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Abstract

In this paper we propose an alge-
braic approach to Lebesgue integral
on MV-algebras, and we show that,
whenever we take an internal state σ
on a divisible MV∆-algebra A, then
σ can be represented by means of
this more general notion of integral.
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1 Introduction

States on MV-algebras (cf [12]) represent
a generalization of probability measures on
boolean algebras, and in the last years many
authors studied the relation among states and
integrals. Here we want just to quote those
ones we retain more significant for the present
paper: in [9] Kroupa proves that for every
state s on a semisimple MV-algebra A, there
exists a unique Borel probability measure µ
on the class of A-maximal ideals M(A), such
that s(a) =

∫
M(A) adµ. In [10] Marra and

Mundici characterize the Lebesgue state (that
is that state defined by means of Lebesgue in-
tegral) on the n-free unital `-group Gn.

As they are, states are not internal opera-
tions on MV-algebras, because they map MV-
algebras into the real unit interval [0, 1]. In [6]
we introduce the variety SMV of MV-algebras
with an internal state σ (SMV-algebras for
short) and we present a method for obtain-
ing an SMV-algebra starting from a state on

an MV-algebra, and vice-versa. Clearly this
shows that SMV-algebras allow a treatment
of states in the context of universal algebra.

In this paper we introduce an algebraic ap-
proach to the Lebesgue integral. This gener-
alization is obtained by considering functions
and measures taking values in an abelian `-
group instead of the real field

Once this generalization is introduced in Sec-
tion 4, the main result of this paper says us
that any internal state of an MV-algebra A
can be represented by means of this more gen-
eral notion of integral.

2 Preliminaries

An MV-algebra is a system (A,⊕,∗ , 0), where
(A,⊕, 0) is a commutative monoid with neu-
tral element 0, and for each x, y ∈ A the
following equations hold: (i) (x∗)∗ = x, (ii)
x ⊕ 1 = 1, where 1 = 0∗, and (iii) x ⊕ (x ⊕
y∗)∗ = y⊕(y⊕x∗)∗. The class of MV-algebras
forms a variety which henceforth will be de-
noted by MV.

In any MV-algebra one can define further
operations as follows: x → y = (x∗ ⊕ y),
x	y = (x→ y)∗, x�y = (x∗⊕y∗)∗, x↔ y =
(x→ y)� (y → x), x∨ y = (x→ y)→ y, and
x∧y = (x∗∨y∗)∗. Henceforth we shall use the
following notation: for every x ∈ A and every
n ∈ N, nx = x⊕ n. . . ⊕x, and xn = x� n. . . �x.

Any MV-algebra A can be equipped with an
order relation. As a matter of fact defining,
for all x, y ∈ A, x ≤ y iff x→ y = 1. An MV-
algebra is said linearly ordered (or an MV-
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chain) if the order ≤ is linear.

In [3] Chang showed that the variety MV of
MV-algebras is generated by the so called
standard chain, that is the MV-algebra
[0, 1]MV = ([0, 1],⊕,∗ , 0), based on the real
unit interval [0, 1], with operations: for all
x, y ∈ [0, 1], x ⊕ y = min{1, x + y} and
x∗ = 1− x.

A divisible MV-algebra (DMV-algebra for
short) is a system (A, {δn}n∈N) where A is
an MV-algebra and for each n ∈ N and
each x ∈ A, x 	 δn(x) = (n − 1)δn(x)
holds. As shown in [7] the variety DMV of
DMV-algebras is generated by the algebra
[0, 1]DMV = ([0, 1],⊕,∗ , {δn}n∈N, 0), where
([0, 1],⊕,∗ , 0) is the standard MV-algebra,
and for each x ∈ [0, 1], δn(x) = x

n . In any
DMV-algebra we can multiply elements by ra-
tionals in [0, 1]: 0x = 0, and if 0 < m ≤ n,
then m

n x = mδn(x).

