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Abstract

Fuzzy Description Logics have been
proposed as a family of languages
to describe vague or imprecise struc-
tured knowledge. This work deals
with one of the less studied con-
structors, qualified cardinality restric-
tions, showing some counter-intuitive
behaviours under Łukasiewicz seman-
tics, and proposing a new semantics and
the corresponding reasoning algorithm.
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1 Introduction

Description Logics (DLs) [1] are a logical re-
construction of the so-called frame-based knowl-
edge representation languages, with the aim of
providing a simple well-established Tarski-style
declarative semantics to capture the meaning of
the most popular features of structured represen-
tation of knowledge. Nowadays, DLs have gained
even more popularity due to their application in
the context of the Semantic Web [2]. Indeed, the
current standard language for specifying ontolo-
gies is the Web Ontology Language (OWL) [10],
which comprises three sublanguages of increas-
ing expressive power: OWL Lite, OWL DL and
OWL Full. OWL 1.1. has been recently pro-
posed as an extension of OWL [11]. The logi-
cal counterpart of OWL Lite, OWL DL and OWL
1.1 are the DLs SHIF(D), SHOIN (D) and
SROIQ(D), respectively.

Fuzzy DLs have been proposed as an extension
to classical DLs with the aim to deal with fuzzy,
vague and imprecise concepts. Since the first
work of J. Yen in 1991 [20], an important number
of works on fuzzy DLs can be found in the litera-
ture (for a good survey we refer the reader to [9]).
However, to date relative little work has been
done in reasoning in fuzzy DLs with qualified car-
dinality restrictions (only [13, 3]). We argue that
qualified cardinality restrictions are an important
feature on DLs. For instance, such restrictions
allow to define a father having two daughters as
Manu (> 2hasRole.Woman). In fact, they are
one of the main motivations for extending the cur-
rent standard language OWL to OWL 1.1.

In this work we present a fuzzy DL with qualified
cardinality restrictions under Łukasiewicz seman-
tics. We will analyze the behaviour of the con-
structor, propose a new semantics and provide a
reasoning algorithm.

In the remainder, we proceed as follows. Sec-
tion 2 describes the fuzzy DL ALCQ and dis-
cusses several semantics for qualified cardinality
restrictions. Section 3 presents our reasoning al-
gorithm. Finally, Section 4 presents some conclu-
sions and ideas for future work.

2 Fuzzy Description Logics

The fuzzy DL that we will present in this sec-
tion is an extension of [18]. The main ingre-
dients of DLs are concepts, which denote unary
predicates, and roles, which denote binary pred-
icates. Then there are connectives which allow
to construct complex concepts. For instance, if
we use the concept Human to denote the set of
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humans, and the concept Male to denote the set
of male objects, the complex concept (conjunc-
tion) Human uMale will denote the set of male
humans. Moreover, if hasChild denotes a role
then the concept Human u ∃hasChild.Male
will denote the the set of humans having a male
child, while Human u ∀hasChild.Male will
denote the set of humans such that if they have
children then they have to be male.

2.1 Syntax

Let A, R and I be non-empty finite and pair-
wise disjoint sets of concept names (denoted A),
roles names (denoted R), and individual names
(denoted a, b), respectively. The syntax of fuzzy
ALCQ concepts (denoted C, D) is as follows (n
is 0 or a natural number):

C,D := > | ⊥ | A | C uD | C tD | ¬C |
∀R.C | ∃R.C | > n R.C | 6 n R.C

where in > n R.C we assume n > 1.

A fuzzy knowledge base (KB) K = 〈A, T 〉 con-
sists of a fuzzy ABox A and a fuzzy TBox T .

A fuzzy ABox A consists of a finite set of fuzzy
concept and fuzzy role assertion axioms of the
form 〈a :C, α〉 and 〈(a, b) :R,α〉, where α ∈
(0, 1]. Informally, 〈τ, α〉 constrains the mem-
bership degree of τ to be at least α. Hence,
〈jim :Y oungPerson, 0.2〉 says that jim is a
Y oungPerson with degree at least 0.2, while
〈(jim, tom) :hasFriend, 1〉, states that jim and
tom are friends.

