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Abstract

We present two methods which allow
to reconstruct the multiplicative and
the additive generator of a contin-
uous Archimedean triangular norm
from its partial derivatives. The
methods can be used for a strict tri-
angular norm whose multiplicative
generator has a non-zero derivative
at 0, resp. for a continuous Archime-
dean triangular norm whose additive
generator has a derivative continu-
ous at |0, 1] and non-zero at 1.

Keywords: Triangular norm, Ar-
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1 Introduction

Each continuous Archimedean triangular
norm! (t-norm) T is characterized by its mul-
tiplicative, resp. additive, generator.

A multiplicative generator of a strict t-norm T'
is an increasing bijection 0: [0, 1] — [0, 1] such
that T(x,y) = 071(0(z)-0(y)). (In the follow-
ing text, we will not deal with multiplicative
generators of nilpotent t-norms.)

An additive generator of a continuous Archi-
medean t-norm 7' is a strictly decreasing con-
tinuous function ¢: [0,1] — [0, 00] such that
t(1) = 0 and T(z,y) = tCV(t(z) + t(y)),

!See e.g. [3, 5] for the definition.
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where the pseudoinverse t(=1) is defined as
t(=(2) =t~ (min(z, t(0)). (For our purpose,
we have simplified the definition of the pseu-
doinverse given in [6, 8].)

If we have a generator, the procedure of get-
ting the t-norm is straightforward. Neverthe-
less, the inverse procedure, i.e., determining
the generator from the t-norm, is a difficult
task and so far there has not been introduced
any intuitive method. It is known since [6, §]
that every continuous Archimedean t-norm
has a multiplicative and an additive genera-
tor. However, the proof of this crucial theo-
rem is difficult, despite numerous attempts to
optimize it (see [1, 5, 11]).

This paper brings two methods which allow
to reconstruct both multiplicative and addi-
tive generators for a subclass of continuous
Archimedean t-norms. In these special cases,
the generators are derived directly from par-
tial derivatives of the t-norm.

The following lemma can be found in any
book on calculus.

Lemma 1.1 Let f be a function that is dif-
ferentiable on an interval I. Let f possess an
iverse function g. Fach point x € I where g

is differentiable and f'(g(x)) # 0 satisfies

The consequences will be used to determine
the generators in special cases.
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2 Multiplicative generators of
strict t-norms

We shall derive a procedure allowing to de-
termine multiplicative generators of strict t-
norms easily in a special case which, however
is general enough to be of interest.

Lemma 2.1 Let T be a strict t-norm and let
0 be its multiplicative generator. Then

OT(x,y) _ 0(x) - 0'(y)

dy  0(T(zy)

whenever both sides are defined.

Remark 2.2 The expression 0'(T(x,y)) is
the wvalue of the derivative 0’ at the point
T(z,y), not a derivative of a compound ex-
Pression.

Proof (of Lemma 2.1): Observe that if the
first partial derivative of T at (x,y) is defined,
then also the first derivative of 871(6(x)-0(y))
is defined.

According to Lemma 1.1, we can evaluate the
expression given by the multiplicative gener-
ator:

0T (z,y) _ 00~ (0() - 0(y))
dy dy
_ 1 O(6(z) - 0(y))
0'(T'(z,y)) dy
0(x) - 0'(y)
0'(T(x,y))

Theorem 2.3 Let T be a strict t-norm which
has a multiplicative generator 0 satisfying
lim 0'(y) = c €10,00[. Then

y—04
- OT(z,y)
0(x) = lim —————=
@) yg&r dy
for all z € [0, 1].

Proof : According to Lemma 2.1 and the fact
that T'(x,y) — 0 for y — 0, we obtain:

i @) @) -0
y—04 8y y—0+ 9’(T(a;, y))
= 6(:06) C_ 0(x).
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Corollary 2.4 Under the assumptions of
Th. 2.3, the multiplicative generator 6 of T
can be also expressed as

O(x) = lim M

y—0+ Yy

Proposition 2.5 Let T be a strict t-norm
and let Mt be the set of its multiplicative
generators. If there exists a multiplicative
generator 8 € M satisfying the constraint
xli%l 0'(z) = c €0, 00, then it is unique.
—04

Proof : Suppose we have a multiplicative
generator § € M satisfying lir(r)l 0 (r)=ce
T—U4

10, 00[. It is known that any other multiplica-
tive generator ¢ € M is given by o = 6P for
some p € |0, 1[U]1, oo[. Its first derivative can
be expressed as

lim o'(z) = lim (67(x))

z—04 z—04
= i . (pp1 .0
Jim p- (0 (x)) - 0'(x)
= p-c- lim 77 (z).
z—04

This limit is co if p < 1 and 0 if p > 1. |

Proposition 2.6 Let T be a strict t-norm.

