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Abstract

The well-known Gödel translation
embeds intuitionistic propositional
logic into the modal logic S4. In
this note, we use essentially the same
translation to embed Gödel infinite-
valued propositional logic into a
schematic extension of Prior’s bi-
modal tense logic that allows finite
chains only as flows of time. While
our proofs use elementary techniques
in many-valued algebraic logic, our
embedding is strongly related to
well-known results from the theory
of modal companions to superintu-
itionistic logics. For the reader’s
convenience we include a short dis-
cussion of the latter results.

Keywords: Gödel logic, intuitionis-
tic logic, temporal logic, modal com-
panion.

1 Introduction

Throughout, let us fix a countably infinite set
V = {x1, x2, . . . , xn, . . .} of propositional vari-
ables. The set FG of formulas of (proposi-
tional) Gödel logic G [6] is built as usual from
V , the constant ⊥ and the binary connectives
∧ and →.

As a many-valued logic, Gödel logic is the
axiomatic extension of Hájek’s Basic Fuzzy
Logic BL [8] by means of contraction: ϕ →
(ϕ∧ϕ). By [4], BL is the logic of all continu-
ous t-norms ∗ and their residua. Contraction

forces idempotency of ∗, that is, x = x ∗ x
holds for all x ∈ [0, 1], the real unit interval.
Since there is only one continuous and idem-
potent t-norm, namely the minimum x ∧ y =
min(x, y), one proves that Gödel logic is com-
plete with respect to its standard fuzzy seman-
tics that interprets formulas over the struc-
ture 〈[0, 1],∧,→∧, 0〉, where the residuum→∧
is defined by x→∧ y = 1 if and only if x ≤ y,
and x →∧ y = y otherwise. Disjunction is
defined as ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧ ((ψ →
ϕ)→ ϕ).

Gödel logic can also be seen as the axiomatic
extension of intuitionistic propositional logic
by the prelinearity axiom scheme: (ϕ→ ψ) ∨
(ψ → ϕ). Its algebraic semantics is therefore
given by the variety of prelinear Heyting alge-
bras, that is, Gödel algebras. From the point
of view of Kripke semantics, Gödel logic is the
logic of finite linearly ordered frames (see e.g.
[3, Ch. 4 and 5] for background).

To explicitly relate the Kripke and algebraic
(or many-valued) semantics for Gödel logic,
recall that from any intuitionistic Kripke
frame (W,≤) one constructs a Heyting alge-
bra H by taking the family of upward closed
subsets of the set of possible worlds W , en-
dowed with appropriate operations. Then a
formula is valid in the frame (W,≤) if and
only if it is valid in the Heyting algebra H
(see [3, 7.20]). At the first-order level, things
are not as easy — see [2] for an in-depth
investigation of the relationship between the
Kripke and many-valued semantics for first-
order Gödel logics.

The fact that Gödel logic is the logic of lin-
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early ordered Kripke frames, or of prelinear
Heyting algebras, affords a (folklore) tempo-
ral interpretation of its semantics, as follows.
Let ϕ and ψ be formulæ and let µ be a [0, 1]-
assignment. Then µ(ϕ) < µ(ψ) can be read
as “ϕ will become true (strictly) after ψ”.
Propositions that will become true at possi-
bly different times can then be compared and
ranked by means of Gödel implication. In §3,
by way of a preliminary, we formalize this
semantics in elementary terms using bit se-
quences. We consider assignments to Gödel
formulas of sequences of Boolean values in-
dexed by instants of time ranging in the nat-
ural numbers N = {0, 1, . . .}. We associate
with each formula ϕ the instant in time when
ϕ first becomes true. Now Gödel implication
ϕ → ψ is true at some instant t if after t, ϕ
will become true not before ψ. Completeness
is proved in Theorem 3.10.

Given this temporal interpretation, it is natu-
ral to examine the connections between Gödel
logic and the established field of tense logic
in the sense of Prior [9], or, more generally,
(poly)modal logics [3].