A fuzzy TBox T is a finite set of fuzzy General
Concept Inclusion axioms (GCIs) 〈C v D,α〉,
where α ∈ (0, 1] and C,D are concepts. In-
formally, 〈C v D,α〉 states that all instances
of concept C are instances of concept D to
degree α, that is, the subsumption degree be-
tween C and D is at least α. For instance,
〈Elephant v Animal, 1〉 states that the class of
elephants is a subclass of the class of animals. We
write C ≡ D as a shorthand of the two axioms
〈C v D, 1〉 and 〈D v C, 1〉.

2.2 Semantics

The main idea is that concepts and roles are inter-
preted as fuzzy subsets of an interpretation’s do-

main. Therefore, axioms, rather than being “clas-
sical” evaluated (being either true or false), they
are “many-valued” evaluated in [0, 1].

In this paper, we will consider the Łukasiewicz
family of fuzzy operators, which is defined as fol-
lows (where α, β ∈ [0, 1], ⊗ is the t-norm, ⊕ the
t-conorm, 	 the negation and ⇒ the implication,
see [8] for a definition of these functions):

	α = 1− α
α⊗ β = max{α + β − 1, 0}
α⊕ β = min{α + β, 1}

α ⇒ β = min{1, 1− α + β}

A fuzzy interpretation I = (∆I , ·I) consists of
a nonempty set ∆I (the domain) and of a fuzzy
interpretation function ·I that assigns: (i) to each
concept C a function CI : ∆I → [0, 1]; (ii) to
each role R a function RI : ∆I × ∆I → [0, 1];
(iii) to each individual a an element in ∆I .

We also impose the unique names assumption
(UNA) over the individuals, i.e. if a 6= b then
aI 6= bI , where a, b are individuals (different in-
dividuals denote different objects of the domain).

The mapping ·I is extended to complex concepts
as specified in Table 1. ·I is extended to the fuzzy
axioms τ as follows:

(a :C)I = CI(aI)
((a, b) :R)I = RI(aI , bI)
(C v D)I = infa∈∆I CI(a) ⇒ DI(a)

C is satisfiable iff there is an interpretation I and
an individual x ∈ ∆I such that CI(x) > 0.

For a set E of axioms E, we say that I satisfies
E iff I satisfies each element in E . We say that
I is a model of E (resp. E) iff I |= E (resp.
I |= E). I satisfies (is a model of) a fuzzy KB
K = 〈A, T 〉, denoted I |= K, iff I is a model of
each component A and T , respectively.

An axiom E is a logical consequence of a knowl-
edge base K, denoted K |= E iff every model of
K satisfies E.

Given K and a fuzzy axiom τ of the forms
〈x :C, α〉, 〈(x, y) :R,α〉 or 〈C v D,α〉, it is of
interest to compute τ ’s best lower degree value
bound. The greatest lower bound of τ w.r.t. K
(denoted glb(K, τ)) is glb(K, τ) = sup{α | K |=
〈τ > α ∈ [0, 1]〉}, where sup ∅ = 0. Determining
the glb is called the Best Degree Bound (BDB)
problem.
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⊥I(a) = 0
>I(a) = 1

(C uD)I(a) = CI(a)⊗DI(a)
(C tD)I(a) = CI(a)⊕DI(a)

(¬C)I(a) = 	CI(a)
(∀R.C)I(a) = infb∈∆I RI(a, b) ⇒ CI(b)
(∃R.C)I(a) = supb∈∆I RI(a, b)⊗ CI(b)

(> n R.C)I(a) = supb1,...,bn∈∆I [(⊗n
i=1{RI(a, bi)⊗ CI(bi)})

⊗
(⊗j<k{bj 6= bk})]

(6 n R.C)I(a) = infb1,...,bn+1∈∆I [(⊗n+1
i=1 {RI(a, bi)⊗ CI(bi)}) ⇒ (⊕j<k{bj = bk})]

Table 1: Semantics of the complex fuzzy concepts.