In [11] Mundici proved a categorical equiva-
lence Γ between the category of MV-algebras
and that of `-groups with strong unit. Re-
call that a lattice-ordered abelian group (`-
group for short) G = (G,∧,∨,+,−, 0) is an
abelian group (G,+,−, 0) equipped with a
lattice structure (G,∧,∨) and further satis-
fying: x + (y ∧ z) = (x + y) ∧ (x + z) for all
x, y, z ∈ G. An element u ∈ G is a strong
unit for G if for all x ∈ G, there is an n ∈ N
such that nu ≥ x. An `-group G is said divis-
ible if for every x ∈ G and for every n ∈ N,
there is an y ∈ G (usually denoted by x

n) such
that ny = x (where ny stands for y+. . .+y n-
times). Given now an `-group G with a strong
unit u, the MV-algebra Γ(G, u) has universe
{x ∈ G | 0 ≤ x ≤ u}, and operations so de-
fined: x⊕ y = u∧ (x+ y), and x∗ = u− x. In
[7] Gerla showed that Mundici’s functor Γ can
be extended to prove a categorical equivalence
between DMV-algebras and divisible `-groups
with strong unit.

MV-algebras can be naturally represented as
algebras of functions, as the following theorem
shows.

Theorem 2.1 (Di Nola, [5]) Up to iso-
morphism, every MV-algebra A is an algebra
of [0, 1]?-valued functions over Spec(A),

where [0, 1]? is an ultrapower of the real
unit interval [0, 1], only depending on the
cardinality of A.

A state s on MV-algebra A (cf [12]) is a map
s : A → [0, 1] such that s(1) = 1 and s(x ⊕
y) = s(x) + s(y), whenever x� y = 0.

By a state on an `-group G with a strong
unit u we mean a normalized positive ho-
momorphism h : G → R. Precisely a state
h on G has to satisfy: for each x, y ∈ G,
h(x + y) = h(x) + h(y), h(x) ≥ 0 whenever
x ≥ 0, and h(u) = 1.

3 SMV-algebras

An MV-algebra with an internal state (SMV-
algebra for short) is a pair (A, σ) where A is
an MV-algebra and σ : A → A satisfies the
following properties for each x, y ∈ A:

(σ1) σ(0) = 0,

(σ2) σ(x∗) = (σ(x))∗,

(σ3) σ(x⊕ y) = σ(x)⊕ σ(y 	 (x� y)),

(σ4) σ(σ(x)⊕ σ(y)) = σ(x)⊕ σ(y).

An SMV-algebra (A, σ) is said faithful if it
satisfies the quasi-equation: σ(x) = 0 implies
x = 0. Clearly the class of SMV-algebra con-
stitutes a variety which will be henceforth de-
noted by SMV.

Lemma 3.1 ([6]) In any SMV-algebra
(A, σ) the following conditions hold:

(a) σ(1) = 1.

(b) If x ≤ y, then σ(x) ≤ σ(y).

(c) σ(x⊕ y) ≤ σ(x)⊕σ(y), and if x� y = 0,
then σ(x⊕ y) = σ(x)⊕ σ(y).

(d) σ(x	y) ≥ σ(x)	σ(y) and if y ≤ x, then
σ(x	 y) = σ(x)	 σ(y).

(e) Letting d(x, y) = (x 	 y) ⊕ (y 	 x), we
have that d(σ(x), σ(y)) ≤ σ(d(x, y)).

(f) σ(x)�σ(y) ≤ σ(x�y). Thus if x�y = 0,
then σ(x)� σ(y) = 0.
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(g) σ(σ(x)) = σ(x).

(h) The image σ(A) of A under σ is the do-
main of a MV-subalgebra of A.

4 Lebesgue integral on
MV-algebras

In this section we propose an algebraic ap-
proach to the Lebesgue integral. This ap-
proach is obtained by relaxing some condi-
tions. More precisely:

(a) Instead of the real field, we consider a
divisible and totally ordered `-group G =
(G,∧,∨,+,−, 0) with a strong unit u. There-
fore the structure we are cosidering needs not
have a multiplication, and needs not be com-
plete with respect to the order. Anyway, if
we interpret u as 1, then we have a copy of
rational numbers in G: the rational ± n

m is
identified by ±(n u

m). Moreover in G we can
define the multiplication by a rational num-
ber: for each x ∈ G, and for each n

m ∈ Q,
±( nmx) can be identified by ±(n x

m). Hence
we may assume without loss of generality that
the ordered group (Q,≤,+,−, 0) is an ordered
subgroup of G. In particular, the strong unit
u will be henceforth denoted by 1. Moreover
G can be regarded as a vector space over the
rational field (Q,+,−, ·,−1 , 0, 1).