It is well known that to each superintuitionis-
tic logic1 one can associate a modal compan-
ion [3, 9.6] by means of the so-called Gödel
translation T [3, 3.3]. The latter is defined by

• T(xi) = �xi.

• T(⊥) = �⊥.

• T(ϕ ∧ ψ) = T(ϕ) ∧ T(ψ).

• T(ϕ ∨ ψ) = T(ϕ) ∨ T(ψ).

• T(ϕ→ ψ) = �(T(ϕ)→ T(ψ)).

Each superintuitionistic logic L has a family
of modal companions, that is, modal logics M
such that

L � ϕ iff M � T(ϕ),

for all formulas ϕ. In fact, L always has a
weakest and a strongest such modal compan-
ion. It is known that the weakest modal com-
panion of G is the logic S4.3, defined by adding

1That is, a schematic extension of intuitionistic
logic.

the axiom scheme

�(�ϕ→ ψ) ∨�(�ψ → ϕ)

to S4, while the strongest modal companion
of G is given by extending S4.3 with the Grze-
gorczyk’s axiom scheme:

�(�(ϕ→ �ϕ)→ ϕ)→ ϕ .

The modality � in S4.3 can be interpreted
temporally as it is true now and it always
will be true (cf. [3, p. 94]) in models where
time is linear (and reflexive), while the Grze-
gorczyk’s axiom fails in every model contain-
ing infinitely ascending chains. However, it
is important to note that the use of the sin-
gle modality � does not exclude non-linear
models. For instance, the frame 〈{a, b, c},≤〉,
where ≤ is the reflexive closure of a < c
and b < c, models S4.3. Analogously, the
frame 〈N,≥〉 contains an infinitely descend-
ing chain and models the Grzegorczyk’s ax-
iom. To overcome such drawbacks we turn to
Prior’s bimodal minimal tense logic Kt [9].

In §4 we consider an appropriate extension of
Kt aimed at capturing precisely finite chains.2

Specifically, we call FL the (finitely axiomati-
zable) extension of Kt that allows finite linear
flows of time only as domains of interpretation
– for details, please see §4. In Theorem 5.7
we construct a faithful embedding of Gödel
logic into FL. Gödel formulas are syntacti-
cally translated into temporal formulas hav-
ing the property that the set of instants in
which they are true is upward closed, in close
analogy with the elementary construction of
§3.

2 Background on Gödel logic

The logic G is axiomatized by extending the
system BL given in [8, 4] with the contraction
axiom scheme: ϕ→ (ϕ ∧ ϕ).

Each (fuzzy) assignment v:V → [0, 1] to the
propositional variables canonically extends to

2Actually, disjoint unions of finite chains since if T1

and T2 are two models of a (poly)modal logic L then
their disjoint union is a model of L, too.
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FG as follows:

v(⊥) = 0 (1)
v(ϕ ∧ ψ) = min(v(ϕ), v(ψ)) (2)

v(ϕ→ ψ) =
{

1 if v(ϕ) ≤ v(ψ)
v(ψ) otherwise.

(3)

A formula ϕ is satisfied by an assignment v
if v(ϕ) = 1. A formula ϕ is a (standard) tau-
tology of G if it is satisfied by all assignments.
We write G � ϕ to denote that ϕ is a (stan-
dard) tautology.

Usual derived connectives are ¬ϕ := ϕ → ⊥,
> := ¬⊥, ϕ ∨ ψ := ((ϕ → ψ) → ψ) ∧ ((ψ →
ϕ)→ ϕ). Their standard interpretations turn
out to be:

v(¬ϕ) =
{

1 if v(ϕ) = 0 ,
0 otherwise ,

v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)) and v(>) = 1.

An easy induction on the structure of formu-
las proves

Lemma 2.1 For any assignment v and any
formula ϕ ∈ FG with variables among
{x1, . . . , xn}, v(ϕ) ∈ {0, v(x1), . . . , v(xn), 1}.