Finally, the best satisfiability bound of a con-
cept C, denoted glb(K, C), is defined as
supI supx∈∆I{CI(x) | I |= K}. Essentially,
among all models I of the KB, we are determin-
ing the maximal degree of truth that the concept
C may have over all individuals x ∈ ∆I .

2.3 Cardinality restrictions

D. Sánchez et al. have considered the fuzzy
DL ALCQ [13]. While their work is interest-
ing since they allow the use of fuzzy quantifiers,
for instance making possible to express that a
customer mostly buys cheap items, reasoning be-
comes particularly harder. Moreover, their ap-
proach strongly relies on finite models, which is
a problem if we want to extend the expressivity
of the logic (for example, SHIF does not have
the finite model property, i.e., there are concepts
which have only infinite models [7]).

Our semantics for cardinality restrictions was in-
troduced in [14] as an extension of the semantics
presented in [16], and derives from the classical
case, by deriving the concept (> n R.C) as the
first-order formula

∃x1, ...xn.(
∧
i<j

xi 6= xj) ∧ (
∧
i

R(x, xi) ∧ C(xi))

and assuming that (6 n R.C) is the same as
¬(> n + 1 R.C). However, the semantics
may be counter-intuitive, as the following exam-
ple shows:

Example 2.1 Assume the following model:
((fernando, apple) : likes)I = ((fernando,
banana) : likes)I = ((fernando, orange) : li-
kes)I = ((fernando, peach) : likes)I = 0.5;

(apple :Fruit)I = (banana :Fruit)I = (oran-
ge : Fruit)I = (peach :Fruit)I = 1; appleI ,
bananaI , orangeI , peachI are different.

Then, (6 1 likes.Fruit)I(fernando) = 1. In
this example, while one may expect fernando
not to have more than 1 filler, he has 4 and,
clearly, he could have many more fillers xi as
long as they satisfy ((fernando, xi) : likes)I +
(xi :Fruit)I 6 1.

In our opinion, the semantics of cardinality re-
strictions should satisfy the following properties:

Property 1 If (6 n R.C)I(a) = 1 then |{b |
(R(a, b)I ⊗ C(b))I > 0}| 6 n.

Property 2 ∃R.C ≡ > 1R.C.

Property 3 6 n R.C ≡ ¬(> n + 1 R.C).

Property 1 requires that ⊗n+1
i=1 {RI(a, bi) ⊗

CI(bi)} > 0 if (and only if) RI(a, bi) ⊗
CI(bi) > 0 for every i ∈ {1, . . . , n +
1}. However, Łukasiewicz t-norm does not
verify this property. As a solution, we pro-
pose to use for cardinality restrictions the se-
mantics in Table 2, which combines Łukasiewicz
and Gödel t-norms in order to verify Proper-
ties 1 2 and 3; solving the counter-intuitive ef-
fect of Example 2.1 (in fact, under this semantics
(6 1 likes.Fruit)I(fernando) = 0.5).

As a final comment, S. Calegari et al. have in-
troduced another semantics for unqualified cardi-
nality restrictions (a special case where C = >
and it is syntactically omitted). In their proposal,
> nR and 6 nR are crisp concepts [4]. > nR is
actually interpreted as “the individual has at least
n R-successors with degree greater than 0”, and
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(> n R.C)I(a) = supb1,...,bn∈∆I [minn
i=1{RI(a, bi)⊗ CI(bi)}

⊗
(⊗j<k{bj 6= bk})]

(6 n R.C)I(a) = infb1,...,bn+1∈∆I [minn+1
i=1 {RI(a, bi)⊗ CI(bi)} ⇒ (⊕j<k{bj = bk})]

Table 2: New semantics for cardinality restrictions.

6 nR is interpreted dually. However, this seman-
tics may also lead to counter-intuitive examples.
For instance, Property 2 does not hold.

