
∂y

du .

Proof : According to Lemma 2.1 and the fact
that T (x, y)→ x for y → 1, we obtain for each

x ∈ ]0, 1]:

lim
y→1−

∂T (x, y)
∂y

= lim
y→1−

t′ (y)
t′ (T (x, y))

=
b

t′ (x)
,

t′ (x) =
b

lim
y→1−

∂T (x,y)
∂y

,

t(x) = t(1) +

x∫
1

b

lim
y→1−

∂T (u,y)
∂y

du

= 0−
1∫
x

b

lim
y→1−

∂T (u,y)
∂y

du

=

1∫
x

−b
lim
y→1−

∂T (u,y)
∂y

du .

Proposition 3.4 Let T be a continuous Ar-
chimedean t-norm and let AT be the set of its
additive generators. If there exists an addi-
tive generator t ∈ AT satisfying the constraint
lim
x→1−

t′(x) ∈ ]−∞, 0[, then all the generators

in the set AT satisfy this constraint.

Proof : Suppose we have an additive gen-
erator t ∈ AT satisfying lim

x→1−
t′(x) = b ∈

]−∞, 0[. It is known that any other additive
generator s ∈ AT is given by s = p · t for some
p ∈ ]0, 1[ ∪ ]1,∞[. We obtain:

lim
x→1−

s′(x) = lim
x→1−

(p · t(x))′

= lim
x→1−

p · t′(x)

= p · b ∈ ]−∞, 0[ .

Corollary 3.5 Under the assumptions of
Th. 3.3 and Prop. 3.4, also the following func-
tion is an additive generator of t-norm T :

t∗(x) =

1∫
x

1

lim
y→1−

∂T (u,y)
∂y

du

=

1∫
x

1

lim
y→1−

u−T (u,y)
1−y

du .
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Proposition 3.6 Let T be an Archimedean
t-norm. If the function x 7→ lim

y→1−

∂T (x,y)
∂y is

continuous and non-zero at ]0, 1] and, more-
over, ∂T (x,y)

∂y is differentiable at (1, 1), then
every additive generator t of T satisfies the
constraint lim

x→1−
t′(x) ∈ ]−∞, 0[. Note, that in

such a case

lim
x,y→1−

∂T (x, y)
∂y

= 1 .

4 Examples

Frank and Hamacher families2 (except for the
Hamacher product) are examples of strict t-
norms where both Th. 2.3 and Th. 3.3 can be
applied in order to reconstruct the multiplica-
tive and the additive generators.

As an example, let us reconstruct a multi-
plicative and an additive generator of a Frank
t-norm

T λF (x, y) = lnλ

(
1 +

(λx − 1)(λy − 1)
λ− 1

)

for λ ∈ ]0, 1[ ∪ ]1,∞[. Applying Th. 2.3, we
obtain

lim
y→0+

∂T λF (x, y)
∂y

= lim
y→0+

λy (λx − 1)
λ− 1 + (λx − 1)(λy − 1)

=
λx − 1
λ− 1

which is a multiplicative generator of T λF .

To reconstruct the additive generator, we first
compute the limit at y → 1−,

lim
y→1−

∂T λF (x, y)
∂y

= lim
y→1−

λy (λx − 1)
λ− 1 + (λx − 1)(λy − 1)

=
λ (λx − 1)
λx (λ− 1)

6= 0 ,

2See [5] for the definitions of the families of t-
norms.

then we compute the integral from Cor. 3.5:

1∫
x

λu(λ− 1)
λ (λu − 1)

du

=
λ− 1
λ lnλ

[ln |λu − 1|]1u=x

=
λ− 1
λ lnλ

ln
λ− 1
λx − 1

.

The obtained expression is an additive gener-
ator of T λF .

On the other hand, the Hamacher product

TH(x, y) =
xy

x+ y − xy
is an example of a t-norm which violates the
assumption of Th. 2.3. The multiplicative
generators of this t-norm are of the form

θH(x) =
(
e(1−

1
x)
)p

,

where p > 0. It is easy to check that θ′H(0) =
0 for any value of the parameter p and thus
the constraint lim

y→0+

θ′H(y) ∈ ]0,∞[ cannot be

satisfied. If we anyway try to apply the de-
scribed method to this t-norm, we obtain

lim
y→0+

∂TH(x, y)
∂y

= lim
y→0+

∂

∂y

(
xy

x+ y − xy
)

= lim
y→0+

x2

(x+ y − xy)2
=
x2

x2
= 1

which is not a strictly increasing function and
thus it cannot be a multiplicative generator.
Nevertheless, the additive generator of this t-
norms can still be reconstructed since the con-
straint of Th. 3.3 is satisfied.

Dombi family (except for the Hamacher prod-
uct) and Aczél–Alsina family (except for the
product t-norm) are examples of strict t-
norms where both the assumptions of Th. 2.3
and Th. 3.3 are violated and therefore neither
the multiplicative generator nor the additive
generator can be reconstructed using the de-
scribed methods.

Schweizer–Sklar and Sugeno–Weber families
are examples of families of nilpotent t-norms
where Th. 3.3 applies. On the contrary, Yager
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family of nilpotent t-norms violates the con-
straint. For an illustration, let us try to apply
Th. 3.3 to a Yager t-norm

T λY (x, y) = 1−
(

(1− x)λ + (1− y)λ
) 1
λ ∨ 0

for λ ∈ ]0,∞[. Applying Th. 3.3, we obtain
the expression

lim
y→1−

∂T λY (x, y)
∂y

= lim
y→1−

(
(1− x)λ + (1− y)λ

) 1−λ
λ

·(1− y)λ−1

which equals zero for λ ∈ ]1,∞[ and infinity
for λ ∈ ]0, 1[. Let us note that this expression
is non-zero and finite for λ = 1 which stands
for the  Lukasiewicz t-norm.

5 Conclusion

We have shown that a multiplicative gener-
ator can be reconstructed from a continuous
Archimedean t-norm if the multiplicative gen-
erator satisfies the constraint lim

y→0+

θ′(y) ∈
]0,∞[. The condition of existence of such a
multiplicative generator is equivalent to the
constraint lim

x,y→0+

∂2T
∂x∂y ∈ ]0,∞[; this condition

may be found more useful as it refers to the
shape of the surface of the t-norm.

We have furthermore shown that also an ad-
ditive generator can be reconstructed from a
continuous Archimedean t-norm if the addi-
tive generator has a continuous derivative at
]0, 1] and satisfies the condition lim

y→1−
t′(y) ∈

]−∞, 0[. The existence of such an additive
generator is implied by the constraint de-
scribed in Prop. 3.6.

These results contribute also to the open ques-
tion whether there is a t-norm which can
be expressed as a non-trivial convex com-
bination of continuous Archimedean t-norms
(cf. [4, 7, 9, 10]). This cannot happen for the
t-norms satisfying the assumptions of Ths. 2.3
and 3.3. This extends the partial solution
given in [12]. Further generalizations of these
results will be subject to future study.
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