A partition of a set A is a family {Ai}i∈I of
nonempty subsets Ai ⊆ A (called the blocks
of the partition), such that A =

⋃
i∈I Ai and

for each i, j ∈ I, i 6= j implies Ai ∩Aj = ∅.
As a technical tool, we shall use ordered par-
titions (cf. the theory of chain normal forms
in [1, §3.1] and the combinatorial analysis
of coproducts in [5]). An ordered partition
〈{Ai}i∈I ,≤〉 of a set A, is a partition {Ai}i∈I
of A together with a total order relation on
the set of blocks {Ai}i∈I . If the index set I
is finite, say |I| = n, the ordered partition
〈{Ai}i∈I ,≤〉 will be displayed as A1 < A2 <
· · · < An.

By a Gödel ordered partition of {x1, . . . , xn}
we mean an ordered partition of the set
{0, x1, . . . , xn, 1} with the property that 0 be-
longs to the first block of the partition, and
1 belongs to the last one. We write Ordn
for the set of Gödel ordered partitions of
{x1, . . . , xn}.

Example 2.2 The following are some ele-
ments of Ord2.

{0} < {x2} < {x1} < {1},
{0} < {x1, x2} < {1},
{0, x1} < {x2, 1}.
As mentioned in the introduction, a Gödel al-
gebra is a Heyting algebra satisfying the pre-
linearity law (x → y) ∨ (y → x) = 1 (or,
equivalently, a BL-algebra satisfying the law
of idempotency x = x ∗ x). The standard al-
gebra [0, 1] with operations defined as in (1),
(2), (3) is the main example of a Gödel alge-
bra. Let A = 〈A,∧,→, 0〉 be a Gödel alge-
bra. Following standard usage, for any Gödel
formula ϕ with variables among x1, . . . , xn
and for any a1, . . . , an ∈ A, we denote by
ϕA(a1, . . . , an) the element of A obtained by
interpreting each xi by ai, and each connec-
tive by the corresponding operation of A.

The standard completeness theorem for G can
now be stated; for a proof see [8].

Theorem 2.3 For any formula ϕ ∈ FG in
the variables x1, . . . , xn, the following are
equivalent:

(i) ϕ is a theorem of G.

(ii) ϕA(a1, . . . , an) = 1A, for every Gödel al-
gebra A and elements a1, . . . , an ∈ A.

(iii) ϕ is a standard tautology of G.

Given a Gödel algebra A = 〈A,∧,→, 0〉 we
denote by L(A) = 〈A,∧,∨, 0, 1〉 its lattice
reduct. The proof of the following theorem
can be found in [8].

Theorem 2.4 The order completely deter-
mines the structure of a Gödel algebra. That
is:

(i) For every pair of Gödel algebras A and B,
L(A) is isomorphic to L(B) (as bounded
lattices) if and only if A is isomorphic to
B (as Gödel algebras). Each chain is the
lattice reduct of a unique Gödel algebra.

(ii) For all integers n ≥ 1, any two linearly
ordered Gödel algebras with n elements
are isomorphic.
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(iii) Let ϕ be a formula of Gödel logic in the
variables {x1, . . . , xn}. Then G � ϕ if
and only if ϕA(a1, . . . , an) = 1A for all
a1, . . . , an in every linearly ordered Gödel
algebra A with at most n+ 2 elements.

In particular, each Gödel ordered partition of
{x1, . . . , xn} can be equipped uniquely with
the structure of a Gödel chain having as bot-
tom element the block containing 0 and as top
element the block containing 1. Viceversa,
each Gödel chain generated by {x1, . . . , xn} is
isomorphic to a Gödel chain whose universe is
a Gödel ordered partition of {x1, . . . , xn}. For
the rest of this paper, we tacitly endow Gödel
ordered partitions with their unique structure
of Gödel algebra whenever needed.

It is now easy to prove the following.