3 Reasoning Algorithm

Our reasoning algorithm extends [18]. The ba-
sic idea of our reasoning algorithm is as follows.
Consider K = 〈A, T 〉. In order to solve the BDB
problem, we combine appropriate DL tableaux
rules with methods developed in the context of
Many-Valued Logics (MVLs) [5].

In order to determine e.g. glb(K, a :C), we con-
sider an expression of the form 〈a :¬C, 1− x〉
(informally, 〈a :C 6 x〉), where x is a [0, 1]-
valued variable. Then we construct a tableaux for
K = 〈A ∪ {〈a :¬C, 1− x〉}, T 〉 in which the ap-
plication of satisfiability preserving rules gener-
ates new fuzzy assertion axioms together with in-
equations over [0, 1]-valued variables. These in-
equations have to hold in order to respect the se-
mantics of the DL constructors. Finally, to deter-
mine the greatest lower bound, we minimize the
original variable x such that all constraints are
satisfied 1. Similarly, for C v D, we can com-
pute glb(K, C v D) as the minimal value of x
such that K = 〈A ∪ {〈a :C u ¬D, 1− x〉}, T 〉
is satisfiable, where a is new individual. Hence,
the BDB problem can be reduced to minimal sat-
isfiability problem of a KB. Finally, concerning
the satisfiability bound problem, glb(K, C) is de-
termined by the maximal value of x such that
〈A∪{〈a :C, x〉}, T 〉 is satisfiable. In Łukasiewicz
logic we end up with a bounded Mixed Inte-
ger Linear Program (bMILP) optimization prob-
lem [12].

Note that (¬∃R.C)I = (∀R.¬C)I , (¬∀R.C)I =
(∃R.¬C)I , ¬(6 n R.C)I = (> n + 1 R.C)I

and ¬(> n R.C)I = (6 n− 1 R.C)I . This al-
1Informally, suppose the minimal value is n̄. We will

know then that for any interpretation I satisfying the knowl-
edge base such that (a :C)I < n̄, the starting set is unsatis-
fiable and, thus, (a :C)I > n̄ has to hold. Which means that
glb(K, (a :C)) = n̄

lows us to transform concept expressions into a
semantically equivalent Negation Normal Form
(NNF), which is obtained by pushing in the usual
manner negation on front of concept names only.
With nnf (C) we denote the NNF of concept C.

Now, let V be a new alphabet of variables x rang-
ing over [0, 1], W be a new alphabet of 0-1 vari-
ables y. We extend fuzzy assertions to the form
〈τ , l〉, where l is a linear expression over variables
in V,W and rational values.

Similar to crisp DLs, our tableaux algorithm
checks the satisfiability of a fuzzy KB by trying
to build a fuzzy tableau, from which it is immedi-
ate either to build a model in case KB is satisfiable
or to detect that the KB is unsatisfiable.

Given K = 〈A, T 〉, let RK be the set of roles oc-
curring in K and let sub(K) be the set of named
concepts appearing in K. A fuzzy tableau T for
K is a quadruple (S, L, E , V) such that: S is a
set of elements, L : S × sub(K) → [0, 1] maps
each element and concept, to a membership de-
gree (the degree of the element being an instance
of the concept), and E : RK × (S × S) → [0, 1]
maps each role of RK and pair of elements to the
membership degree of the pair being an instance
of the role, and V : IA → S maps individuals
occurring in A to elements in S. For all s, t ∈ S,
C,D ∈ sub(K), and R ∈ RK, T has to satisfy
the following conditions:

1. L(s,⊥) = 0 and L(s,>) = 1 for all s ∈ S,

2. If L(s,¬A) > α, then L(s,A) 6 	α.

3. IfL(s, CuD) > α, thenL(s, C)⊗L(s,D) > α.

4. IfL(s, CtD) > α, thenL(s, C)⊕L(s,D) > α.

5. If L(s,∀R.C) > α, then E(R, 〈s, t〉) 6 L(t, C)
+1− α for all t ∈ S.

6. If L(s,∃R.C) > α, then there exists t ∈ S such
that E(R, 〈s, t〉)⊗ L(t, C) > α.

7. If 〈C v D,α〉 ∈ T , then L(s, C) 6 L(s,D) +
1− α, for all s ∈ S.

8. If L(s,> n R.C) > α, then there are
b1, ..., bn ∈ S such that for all 1 6 i 6 n,
E(R, 〈s, bi〉)⊗ L(bi, C) > α.
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9. If L(s,6 n R.C) > α, then L(s,> n + 1R.C)
6 1− α.