(b) Instead of the usual measure on the reals,
we have a G ∩ [0, 1]-valued measure µ from a
boolean algebra B into G∩[0, 1], that is a map
µ : B → G ∩ [0, 1] such that µ(1) = 1, and, if
a∧ b = 0, then µ(a∨ b) = µ(a) +µ(b). Notice
that, by the Stone representation theorem B
may be regarded as a family of subsets of a set
U (in our picture the elements of B represent
µ-measurable subsets of U). Moreover we do
not require µ to be σ-additive.

(c) Finally the functions taken into consider-
ation are not functions from R into R, but
functions from U into G.

An element x ∈ G is said bounded if there is
a rational q > 0 such that |x| ≤ q (where,
for each x ∈ G, |x| stands for x ∨ −x). Ev-
ery bounded element x ∈ G has a standard

part st(x) defined by st(x) = sup{q ∈ Q |
q ≤ x} = inf{q ∈ Q | x ≤ q}, where infima
and suprema refer to real numbers, and not
to G. Thus st(a) is a real number, but not
necessarily an element of G.

To each G ∩ [0, 1]-valued measure on B we
can associate a [0, 1] ∩ R -valued measure µst
letting µst(b) = st(µ(b)). We recall that by
Stone’s theorem B can be regarded as the
set of clopen element of a compact Hausdorff
space over the setM(B) of ultrafilters of B.

We want now to define the concept of
Lebesgue integral of functions from U into G.
For simplicity, we restrict our attention to the
set of functions f which are bounded, that is,
there is q ∈ Q, q > 0, such that for all x ∈ U ,
|f(x)| ≤ q.
Definition 4.1 A basic function is a func-
tion h for which there are a partition
X1, . . . , Xn of B and mutually distinct ratio-
nals q1, . . . , qn, such that for i ∈ {1, . . . , n}
and for x ∈ Xi, one has h(x) = qi. The in-
tegral of the above defined basic function h is
defined to be

I(h) = st

(
n∑
i=1

µ(Xi)qi

)
=

n∑
i=1

µst(Xi)qi.

Note that I(h) is a real number.

Now let f be a bounded function and let F−

(F+ respectively) denote the set of all ba-
sic functions h such that h(x) ≤ f(x) for all
x ∈ U (h(x) ≥ f(x) for all x ∈ U respec-
tively), and let I−(f) = sup {I(h) | h ∈ F−}
and I+(f) = inf {I(h) | h ∈ F+}.
Definition 4.2 We say that f is Lebesgue-
integrable iff I−(f) = I+(f). In this case we
define the integral ∫

fdµ

of f to be the common value I−(f) = I+(f).

Remark 4.3 If f is Lebesgue integrable, then∫
fdµ is a real number, but possibly not an

element of G. Note also that the Lebesgue in-
tegral is a linear and weakly monotonic func-
tional, in the sense that for every q, r ∈ Q
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and for every pair f, g of integrable functions,
we have that qf + rg is integrable and

∫
(qf +

rg)dµ = q
∫
fdµ+r

∫
gdµ, and if f(u) ≤ g(u)

for all u ∈ U , then
∫
fdµ ≤ ∫ gdµ.

A function f is said to be measurable if
it is bounded and for every q ∈ Q, the
sets Uf<q = {x ∈ U | f(x) < q} and Uf=q =
{x ∈ U | f(x) = q} are measurable (that is
they are elements of the boolean algebra B).
Since measurable sets are closed under the
boolean operations, it follows that if f is mea-
surable, then for all r, q ∈ Q with r < q, also
the set Uf∈[q,r) = {x ∈ U | q ≤ f(x) < r} is
measurable.

Lemma 4.4 Every measurable function is
Lebesgue integrable.

Proof. Clearly it suffices to show that for
every positive rational ε there are h ∈ F−

and k ∈ F+ such that I(k) − I(h) < ε. Let
q ∈ Q be such that for all x ∈ U we have
−q < f(x) < q. Let n be a natural number
such that 2q

n < ε and let for i = 0, . . . , n,
ai = −q+ 2iq

n . Define h(x) and k(x) as follows:
let x ∈ U be given and let i(x) be the unique
integer i with 0 ≤ i < n such that ai ≤ f(x) <
ai+1. Then define h(x) = ai and k(x) = ai+1.
Then clearly h(x) ≤ f(x) ≤ k(x). Moreover
for every x ∈ U , we have k(x) − h(x) = 2q

n .
Thus

I(k)−I(h) =
2q
n

n−1∑
i=0

µ
(
Uf∈[ai,ai+1)

)
=

2q
n
< ε.