Theorem 2.5 Let the variables occurring in
ϕ ∈ FG be in {x1, . . . , xn}. Then G � ϕ if and
only if ϕP (P (x1), . . . , P (xn)) = 1P for every
ordered partition P ∈ Ordn, where P (xi) is
the block of P containing xi.

3 The logic of non-decreasing bit
sequences

Consider the set of classical propositional for-
mulas built on the set of variables V , with
connectives ∧, ∨, →, ⊥. Let us denote by ≺
a new binary connective, and let FT be the
set of formulas built from V using only the
connectives ∨,∧,⊥ and ≺.

Definition 3.1 A non-decreasing temporal
assignment (NDT-assignment, for short) is
any function v:V × N → {0, 1} such that
for any x ∈ V the map t 7→ v(x, t) is non-
decreasing, that is, if t1 ≤ t2 then v(x, t1) ≤
v(x, t2).

Each t ∈ N is called an instant.

Definition 3.2 We extend NDT-assign-
ments v : V × N → {0, 1} to functions
v:FT × N → {0, 1}, as follows. For each
instant t ∈ N, let

• v(ϕ ∨ ψ, t) = max(v(ϕ, t), v(ψ, t)).

• v(ϕ ∧ ψ, t) = min(v(ϕ, t), v(ψ, t)).

• v(⊥, t) = 0.

• v(ϕ ≺ ψ, t) = 1 if v(ϕ, s) ≤ v(ψ, s) for all
s ≥ t.

It is easy to check that the following holds.

Lemma 3.3 For any formula ϕ ∈ FT , the
map t 7→ v(ϕ, t) is non-decreasing.

Remark 3.4 Notice that, while the interpre-
tation of connectives ∧ and ∨ is instant-wise
Boolean, the interpretation of ≺ is not.

Fixing an instant t, in order to interpret
the Boolean connective → let us extend the
NDT-assignment v as v(ϕ → ψ, t) = 1 iff
v(ϕ, t) ≤ v(ψ, t). Then, in general, v(ϕ →
ψ, t) 6= v(ϕ ≺ ψ, t). Indeed, let v(x1, t) = 1
iff t > 10 and v(x2, t) = 1 iff t > 5. Then
v(x2 ≺ x1, t) = 1 iff t > 10, while the func-
tion w(t) = v(x2 → x1, t) is not even non-
decreasing, as it evaluates to 1 iff t ≤ 5 or
t > 10.

Let T be the logical system of propositional
formulas in FT specified as follows:

Definition 3.5 A formula ϕ ∈ FT is valid in
T iff v(ϕ, t) = 1 for every NDT-assignment v
and any instant t ∈ N. The formula ϕ becomes
eventually satisfied by v at instant t0 if

v(ϕ, t) = 1 iff t ≥ t0 .
The formula ϕ is always satisfied by v if it
becomes eventually satisfied by v at instant
0 (hence valid formulas are exactly those al-
ways satisfied by every NDT-assignment). We
write T � ϕ to denote that ϕ is valid in T .

Lemma 3.6 The formula ϕ ≺ ψ ∈ FT is
always satisfied by the NDT-assignment v iff
v(ϕ, t) < v(ψ, t) for every t ∈ T . Further, the
formula ϕ ≺ ψ becomes eventually satisfied
by v at the instant t iff ψ becomes eventually
satisfied at the instant t and ϕ becomes even-
tually satisfied at some instant t′ < t.

Proof. The first statement follows from Def-
inition 3.2. Assume ϕ and ψ become eventu-
ally satisfied at times t′ and t, respectively,
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with t′ < t. Defining v(ϕ → ψ, s) as in
Remark 3.4, we have v(ϕ → ψ, s) = 0 for
all s such that t′ ≤ s < t, while v(ϕ →
ψ, s) = 1 for all s ≥ t. Hence, by Defi-
nition 3.2, v(ϕ ≺ ψ, s) = 0 for all s < t
and v(ϕ ≺ ψ, t) = 1, that is, ϕ ≺ ψ be-
comes eventually satisfied at t. On the other
hand, v(ϕ ≺ ψ, r) = 1 iff r ≥ t. Then,
for all s < t there is s ≤ u < t such that
v(ϕ → ψ, u) = 0, that is, v(ϕ, u) = 1 and
v(ψ, u) = 0. Since v(ϕ → ψ, t) = 1, we have
v(ϕ, t) = v(ψ, t) = 1. We conclude that ψ be-
comes eventually satisfied at t and ϕ becomes
eventually satisfied at some t′ < t.