10. If 〈a :C, α〉 ∈ A, then L(V(a), C) > α.

11. If 〈(a, b) :R,α〉 ∈ A, then E(R, 〈V(a),V(b)〉) >
α.

It can be shown that:

Proposition 3.1 K = 〈A, T 〉 is satisfiable if and
only if there exists a fuzzy tableau for K.

Now, in order to decide the satisfiability of K =
〈A, T 〉 a procedure that constructs a fuzzy tableau
T for K has to be determined. Our algorithm
works on completion-forests since an ABox might
contain several individuals with arbitrary roles
connecting them. Due to the presence of general
or cyclic terminology T , the termination of the
algorithm has to be ensured. This is done by pro-
viding a blocking condition for rule applications.

A completion-forest F for a fuzzy KB K is a col-
lection of trees whose distinguished roots are ar-
bitrarily connected by edges.

Each node v is labelled with a sequence L(v)
of expressions of the form 〈C, l〉, where C ∈
sub(K), and l is either a rational, a variable x, or
a negated variable, i.e. of the form 1−x, where x
is a variable (the intuition here is that v is an in-
stance of C to degree equal or greater than of the
evaluation of l).

Each edge 〈v, w〉 is labelled with a sequence
L(〈v, w〉) of expressions of the form 〈R, l〉,
where R ∈ RK are roles occurring in K (the in-
tuition here is that 〈v, w〉 is an instance of R to
degree equal or greater than of the evaluation of
l).

The forest has associated a set CF of constraints
of the form c 6 c′, c = c′, xi ∈ [0, 1], yi ∈ {0, 1},
on the variables occurring the node labels and
edge labels. c, c′ are linear expressions. If nodes v
and w are connected by an edge 〈v, w〉with 〈R, l〉
occurring in L(〈v, w〉), then w is called an Rl-
successor of v and w is called an Rl-predecessor
of w. A node v is an R-successor (resp. R-
predecessor) of w if it is an Rl-successor (resp.
Rl-predecessor) of w for some role R. As usual,
ancestor is the transitive closure of predecessor.

We say that two non-root nodes v and w
are equivalent, denoted L(v) ≈ L(w), if

L(v) = [〈C1, l1〉, . . . , 〈Cn, lk〉], L(w) =
[〈C1, l

′
1〉, . . . , 〈Cn, l′k〉], and for all 1 6 i 6 k,

either both li and l′i are variables, or both li and l′i
are negated variables or both li and l′i are the same
rational in [0, 1] (the intuition here is that v and w
share the same properties).

A node v is directly blocked if and only if none of
its ancestors are blocked, it is not a root node, and
it has an ancestor w such that L(v) ≈ L(w). In
this case, w directly blocks v. A node v is blocked
if and only if it is directly blocked, or if one of its
predecessors is blocked (the intuition here is that
we need not further to apply rules to node v, as an
equivalent predecessor node w of v exists), or v is
a successor of a node w and L(〈w, v〉) = ∅.

The algorithm initializes a forestF to contain (i) a
root node vi

0, for each individual ai occurring in
A, labelled with L(vi

0) such that L(vi
0) contains

〈Ci, n〉 for each fuzzy assertion 〈ai :Ci, n〉 ∈ A,
(ii) an edge 〈vi

0, v
j
0〉, for each fuzzy assertion

〈(ai, aj) :Ri, n〉 ∈ A, labelled with L(〈vi
0, v

j
0〉)

such that L(〈vi
0, v

j
0〉) contains 〈Ri, n〉 (iii) a 6= b

for every pair of root nodes a, b. F is then ex-
panded by repeatedly applying the completion
rules described below. The completion-forest is
complete when none of the completion rules are
applicable. Then, the bMILP problem on the set
of constraints CF is solved.