This ends the proof.

We want to introduce a completely algebraic
treatment of Lebesgue integration of bounded
functions. Thus we try to reduce all the struc-
tures we need to a unique general algebraic
structure. We adopt the following conven-
tions: first of all we restrict our attention to
functions from U into G ∩ [0, 1]. This is not
a heavy restriction: modulo a linear transfor-
mation, every bounded function can be trans-
formed into a function with values on [0, 1].
We stress that every object of our universe
will be a function from U into G ∩ [0, 1]. For
instance the elements of G∩ [0, 1] can be rep-

resented by the constant functions and the el-
ements of B are represented by their charater-
istic functions, i.e., by functions from U into
{0, 1}. Our language will have symbols to rep-
resent rationals in [0, 1] and multiplication of
a function by a rational in [0, 1]. When trying
to internalize the definition of Lebesgue inte-
gral, we meet a difficulty: the integral

∫
fdµ

of a function f of our universe is not a function
from U into G ∩ [0, 1], but a real number. we
shall overcome this difficulty by representing
the integral of a function f by a function on
U whose standard part is constantly equal to∫
fdµ (such a function will be called a non-

standard approximation of
∫
fdµ) Of course

the measure of a set X ∈ B will be the inte-
gral (represented as shown above) of its char-
acteristic function. The next section is de-
voted to the representation of this machinery
in the context of a variety of universal alge-
bras. In other words, we shall axiomatize all
the properties we need in terms of identities
between terms of a suitable language.

5 Integral representation for
divisible SMV∆-algebras

As we recalled in Section 3, MV-algebras can
be naturally represented as algebras of func-
tions (cf Theorem 2.1). Thus in these alge-
bras we can represent the functions on which
we want to define the Lebesgue integral.

Now we come to the second ingredient,
namely the boolean algebra of measurable
sets. Any MV-algebra has a largest subal-
gebra which is a boolean algebra, namely the
subalgebra consiting of those elements x such
that x ⊕ x = x. In Di Nola’s representation
(see Theorem 2.1), this subalgebra consists of
those functions which are {0, 1}-valued. How-
ever we do not have a term ranging over the
set of boolean elements. Moreover in impor-
tant MV-algebras, e.g. in free MV-algebras,
the only boolean elements are 0 and 1. For
this reason we shall use the operator ∆ (cf
[1, 8]), whose interpretation in Di Nola’s rep-
resentation is: (∆f)(x) = 1 if f(x) = 1, and
(∆f)(x) = 0 otherwise.

Definition 5.1 An MV∆-algebra is an alge-
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bra (A,⊕,∗ ,∆, 0, 1) such that its ∆-free reduct
is an MV-algebra, and ∆ is a unary operator
on A satisfying the following identities:

(∆1) ∆(1) = 1,

(∆2) ∆(x) ≤ x,

(∆3) ∆(∆(x)) = ∆(x),

(∆4) ∆(x→ y) ≤ ∆(x)→ ∆(y),

(∆5) ∆(x) ∨ (∆(x))∗ = 1,

(∆6) ∆(x ∨ y) = ∆(x) ∨∆(y).

Any MV∆-algebra can be regarded as an al-
gebra of functions from a compact Hausdorff
space into the unit interval [0, 1]? of a hyper-
real field. The representation is as follows:
The algebra ∆(A) is a boolean algebra. Now
take its dual space (U, T ) (which is a compact
Hausdorff space) where U is the set of ultrafil-
ters of ∆(A) and T is the topology generated
by all sets of the form Ca = {u ∈ U : a ∈ u}
for a ∈ ∆(A). For every u ∈ U there is a
unique ultrafilter u′ of A which extends u,
namely u′ = {x ∈ A | ∆(x) ∈ u}. Then
consider the quotient A/u′ of A modulo u′.
We can construct an extension [0, 1]? of the
standard MV-algebra [0, 1]MV such that for
every ultrafilter u′ of A, A/u′ embeds into
[0, 1]? (one may prove this using the fact that
the class of MV-chains has the amalgamation
property and is closed under union of chains).
Now we can associate to each a ∈ A the func-
tion fa on U defined for u ∈ U by fa(u) = a/u′

(the equivalence class of a modulo the congru-
ence determined by the unique ultrafilter u′

of A extending u). Operations on these func-
tions are defined componentwise. Once again
the elements of B = ∆(A) correspond to the
{0, 1}-valued functions.