Let ϕ ∈ FT be a formula over the variables
x1, . . . , xn, and let v be an NDT-assignment.
We denote by tvϕ the instant, if it exists, when
ϕ becomes eventually satisfied by v. Other-
wise, if ϕ never becomes eventually satisfied
by v, we set tvϕ =∞.

For any NDT-assignment v, endow the set
W v
n = {tvx1

, . . . , tvxn}∪{0,∞} ⊂ N∪{∞} with
the natural order, where t ≤ ∞ for all t. Con-
sider the reverse linear order 〈W v

n ,≥〉, and let
x t y = min{x, y} and x u y = max{x, y}.
Then, by Theorem 2.4, 〈W v

n ,u,t,∞, 0〉 is the
lattice reduct of a uniquely determined finite
Gödel algebra Wv

n = 〈W v
n ,u,⇒,∞〉 with 0 as

maximum and ∞ as minimum element.

For any formula ϕ ∈ FG , let ϕ ∈ FT be
the formula obtained by replacing every oc-
currence of → with ≺.

Lemma 3.7 For any NDT-assignment v and
for any formula ϕ ∈ FG whose variables are
in {x1, . . . , xn},

tvϕ = ϕW
v
n(tvx1

, . . . , tvxn) .

Proof. By structural induction on the for-
mula ϕ ∈ FG . If ϕ is a variable or ⊥ there
is nothing to prove. Suppose ϕ = ϕ1 ∧ ϕ2.
Then tvϕ = max(tvϕ1

, tvϕ2
), and tvϕ = ϕWv

n by
the induction hypothesis.

Suppose now that ϕ = ϕ1 → ϕ2. We need to
prove that

tvϕ = tvϕ1
⇒ tvϕ2

=
{

0 if tvϕ2
≤ tvϕ1

tvϕ2
otherwise.

But this follows at once from Lemma 3.6.

Definition 3.8 Let∼n be the binary relation
on NDT-assignments such that for every as-
signment v and w, v ∼n w if Wv

n and Ww
n are

isomorphic Gödel chains via the map

tvxi ∈W v
n 7→ twxi ∈Ww

n .

The relation ∼n is easily shown to be an
equivalence relation. Denote by Jn the set
of equivalence classes of NDT-assignments de-
fined over variables x1, . . . , xn.

Lemma 3.9 There is a bijection

[v]∼n ∈ Jn 7→ Pv ∈ Ordn
such that for any [v]∼n ∈ Jn, Pv is isomorphic
to Wv

n as Gödel algebras.

Proof. For any NDT-assignment v there is a
permutation σ of {1, . . . , n} such that Wv

n =
{0 �0 t

v
xσ(1)

�1 · · · �n−1 t
v
xσ(n)

�n ∞} where
each �i is either < or = . The Gödel ordered
partition

Pv = {0 �n xσ(n) �n−1 · · · �1 xσ(1) �0 1}

is isomorphic toWv
n as Gödel algebras by The-

orem 2.4(ii). In plain words, variables in the
same block of the partition Pv become even-
tually valid under v at the same instant.