We assume a procedure Merge(v, w1, w2) com-
posed by the following steps, where ∪ is inter-
preted as “append to the end the list”:

1. L(w1) = L(w1) ∪ L(w2),

2. L(〈v, w1〉) = L(〈v, w1〉) ∪ L(〈v, w2〉),
3. L(〈v, w2〉) = ∅,

4. set u 6= w1 for all u with u 6= w2.

We also assume a fixed rule application strategy
as e.g. the order of rules below, such that the node
generating rules (>), (∃) are applied as last. Also,
all expressions in node labels are processed ac-
cording to the order they are introduced into F .

With xτ we denote the variable associated to the
atomic assertion τ of the form a :A or (a, b) :R.
xτ will take the truth value associated to τ , while
with xc we denote the variable associated to the
concrete individual c. The rules are the following:
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(A). If 〈A, l〉 ∈ L(v) then CF = CF ∪ {xv :A >
l} ∪ {xv :A ∈ [0, 1]}.

(Ā). If 〈¬A, l〉 ∈ L(v) then CF = CF ∪ {xv :A 6
1− l} ∪ {xv :A ∈ [0, 1]}.

(R). If 〈R, l〉 ∈ L(〈v, w〉) then CF = CF ∪
{x(v, w) :R > l} ∪ {x(v, w) :R ∈ [0, 1]}.

(⊥). If 〈⊥, l〉 ∈ L(v) then CF = CF ∪ {l = 0}.

(u). If 〈C u D, l〉 ∈ L(v) then append 〈C, x1〉 and
〈D,x2〉 toL(v), and CF = CF∪{y 6 1−l, xi 6
1−y, x1+x2 = l+1−y, xi ∈ [0, 1], y ∈ {0, 1}},
where xi, y are new variables.

(t). If 〈C t D, l〉 ∈ L(v) then append 〈C, x1〉 and
〈D,x2〉 to L(v), and CF = CF ∪ {x1 + x2 =
l, xi ∈ [0, 1]}, where xi are new variables.

(∀). If 〈∀R.C, l1〉 ∈ L(v), 〈R, l2〉 ∈ L(〈v, w〉) and
the rule has not been already applied to this pair
then append 〈C, x〉 toL(w) and CF = CF∪{x >
l1+l2−1, x 6 y, l1+l2−1 6 y, l1+l2 > y, x ∈
[0, 1], y ∈ {0, 1}}, where x, y are new variables.

(v). If 〈C v D,α〉 ∈ T and v is a node to which
this rule has not yet been applied then append
〈nnf(¬C), 1 − x1〉 and 〈D,x2〉 to L(v), and
CF = CF ∪ {x1 6 x2 + 1 − α, xi ∈ [0, 1]},
where xi are new variables.

(ch). If 〈./ n R.C, l〉 ∈ L(v), ./ ∈ {6,>} and
there is an R-successor w of v such that the rule
has not yet been applied to v and w, then ap-
pend L(w) = L(w)∪ {〈C, x〉, 〈¬C, 1− x〉} and
CF = CF ∪ {x ∈ [0, 1]}, where x is a new vari-
able.

(6). If 〈6 n R.C, l〉 ∈ L(v) and there are
n + 1 R-successors w1, . . . , wn+1 of v with
〈C, li〉 ∈ L(wi), 〈R, ri〉 ∈ L(〈v, wi〉), then non-
deterministically apply one of the following sub-
rules:

1. CF = CF ∪ {l = 0}.
2. Append 〈¬Ci, 1 − xi〉 to L(wi) and CF =
CF ∪ {x(v, wi) :R + xi + yi 6 2− l, y1 +
· · · + yn+1 = n, xi ∈ [0, 1], yi ∈ {0, 1}},
where xi, yi are new variables.

3. For every pair of individuals wi and wj ,
1 6 i < j 6 n, such that wj is not an
ancestor of wi and not wi 6= wj , apply
Merge(v, wi, wj).