The multiplicative generator 6 of T satisfy-

ing the constraint h%l 0'(x) €10, 00| exists if
rT—U4

. . 02T .
and only zfml!lﬂ%+ 30y € 10,00[. Note that in

such a case lim
x,y—04

2T /
ordy ~— xll)%l+ 0 (x)

3 Additive generators of
continuous Archimedean t-norms

Here we shall derive an analogue of
Lemma 2.1 for additive generators. We shall
use partial derivatives of T' for one argument

going to 1 instead of 0.

Lemma 3.1 Let T be a continuous Archime-
dean t-norm and let t be its additive generator.
Then

O(x,y) _  #(y)

dy t(T(x, y))
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whenever both sides are defined and
T(x,y) # 0.

Remark 3.2 Again, t'(T(z,y)) is the value
of the derivative t' at the point T'(z,y), not a
derivative of a compound expression.

Proof (of Lemma 3.1): For each z € [0,¢(0)],
the pseudoinverse t(~1(2) coincides with the
inverse ¢t~!(z) and the same holds for their

derivatives. Under the assumptions of the
Lemma,
0T(z,y) _ otV (t(z) +t(y))
dy Ay
_ ot (t(z) + t(y))
= 99 .

According to Lemma 1.1,

T (x,y) _ 1 o) +t(y)
y (T (z,y)) Ay
_ )
t(T(z,y))
]

Theorem 3.3 Let T be a continuous Archi-
medean t-norm with an additive generator t
which has a continuous derivative at ]0,1] and
satisfies ylg{l t'(y) =b € ]—00,0[. Then

Proof : According to Lemma 2.1 and the fact
that T'(z,y) — x for y — 1, we obtain for each

x €]0,1]:
T /
i TG0 W) b
y—1_ Y y—1-t' (T (z,y)) t/(x)
b
/ —
P = e
y—1_ 9y
[
@) = W0+ [ —
1 y—>1
/ b
B 0_/ lim 20
T y—l1
1
B —b
lim 2L0wy)
r y—l1
]

Proposition 3.4 Let T be a continuous Ar-
chimedean t-norm and let Ap be the set of its
additive generators. If there exists an addi-
tive generator t € Ar satisfying the constraint
wli)r? t'(z) € |—00,0[, then all the generators

in the set Ar satisfy this constraint.

Proof : Suppose we have an additive gen-
erator t € Ar satisfying linla t'(x) = b €
r—1_

|—00,0]. It is known that any other additive
generator s € Ap is given by s = p-t for some
p €]0,1[U]1,00[. We obtain:

lim (p-#(x)

linlrl s(x) =

= 111{1 p-t'(r)
= p-be]—00,0[.

Corollary 3.5 Under the assumptions of
Th. 3.3 and Prop. 3.4, also the following func-
tion is an additive generator of t-norm T':

t*(x) =
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Proposition 3.6 Let T be an Archimedean

t-norm. If the function x — lim =
y—l Y
continuous and non-zero at ]0,1] and, more-
T (x,y)

over, =5 is differentiable at (1,1), then

every additive generator t of T satisfies the

constraint 111{1 t'(z) € |—00,0][. Note, that in
Tr—1_

such a case

lim 0T(z,y) =1.
z,y—1_ 83/
4 Examples

Frank and Hamacher families? (except for the
Hamacher product) are examples of strict t-
norms where both Th. 2.3 and Th. 3.3 can be
applied in order to reconstruct the multiplica-
tive and the additive generators.

As an example, let us reconstruct a multi-
plicative and an additive generator of a Frank
t-norm

TA(z,y) = Iny <1 LT =DV - 1))

A—1

for A € ]0,1[U |1,00[. Applying Th. 2.3, we
obtain

A
y—04 Jy
C M (AT — 1) AT —1
oy AT+ (D)W1) -1

which is a multiplicative generator of TI/}.

To reconstruct the additive generator, we first
compute the limit at y — 1_,

A
lim 0T (w,y)
y—1- Oy
= lim AT~ 1)
oyl AT (AT 1) (W 1)
A1)
oA (A=) 70,

2See [5] for the definitions of the families of t-
norms.

Proceedings of IPMU'08

then we compute the integral from Cor. 3.5:

1
4L — 1)
Q/AQ“—D‘M

Aol
= Y [In[A* = 1[],—,
_A-1 -l
BN PR

The obtained expression is an additive gener-
ator of T]fl.