By Definition 3.8, the map φ : [v]∼n ∈ Jn 7→
Pv ∈ Ordn is well-defined and injective. In
order to show that φ is surjective, let P =
W0 < · · · < Wm be any Gödel ordered par-
tition of {x1, . . . , xn}, and consider instants
0 < t1 < · · · < tm−1 ∈ N and the NDT-
assignment v such that, if xi ∈ Wj with
0 < j < m, then v(xi, t) = 1 if and only if
t ≥ tm−j , while if xi ∈W0 then v(xi, t) = 0 for
every t ∈ N, and if xi ∈ Wm then v(xi, t) = 1
for every t ∈ N. Hence, if xi ∈ Wj with
0 < j < m we have tvxi = tm−j , while if
xi ∈ W0, tvxi = ∞ and if xi ∈ Wm, tvxi = 0.
Observe that:

Wv
n = {∞ > tm−1 > tm−2 > · · · > t1 > 0} .

By definition, P = Pv and hence φ([v]∼n) =
P .
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Theorem 3.10 For any formula ϕ ∈ FG,

G � ϕ iff T � ϕ .

Proof. We have T � ϕ if and only if for
every NDT-assignment v, tvϕ = 0 if and only
if (Lemma 3.7) ϕWv

n(tvx1
, . . . , tvxn) = 0 if and

only if (Lemma 3.9) for every P ∈ Ordn,
ϕP (P (x1), . . . , P (xn)) = 1P . By Theorem 2.5
this is equivalent to G � ϕ.

4 Prior’s tense logic Kt and its
extension FL

For background on temporal logics see [9, 7,
10]. Consider again the set of variables V .
The set FKt of formulas of Prior’s minimal
tense logic Kt is built from V , from classical
propositional connectives ⊥,∧,→, and from
two new unary connectives G and H. The
semantics of minimal tense logic is obtained
by fixing a flow of time, that is, a set T to-
gether with a strict order (i.e. irreflexive and
transitive) relation <, and then considering
temporal assignments, that is, arbitrary maps
v:V × T → {0, 1}.
Definition 4.1 Each temporal assignment v
is extended to all formulas of Kt in the fol-
lowing way. For every t ∈ T , let

• v(⊥, t) = 0.

• v(ψ1 ∧ ψ2, t) = min(v(ψ1, t), v(ψ2, t)).

• v(ψ1 → ψ2, t) = 1 if and only if v(ψ1, t) ≤
v(ψ2, t)).

• v(Gϕ, t) = 1 if and only if for every t′

with t < t′, v(ϕ, t′) = 1.

• v(Hϕ, t) = 1 if and only if for every t′ <
t, v(ϕ, t′) = 1.

Propositional connectives >,∨,¬ are defined
as usual. Further, the defined unary connec-
tives F and P given by

Fϕ := ¬G¬ϕ , Pϕ := ¬H¬ϕ

are such that v(Fϕ, t) = 1 if and only if there
exists t′ > t such that v(ϕ, t′) = 1, while

v(Pϕ, t) = 1 if and only if there exists t′ < t
such that v(ϕ, t′) = 1.

Intuitively, the formula Gϕ is true at instant
t if ϕ is always true in the future of t, while
Fϕ is true at t if ϕ is true at some instant in
the future of t. Analogously, the formula Hϕ
is true at instant t if ϕ is always true in the
past of t, while Pϕ is true at t if ϕ is true at
some instant in the past of t.

Definition 4.2 A formula ϕ is valid on a
flow of time T if for every temporal assign-
ment v on T and for every t ∈ T , v(ϕ, t) = 1.

The axioms of Kt are those of Boolean
propositional logic plus the following axiom
schemata:

G(ϕ→ ψ)→ (Gϕ→ Gψ);

H(ϕ→ ψ)→ (Hϕ→ Hψ);

ϕ→ GPϕ;

ϕ→ HFϕ;

Gϕ→ GGϕ.

Deduction rules are modus ponens plus the
following necessitation rules of inference:

ϕ

Gϕ
,

ϕ

Hϕ
.