With respect to Di Nola’s representation, we
have the following advantages: (1) the ele-
ments of B are precisely those of the form
∆(x), therefore we have a very simple way
to express them; (2) in the case of MV∆-
algebras, the topological space (U, T ) is com-
pact and totally disconnected.

In any MV-algebra we can somehow simulate
sum, because ⊕ is a truncated sum, but we

cannot simulate rationals and multiplication
by a rational. This requirement will be sat-
isfied taking DMV-algebras. Recall in fact
in any DMV-algebra A one can multiply el-
ements by rationals in [0, 1].

Clearly, measures and integrals will be ex-
pressed by means of states. A state on a
DMV-algebra A is a state on the MV-reduct
of A. It is easy to show that in any divisible
SMV-algebra, σ(δn(x)) = σ(x)

n .

As noted in the introduction, states on
semisimple MV-algebras can be regarded as
integrals (recall Kroupa’s theorem, [9]). In
the sequel we shall present a treatment of in-
tegral inside universal algebra, using the no-
tion of DMV∆-algebra which we are going to
define in the next lines.

Definition 5.2 A DMV∆-algebra with an
internal state (SDMV∆-algebra for short) is
an algebra (A,⊕,∗ , 0,∆, (δn : n ∈ ω, n >
1), σ) such that:

(1) (A,⊕,∗ , 0,∆) is an MV∆-algebra.

(2) (A,⊕,∗ , 0, {δn : n ∈ N}) is a DMV-
algebra.

(3) (A,⊕,∗ , σ, 0) is an SMV-algebra further
satisfying the following equation:

(σ5) σ(∆(σ(x))) = ∆(σ(x)).

Lemma 5.3 Let A be an SDMV∆-algebra.
Then:

(a) If q is a rational in [0, 1] and f ∈ A, then
σ(qf) = qσ(f),

(b) The set σ(A) = {σ(x) : x ∈ A} is (the
domain of) a divisible MV∆-subalgebra of
A which is closed under σ.

Proof. (a) If q = 0 or q = 1, the claim
is obvious (note that σ(0) = 0 follows from
(σ1) and (σ2)). Now suppose q = m

n with
0 < m < n. Then using (2) and the fact that
for i+ j ≤ n we have (i)δn(x)� (j)δn(x) = 0,
we get that σ(x)	σ(δn(x)) = σ(x	 δn(x)) =
σ((n − 1)δn(x)) = (n − 1)σ(δn(x)). Thus
σ(δn(x)) = δn(σ(x)), therefore σ((m)δn(x)) =
(m)δn(σ(x)), as desired.
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(b) We already know that σ(A) is closed un-
der ⊕, ∗ and σ (recall Lemma 3.1). Moreover
we have just proved that σ(δn(x)) = δn(σ(x)),
therefore σ(A) is closed under δn. It remains
to prove that σ(A) is closed under ∆. Now
axiom (σ5) tells us that if a ∈ σ(A), say
a = σ(x) for some x, then ∆(a) = σ(∆(a)),
therefore ∆(a) ∈ σ(A). This ends the proof.

In our representation of MV∆-algebras as al-
gebras of functions, an element f of ∆(A) rep-
resents the characteristic function of the set
Zf of all u ∈ U such that f(u) = 1. Our idea
is that if f ∈ ∆(A), then σ(f) should repre-
sent the measure µ(Zf ) of Zf and if f is an
arbitrary element of A, then σ(f) should rep-
resent

∫
fdµ. When trying to formalize this

idea, we meet a problem: in general, σ(A) is
not totally ordered, whereas the set of inte-
grals, being a set of reals, is totally ordered.
Worse than this, in Di Nola’s representation
of A, the elements of σ(A) need not be con-
stant (whereas an integral, being a number, is
constant). we shall show that these problems
do not occur if A is subdirectly irreducible.