4. If for all pairs wi, wj , 1 6 i < j 6 n, wi 6=
wj , then there is an inconsistency, so add
CF = CF ∪ {0 = 1}.

(>). If 〈> nR.C, l〉 ∈ L(v), v is not blocked, the
rule has not yet been applied to v, then: create n
new nodes w1 . . . wn with 〈R, ri〉 to L(〈v, wi〉),

〈C, ci〉 to L(wi), wi 6= wj and CF = CF ∪{yi 6
1− l, ri 6 1− yi, ci 6 1− yi, ri + ci = l + 1−
yi, ci ∈ [0, 1], ri ∈ [0, 1], yi ∈ {0, 1}}, where
ci, ri, yi are new variables.

(∃). If 〈∃R.C, l〉 ∈ L(v), v is not blocked then create
a new node w and append 〈R, x1〉 to L(〈v, w〉)
and 〈C, x2〉 to L(w), and CF = CF ∪ {y 6 1 −
l, xi 6 1−y, x1+x2 = l+1−y, xi ∈ [0, 1], y ∈
{0, 1}}, where xi, y are new variables.

Let us explain the intuition behind the new rules.
(>) creates new n R-successors in case they do
not exist, in such a case that the semantics of
the concept constructor is satisfied (RI(v, wi) ⊗
CI(wi) > l). (ch) states that w belongs to
C and ¬C to some degree, and we know that
CI(x) + (¬C)I(x) = CI(x) + 1− CI(x) = 1.
Note that, as opposed to the crisp case, the rule is
deterministic. (6) is more tricky. It guarantees
that there do not exist n + 1 R-successors, which
leads to several cases:

• The first one is quite simple, if l = 0 then we
have 〈6 nR.C, 0〉, which is a tautology.

• The second possibility guarantees that the
minimum over all RI(v, wi)⊗CI(wi) > l is
less or equal than 1−l. That is, there is an R-
successor wi satisfying this. The constraints
on the control variables yi require that ex-
actly one of them takes the value 0. If a con-
trol variable takes the value 1, it does not im-
pose any restriction. Otherwise, if yi = 0
then x(v, wi) :R ⊗ xi 6 1 − l and, together
with the assertion 〈¬Ci, 1−xi〉 to L(v), this
guarantees that RI(v, wi)⊗CI(wi) 6 1− l.

• The third case covers the case where two
successors may be interpreted as the same
individual, so we merge them into one equiv-
alent individual.

• The latter case simulates the case where no
individual can be merged (for all possible
pairs of individuals, they are required to be
different) but l 6= 0, so consequently the KB
is inconsistent.

An important aspect is that without the 6 n R.C
construct, the generated tableaux is determinis-
tic and, thus, just one bMILP problem has to be
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solved [17]. This is no longer true once we intro-
duce cardinality restrictions: due to the (6) rule,
several bMILP problems may need to be solved
in order to determine whether the KB is satisfi-
able or not. Furthermore, in order to find the min-
imum solution, in fact, it is necessary to solve all
of them.

Example 3.1 Let us show that K = 〈A, ∅〉, with
A = {〈a : > 3 R.A, 1〉, 〈a : 6 1 R.B, 1〉,
〈a : 6 1 R.¬B, 1〉} is unsatisfiable (adapted from
an example proposed in [19]).

To start with, we construct a forest F with a
root node a with L(a) = [〈> 3 R.A, 1〉, 〈6
1 R.B, 1〉, 〈6 1 R.¬B, 1〉].
Now we apply (>) rule and create 3 new R-
successors b1, b2, b3 such that L(bi) = [〈A, ci〉],
L(〈a, bi〉) = 〈R, ri〉 for 1 6 i 6 3. We also
add {b1 6= b2, b1 6= b3, b2 6= b3} to CF , and also
some constraints ensuring that ci ⊗ ri = 1, that
is, ci = ri = 1.

Next, we apply (ch) rule to b1, b2, b3, so we add
{〈B, xi〉, 〈¬B, 1−xi〉} toL(bi) and {xi ∈ [0, 1]}
to CF , for i = {1, 2, 3}.