Minimal tense logic is sound and complete
with respect to all flows of time. We wish
to strengthen Kt so as to capture finite lin-
ear flows of time. Let FL be the schematic
extension of Kt by

(LIN1) PFϕ→ (Pϕ ∨ ϕ ∨ Fϕ),

(LIN2) FPϕ→ (Fϕ ∨ ϕ ∨ Pϕ),

(FIN1) Fϕ→ F (ϕ ∧G¬ϕ),

(FIN2) Pϕ→ P (ϕ ∧H¬ϕ).

Observe that (LIN1) forces flows of time
to be non-branching to the future. Analo-
gously, (LIN2) forces flows of time to be non-
branching to the past. Axioms (FIN1) and
(FIN2), also known as Löb’s axioms, force
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flows of time to be finite.3 Then, a variant
of the completeness proof in [7, 3.4.1] yields:

Theorem 4.3 A formula ϕ is valid in all fi-
nite linear flows of time, written FL � ϕ, if
and only if ϕ is derivable from the axioms
of FL using modus ponens and necessitation.
Further, a flow of time T validates all for-
mulas derivable in FL if and only if T is a
(disjoint union of ) finite chain(s).

5 Translation of Gödel logic into FL

In this section we shall always assume that
T denotes a finite linearly ordered set. Each
t ∈ T is called an instant. For any instant
t ∈ T , we denote by ↑ t the set {s ∈ T | s ≥ t}.
Definition 5.1 For every formula ϕ and
temporal assignment v on T we let

(ϕ)v = {t ∈ T | v(ϕ, t) = 1} ⊆ T.
A formula ϕ is (weakly) increasing with re-
spect to v (v-increasing, for short) if whenever
t ∈ (ϕ)v then ↑ t ⊆ (ϕ)v.

Lemma 5.2 For any temporal assignment v
on T and for any formula ϕ, ϕ ∧ Gϕ is v-
increasing. Further, if ϕ is v-increasing then
(ϕ)v = (ϕ ∧Gϕ)v.

Proof. By definition, (ϕ ∧Gϕ)v = {t ∈ T |
v(ϕ ∧ Gϕ, t) = 1} = {t ∈ T | v(ϕ, t) =
1 and for all s > t, v(ϕ, s) = 1} = {t ∈ T |
v(ϕ, s) = 1 for every s ≥ t}. If t ∈ (ϕ ∧Gϕ)v

then ↑ t ⊆ (ϕ ∧Gϕ)v and so ϕ ∧ Gϕ is v-
increasing.

Note that in general (ϕ ∧Gϕ)v ⊆ (ϕ)v. If ϕ
is v-increasing and t ∈ (ϕ)v then ↑ t ∈ (ϕ)v,
hence t ∈ (ϕ ∧Gϕ)v and (ϕ)v ⊆ (ϕ ∧Gϕ)v .

Example 5.3 Let v be the temporal assign-
ment on T = {0, 1, 2, 3, 4, 5, 6, 7} such that
v(x1, t) = 1 if and only if t ≥ 3, while
v(x2, t) = 1 if and only if t ≤ 1 or t ≥ 5 and
v(x3, t) = 1 if and only if t is an even num-
ber. Then v(x1 ∧ Gx1, t) = v(x1, t) for every

3Note that (FIN1) fails in infinite ascending chains,
while (FIN2) fails in infinite descending chains. It fol-
lows that Löb’s axioms force irreflexivity, too.

t ∈ T , while (x2 ∧Gx2)v = {t ∈ T | t ≥ 5}
and v(x3 ∧Gx3, t) = 0 for every t ∈ T .

We translate a Gödel formula ϕ into a formula
ϕ̂ of FKt in the following way:

• If ϕ = ⊥ then ϕ̂ = ⊥
• If ϕ = xi then ϕ̂ = xi ∧Gxi
• If ϕ = ϕ1 ∧ ϕ2 then ϕ̂ = ϕ̂1 ∧ ϕ̂2

• If ϕ = ϕ1 → ϕ2 then ϕ̂ = (ϕ̂1 → ϕ̂2) ∧
G(ϕ̂1 → ϕ̂2).