We start from the following:

Definition 5.4 A {σ,∆}-filter of an
SDMV∆-algebra is a filter of its MV-reduct
which is closed under σ and ∆

Let (A, σ) be an SDMV∆-algebra. Then:

Lemma 5.5 (1) The maps θ 7→ Fθ associat-
ing to each congruence θ the set Fθ = {x ∈
A | (x, 1) ∈ θ} and F 7→ θF mapping each
{σ,∆}-filter F into θF = {(x, y) ∈ A × A |
x → y ∈ F, y → x ∈ F} are mutually inverse
homomorphisms between the congruence lat-
tice and the {σ,∆}-filter lattice of (A, σ).
(2) The {σ,∆}-filter generated by an element
σ(a) ∈ σ(A) is the set {x : ∆(σ(a)) ≤ x}.

Proof. (1) In [6] (Theorem 4.1) it is
shown that the lattice of σ-filters (that is an
MV-filter closed under σ) of an SMV-algebra
(A, σ) is isomorphic to the congruences lat-
tice of (A, σ). Hence it suffices to show that
an F is a {σ,∆}-filter iff θF is a congruence
of (A, σ).

(⇒): Suppose that F is a {σ,∆}-filter. If
(x, y) ∈ θF , then for every n ∈ N, δn(x) ↔
δn(y) ≥ x ↔ y ∈ F . Thus θF is compatible
with δn for each n ∈ N. Moreover, if (x, y) ∈
θF , then ∆(x↔ y) ∈ F , as F is closed under
∆. Since ∆x ↔ ∆y ≤ ∆(x ↔ y), ∆x ↔
y ∈ F , and (∆x,∆y) ∈ θF . Thus θF is also
compatible with ∆ and it is a congruence of
(A, σ).

(⇐): Suppose that θF is a congruence of
(A, σ). Then θF is a congruence of the SMV-
reduct of (A, σ), therefore F is a filter closed
under σ. Finally, if x ∈ F , then (x, 1) ∈ θF
and (∆x, 1) ∈ θF as θF is compatible with ∆.
Thus ∆x ∈ F and F is closed under ∆. This
ends the proof.

(2) Let S = {x : ∆(σ(a)) ≤ x}. Then the
{σ,∆}-filter generated by σ(a) must contain
∆(σ(a)), therefore it must contain S. For the
opposite direction, it suffices to show that S
is a filter containing σ(a) and closed under ∆
and under σ. That σ(a) ∈ S follows from the
condition ∆(x) ≤ x. That S is upwards closed
is trivial, and that S is closed under � fol-
lows from the fact that ∆(x)�∆(x) = ∆(x).
Closure under ∆ follows from the condition
∆(∆(x)) = ∆(x), and closure under σ follows
from condition (σ5). This ends the proof.

As usual, we shall interpret the elements of A
as functions from the set U of ultrafilters of
∆(A) into some non-standard interval [0, 1]?.
Note that MV-operations, ∆ and the opera-
tions δn are componentwise, whilst σ is not.
This is due to the fact that a congruence of
the underlying MV∆-algebra needs not be a
congruence of A.

Lemma 5.6 Let (A, σ) be a subdirectly irre-
ducible SDMV∆-algebra. Then:

(1) σ(A) is linearly ordered,

(2) Let G be a totally ordered abelian group
with strong unit 1 such that the MV-
reduct of A is isomorphic to Γ(G, 1).
Then the map µ on ∆(A) defined, for
∆(x) ∈ ∆(A), by µ(∆(x)) = σ(∆(x)),
is a measure on ∆(A) taking values in
G ∩ [0, 1],
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(3) For every element f of A (represented as
a function from the set of maximal ∆-
filters of the MV∆ reduct of A), st(σ(f))
is constant,

(4) Every f ∈ A is a measurable function,
therefore it is Lebesgue integrable (in the
sense of Definition 4.2).

Proof. (1) Let F be the minimum non-
trivial {σ,∆}-filter of (A, σ). Let c ∈ F ,
and c < 1. Suppose by contradiction that
σ(a), σ(b) ∈ σ(A) are incomparable with re-
spect to the order. Then by Lemma 5.5,
the filter generated by σ(a) → σ(b) is F =
{x : ∆(σ(a)→ σ(b)) ≤ x}. Moreover such fil-
ter is non-trivial, therefore c ∈ F , and
∆(σ(a) → σ(b)) ≤ c. Similarly we can
prove that ∆(σ(b) → σ(a)) ≤ c, therefore
1 = ∆(σ(a) → σ(b)) ∨ ∆(σ(a) → σ(b)) ≤ c,
and a contradiction has been reached.