Now we apply (6) rule to some pair of R-
successors of a. Without loss of generality, we
consider the assertion 〈6 1 R.C, 1〉, individuals
bi and bj ,C ∈ {B,¬B}, i, j ∈ {1, 2, 3}, i 6= j.

Clearly, the first possibility of the rule generates
an inconsistency (1 6= 0), and also the fourth by
definition. The third possibility is not applicable
since CF contains bi 6= bj due to the application
of (>) rule. Thus, it only remains to check the
second possibility. We append 〈¬C, 1 − xi〉 to
L(bi), 〈¬C, 1 − xj〉 to L(bj) and {x(a, bi) :R +
xi + yi 6 1, x(a, bj) :R + xj + yj 6 1, yi +

yj = 1, xi ∈ [0, 1], xj ∈ [0, 1], yi ∈ {0, 1}, yj ∈
{0, 1}} to CF . Hence, one of the control variables
should be equal to 0, and the other equal to 1.

Without loss of generality, assume that yj = 0.
We also have that L(〈a, bj〉) = 〈R, rj〉. Later,
(R) rule will createx(a, bj) :R > rj . But we have
seen that rj should be equal to 1 (the constraints
in the application of (>) rule force that cj ⊗ rj =
1). So, in order to satisfy x(a, bj) :R + xj 6 1
without contradictions, xj = 0. Since we have
〈¬C, 1 − xj〉 in L(bj), the conclusion is that (in-

formally) 〈¬C, 1〉 belongs to L(bj).

Then, (6) rule is applied to 〈6 1 R.C, 1〉 and
bi, bk, k ∈ {1, 2, 3} \ {j}. Using the same rea-
soning as before, 〈¬C, 1〉 belongs to L(bp) for
some p ∈ {i, k}. Next, we apply (6) rule to
〈6 1 R.¬C, 1〉 and some pair of R-successors
of a. Using the same reasoning as before, it
will append 〈C, 1〉 to the set L of two of the R-
successors.

Summing up, the algorithm appends 〈¬C, 1〉 to
the set L of two successors and 〈C, 1〉 to the set
L of two successors, so, since there are 3 succes-
sors, there will be at least one successor b such
that both 〈¬C, 1〉 and 〈C, 1〉 belong to its set L.
But the application of the (A), (Ā) rules generate
xb :C 6 0 and xb :C > 1 respectively, which is a
contradiction. Hence, K is unsatisfiable.

Proposition 3.2 (Termination) For each KB K,
the tableau algorithm terminates.

Proposition 3.3 (Soundness) If the expansion
rules can be applied to a KB K such that they
yield a complete completion-forest F where CF
has a solution, then K has a fuzzy tableau for K.

Proposition 3.4 (Completeness) Consider a KB
K. If K has a fuzzy tableau, then the expan-
sion rules can be applied in such a way that the
tableaux algorithm yields a complete completion-
forest for K such that CF has a solution.

In order to proof the completeness, we rely on the
existence of witnessed models, which has been
proved to hold for Łukasiewicz logic [6].

Finally, we note that the algorithm could easily be
adapted to work with the semantics of cardinality
restrictions proposed in Table 1, by modifying (>
) and (6) rules so they consider Łukasiewicz t-
norm instead of a minimum.

4 Conclusions

In this paper we have presented a reasoning algo-
rithm for fuzzy DLs under Łukasiewicz semantics
with a novel semantics for qualified cardinality re-
strictions. We have shown that adding cardinal-
ity restrictions makes the reasoning more difficult
because the algorithm needs to solve several opti-
mization problems.
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Clearly, our approach can easily be extended
to work with concept modifiers and fuzzy con-
crete domains as in [15]. The fuzzy operators
of the Zadeh family can be represented using
Łukasiewicz logic, so our use of cardinality re-
strictions is more general than [3, 14]. Finally,
we argue that it could be combined with the algo-
rithm for fuzzy SHIF(D) [17] in order to obtain
the very expressive DL SHIQ(D).
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