On the other hand, the Hamacher product

Ty

Th(z,y) = Tty—ay

is an example of a t-norm which violates the
assumption of Th. 2.3. The multiplicative
generators of this t-norm are of the form

where p > 0. It is easy to check that 6%;(0) =

0 for any value of the parameter p and thus

the constraint lirgl 0% (y) € 10, 00[ cannot be
y—04

satisfied. If we anyway try to apply the de-
scribed method to this t-norm, we obtain

- OTg(z,y) .. 0 Ty
lim ———~ = lim — | ————
y—04 y y—0y Oy \z+vy — Yy

x? z?

im =—=1
y=0i (z+y—wy)?® 2

which is not a strictly increasing function and
thus it cannot be a multiplicative generator.
Nevertheless, the additive generator of this t-
norms can still be reconstructed since the con-
straint of Th. 3.3 is satisfied.

Dombi family (except for the Hamacher prod-
uct) and Aczél-Alsina family (except for the
product t-norm) are examples of strict t-
norms where both the assumptions of Th. 2.3
and Th. 3.3 are violated and therefore neither
the multiplicative generator nor the additive
generator can be reconstructed using the de-
scribed methods.

Schweizer—Sklar and Sugeno—Weber families
are examples of families of nilpotent t-norms
where Th. 3.3 applies. On the contrary, Yager
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family of nilpotent t-norms violates the con-
straint. For an illustration, let us try to apply
Th. 3.3 to a Yager t-norm

TRay) =1~ (-2 +(1-9)*) " vo

for A € ]0,00[. Applying Th. 3.3, we obtain
the expression

A
y—1_ Oy
1—X
_ : _ A o\ T
= i (-2 + (-9
1=y

which equals zero for A € |1, 00[ and infinity
for A € ]0,1[. Let us note that this expression
is non-zero and finite for A = 1 which stands
for the Lukasiewicz t-norm.

5 Conclusion

We have shown that a multiplicative gener-

ator can be reconstructed from a continuous

Archimedean t-norm if the multiplicative gen-

erator satisfies the constraint yli%l 0'(y) €
—0+

]0,00[. The condition of existence of such a
multiplicative generator is equivalent to the

. . 2 . .
constraint lim £ZL €10, oo[; this condition
.”L’,y—>0+ oy

may be found more useful as it refers to the
shape of the surface of the t-norm.

We have furthermore shown that also an ad-
ditive generator can be reconstructed from a
continuous Archimedean t-norm if the addi-
tive generator has a continuous derivative at
]0,1] and satisfies the condition yligl t'(y) €

|—00,0[. The existence of such an additive
generator is implied by the constraint de-
scribed in Prop. 3.6.

These results contribute also to the open ques-
tion whether there is a t-norm which can
be expressed as a non-trivial convex com-
bination of continuous Archimedean t-norms
(cf. [4, 7,9, 10]). This cannot happen for the
t-norms satisfying the assumptions of Ths. 2.3
and 3.3. This extends the partial solution
given in [12]. Further generalizations of these
results will be subject to future study.

Acknowledgement. The authors acknowl-
edge the support of the grant 201/07/1136 of
the Czech Science Foundation.

References

[1] C. Alsina. On a method of Pi-Calleja for
describing additive generators of associa-
tive functions. Aequationes Mathematicae,
43:14-20, 1992.

[2] C. Alsina, M. J. Frank, and B. Schweizer.
Problems on associative functions. Aequa-
tiones Mathematicae, 66(1-2):128-140,
2003.

[3] C. Alsina, M. J. Frank, and B. Schweizer.
Associative Functions: Triangular Norms
and Copulas. World Scientific, Singapore,
2006.

[4] S. Jenei. On the convex combination
of left-continuous t-norms. Aequationes
Mathematicae, 72(1-2):47-59, 2006.

[5] E.P.Klement, R. Mesiar, and E. Pap. Tri-
angular Norms, vol. 8 of Trends in Logic.
Kluwer Academic Publishers, Dordrecht,
Netherlands, 2000.

[6] C. M. Ling. Representation of associative
functions. Publ. Math. Debrecen, 12:189—
212, 1965.

[7] R. Mesiar and A. Mesiarova-Zemankové.
Convex combinations of continuous t-
norms with the same diagonal function.
Nonlinear Analysis, to appear.

[8] P. S. Mostert and A. L. Shields. On
the structure of semigroups on a compact
manifold with boundary. Annals of Math-
ematics, 65:117-143, 1957.

[9] Y. Ouyang and J. Fang. Some observa-
tions about the convex combinations of
continuous triangular norms.
Analysis, 2007.

Nonlinear

[10] Y. Ouyang, J. Fang, and G. Li. On the
convex combination of td and continuous
triangular norms. Inf. Sci., 177(14):2945—
2953, 2007.

Proceedings of IPMU'08



[11] P. Pi-Calleja. Las ecuacionas funcionales
de la teoria de magnitudes. Segundo
Symposium de Matemdtica, Villavicencio,
Mendoza, Coni, Buenos Aires, 199-280,
1954.

[12] M. S. Tomds. Sobre algunas medias
de funciones asociativas. Stochastica,
XI(1):25-34, 1987.

Proceedings of IPMU’08 1021