(2) It follows easily from (σ1) and (σ3).

(3) We have σ(1) = 1, σ(0) = 0 and for
0 < m < n, σ((m)δn(x)) = (m)δn(σ(x)).
It follows immediately that for every rational
q ∈ [0, 1], σ(q) = q, therefore q ∈ σ(A). Since
σ(A) is linearly ordered, for every f ∈ A and
for every q ∈ [0, 1] we have that either q ≤
σ(f) or σ(f) ≤ q. Thus if we interpret q as
the constant function q(u) on U which is equal
to q on each u ∈ U , we have that either for all
u ∈ U , q = q(u) ≤ σ(f)(u) or for all u ∈ U ,
σ(f)(u) ≤ q(u) = q. Thus st(σ(f)(u)) is con-
stantly equal to sup {q ∈ [0, 1] : q ≤ σ(f)} =
inf {q ∈ [0, 1] : σ(f) ≤ q}.

(4) Let q ∈ [0, 1]. Then Uf<q = ∆(f →
q) ∧ (∆(q → f))∗, and Uf=q = ∆(f →
q) ∧ ∆(q → f). Since ∆(A) is closed un-
der all MV-operations, we have that Uf<q and
Uf=q belong to ∆(A), the algebra of measur-
able sets.

Theorem 5.7 Under the assumptions of
Lemma 5.6, we have

∫
fdµ = st(σ(f)).

Proof. By Lemma 5.6, (4),
∫
fdµ exists,

therefore we only have to prove that
∫
fdµ =

st(σ(f)). Clearly, it suffices to prove that for
every (arbitrarily small) positive real number

ε, there are h ∈ F− and k ∈ F+ such that
I(h) ≤ σ(f) ≤ I(k) and I(k)−I(h) < ε. Now
let ε > 0 be given, and let n ∈ ω be such that
1
n < ε. Let

h = ∆(f)⊕
{
n−1⊕
i=0

i

n

[
∆
(
i

n
→ f

)
∧

∧
(

∆
(
i+ 1
n
→ f

))∗]}
and

k = ∆(f)⊕
{
n−1⊕
i=0

i+ 1
n

[
∆
(
i

n
→ f

)
∧

∧
(

∆
(
i+ 1
n
→ f

))∗]}
.

Note that:

(1) If f(u) = 1, then h(u) = k(u) = 1.

(2) If i
n ≤ f ≤ i+1

n (i = 0, . . . , n − 1), then
h(u) = i

n and k(u) = i+1
n . Thus h ≤ f ≤ k,

therefore σ(h) ≤ σ(f) ≤ σ(k). Moreover

I(k)−I(h) =
n−1∑
i=0

1
n
µst

(
Uf∈[ i

n
, i+1

n
)

)
=

1
n
< ε.

In order to get the claim, it suffices to prove
that st(σ(h)) = I(h) and st(σ(k)) = I(k).
Now let for i = 0, . . . , n − 1, ti = (∆( in →
f) ∧ (∆( i+1

n → f))∗ and let tn = ∆(f). Then
for i, j = 0, . . . , n, if i 6= j, then ti � tj = 0,
(because if i < n, then ti is the characteristic
function of Uf∈[ i

n
, i+1

n
) and tn is the character-

istic function of Uf=1). Thus by Lemma 3.1,
(b) and (c),

σ(h) =
n−1∑
i=0

i

n
σ(ti) and σ(k) =

n−1∑
i=0

i+ 1
n

σ(ti),

therefore

st(σ(h)) =
n−1∑
i=0

i

n
(st(σ(ti)))

=
n−1∑
i=0

i

n
(µst

(
Uf∈[ i

n
, i+1

n
)

)
= I(h),
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and

st(σ(k)) =
n−1∑
i=0

i+ 1
n

(st(σ(ti)))

=
n−1∑
i=0

i+ 1
n

(µst
(
Uf∈[ i

n
, i+1

n
)

)
= I(k).

This ends the proof.
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