This is essentially the translation used in [3,
3.89], itself a variant of the Gödel translation.

Let v be a temporal assignment on T , and let
V v
n be defined as:

V v
n = {(x̂1)v, . . . , (x̂n)v} ∪ {∅, T} ⊆ 2T .

Endow V v
n with the order given by inclu-

sion. Since all x̂i are v-increasing by Lemma
5.2, the order on V v

n is total. By Theorem
2.4(i), 〈V v

n ,∩,∪, ∅, T 〉 is the lattice reduct of
a uniquely determined finite Gödel chain Vvn
with ∅ as minimum and T as maximum ele-
ment, respectively.

Lemma 5.4 Let v be a temporal assignment
on T . Then for any ϕ ∈ FG,

(ϕ̂)v = ϕV
v
n((x̂1)v, . . . , (x̂n)v) ∈ V v

n .

Proof. The proof follows by an easy induc-
tion, using Lemma 5.2.

Example 5.5 Let v be as in Example 5.3.
Then, using the notation of ordered parti-
tions,

V v
3 = {{∅, (x̂3)v} < {(x̂2)v} < {(x̂1)v} < T}.

If ϕ = (x1 → x2) ∨ x3, then ϕ̂ = ((x̂1 →
x̂2)∧G(x̂1 → x̂2))∨x̂3 and (ϕ̂)v = (x̂2)v ∈ V v

3 .

Lemma 5.6 For any flow of time T with at
least n+ 2 elements and for any temporal as-
signment v on T , there is an NDT-assignment
v′ : FT × N → {0, 1} such that the Gödel
chains Vvn and Wv′

n are isomorphic via the
map Θ:V v

n → W v′
n defined by Θ(∅) = ∞,

Θ(T ) = 0 and Θ((x̂i)v) = tv
′
xi.
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Proof. Let v:FKt × T → {0, 1} be a tem-
poral assignment and list the elements of V v

n

as {∅ �0 (x̂σ(1))v �1 · · · �n−1 (x̂σ(n))v �n T}
where σ is a permutation of {1, . . . , n} and
each �i is either < or = .

Let 0 �n tn �n−1 · · · �1 t1 �0 ∞ ∈ N ∪ {∞}.
We set, for every m ∈ N, v′(xσ(i),m) = 1 if
and only if m ≥ ti.
Then it is immediate to check that v′ is an
NDT-assignment and ti = tv

′
xσ(i)

. An easy in-
duction shows that for any ϕ ∈ FG , Θ((ϕ̂)v) =
tv

′
ϕ . The proof follows by Lemmas 3.7 and 5.4.

Theorem 5.7 For any formula ϕ ∈ FG,

G � ϕ if and only if FL � ϕ̂ .

Proof. As a consequence of Lemmas 5.6 and
5.4, for any ϕ ∈ FG and temporal assignment
v, we have Θ((ϕ̂)v) = tv

′
ϕ . We prove that FL �

ϕ̂ if and only if T � ϕ. The claim then follows
by Theorem 3.10. Indeed, suppose T � ϕ.
Then for every temporal assignment v, letting
v′ be the NDT-assignment of Lemma 5.6, we
have v′(ϕ,m) = 1 for every m ∈ N hence tv

′
ϕ =

0 and applying Θ, (ϕ̂)v = T . Then v(ϕ̂, t) = 1
for every t ∈ T and FL � ϕ̂.

On the other hand, if T 2 ϕ then there
is an NDT-assignment v′ and t0 ∈ N such
that v′(ϕ, t0) = 0. Consider the flow of time
T = {0, tv′

x1
, . . . , tv

′
xn ,∞} ⊆ N∪{∞}. Then the

temporal assignment v:FKt × T → {0, 1} de-
fined by v(xi,∞) = 0 and v(xi, t) = v′(xi, t)
for any t ∈ N, is such that, by Lemma 5.2,
v(ϕ̂, t0) = v′(ϕ, t0) = 0. Hence FL 2 ϕ̂.
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