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Abstract

This paper originally considers the
finite extensive game with fuzzy pay-
offs. Three credibilistic approaches
are introduced to define the be-
haviors of players in different deci-
sion situations. Accordingly, three
types of credibilistic equilibria for
the fuzzy extensive game are pro-
posed. Moreover, theorems are
given to confirm the existence of
these new equilibria in fuzzy exten-
sive game. At the end of this paper,
two examples are given to demon-
strate the importance of these new
concepts.

Keywords fuzzy variable, credibil-
ity measure, extensive game, credi-
bilistic equilibrium

1 Introduction

Game theory is a collection of mathematical
models studying behaviors of people with in-
terest conflict. Modern game theory dated
from 1944 with the publication of Theory
of Games and Economic Behavior by von
Neumann and Morgensern [17]. The devel-
opment of game theory was accelerated by
Nash [12][13], Kuhn [3][4], Shapley [16] and
Harsanyi [2] etc.

The theoretic game models are divided into
three categories: the extensive games, the
strategic games and the coalitional games. In
this paper, we consider games in extensive

form, which most completely describe the in-
teractions between players in the game. The
extensive form also clearly shows the vari-
ous sets of information and actions for each
player at every stage. The notion of extensive
form was first introduced by von Neumann
and Morgenstern [17] and then Kuhn [3][4]
gave a more geometric definition that is pop-
ular nowadays. The theorem of Zermulo-von
Neumann [17] demonstrated the existence of
pure Nash equilibrium in zero-sum two-person
game with perfect information. Kuhn [4]
extended the result to general-sum n-person
game with perfect information.

Given an extensive game, we wish to find equi-
libria in the game by comparing different out-
comes to each strategy profile, hence, we need
to know the payoff functions for every player.
The equilibrium is a strategies portfolio which
is assigned to players and maximizes the pay-
off for each player when others insist on their
strategies. Traditionally, the payoffs are as-
sumed to be deterministic and can be found
by collecting and analyzing the data from
analogous games played before in some cir-
cumstances. However, players in real games
are often lack of statistics to clarify the pre-
cise relationship between payoffs and different
combinations of strategies. Furthermore, the
choices of each player or the decision stages of
the game may be numerous. As a result, us-
ing similar procedures may be costly or even
impossible. In such situations, fuzzy set the-
ory provides a trustworthy and effective alter-
native. With it, we can make use of human
experiences, personal decisions and intuitions
to counterbalance the deficiency of data. In
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literature, many researchers have considered
strategic games in fuzzy environment. For in-
stance, Campos, Gonzalez and Vila [1] used
linear programming to solve the fuzzy matrix
games. Maeda [11] defined the Nash equilib-
rium in bi-matrix games with fuzzy payoffs.
Nishizaki and Sakawa [14] have considered
three new minimax equilibrium strategies and
their properties in fuzzy matrix games. But as
far as we know, all the papers about extensive
games just focused on deterministic payoffs.

In this paper, we originally consider the finite
extensive game with fuzzy payoffs and solve
it with credibility theory, which was founded
and refined by Liu [6][7] as a branch of math-
ematics for studying the behavior of fuzzy
phenomena. For different decision situations,
three credibilistic approaches are adopted to
describe behaviors of variant types of play-
ers properly. We give three new definitions of
Nash equilibrium in fuzzy extensive game, i.e.,
expected credibilistic equilibrium (ECE) for
players with mean value point, α−credibilistic
equilibrium (α−CE) for risk averse players
and α−credibilistic equilibrium (α−CE) for
risk love players. Since much of the work on
extensive game is related to equilibria’s prop-
erties, we also prove the existences of the cred-
ibilistic equilibria in the finite fuzzy extensive
game. Lastly, we use two examples to show
that these new equilibria are necessary and
practical in fuzzy extensive game and each
of them captures particular characteristic of
equilibria in the game.

This paper is arranged as follows. In section
2, we recall the basic concepts of extensive
game and credibility theory. Then in section
3, we introduce credibilistic equilibria as well
as their existence theorems for finite extensive
game with fuzzy payoffs (FEGF). At the end
of this paper, two examples are given to illus-
trate the importance of our new definitions.

2 Preliminaries

2.1 Extensive Game

The usual tree structure of extensive game is
given by Kuhn [3][4] and our work is based

on finite extensive games with complete in-
formation and chance moves. In the following
parts of this paper, we adopt the notions as
Osborne and Rubinstein [15].

Definition 2.1 A finite extensive game with
perfect information and chance moves is
a tuple 〈N,H,P, fc, (�i)〉 consisting of the
following components.

• A set N (the set of players).

• A set H of finite consequences that satis-
fies the following two properties.

– The empty sequence ∅ is a member
of H.

– If (ak)k=1,...,K ∈ H and L < K then
(ak)k=1,...,L ∈ H

A history (ak)k=1,...,K ∈ H is ter-
minal if there is no aK+1 such that
(ak)k=1,...,K+1 ∈ H. The set of terminal
histories is denoted Z.

• P is a function from the nonterminal his-
tories in H to N ∪{c}. (If P (h) = c then
chance determines the action taken after
the history h.)

• For each h ∈ H with P (h) = c, fc(·|h)
is a probability measure on the action set
of history h; each such probability mea-
sure is assumed to be independent of ev-
ery other such measure.

• For each player i ∈ N , �i is a prefer-
ence relation on lotteries over the set of
terminal histories.

We define the outcome O(s) of strategy profile
s = (si)i∈N to be the terminal history which
occurs when every player follows his strategy
si, then Nash equilibrium in extensive games
is defined as follows.

Definition 2.2 A Nash equilibrium of an ex-
tensive game with perfect information and
chance moves 〈N,H,P, fc, (�i)〉 is a strategy
profile s∗ such that for every player i ∈ N
we have O(s∗−i, s∗i ) �i O(s∗−i, si), for every
strategy si of player i.
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The next lemma confirms the existence of
Nash equilibrium in pure strategies.

Lemma 2.1 A finite extensive game with
complete information has a Nash equilibrium
in pure strategies.

2.2 Credibility Theory

Liu and Liu [8] presented the concept of cred-
ibility measure which is self-dual in 2002. An
axiomatic foundation of credibility theory was
given by Liu [6] in 2004. Here we just enumer-
ate the basic results used in this paper.

Definition 2.3 (Liu [6]) A fuzzy variable is
defined as a function from the credibility space
(Θ,P(Θ),Cr) to the set of real numbers.

Definition 2.4 (Liu [6]) Let ξ be a fuzzy
variable defined on the credibility space
(Θ,P(Θ),Cr). Then its membership function
is derived from the credibility measure by

µ(x) = (2Cr{ξ = x}) ∧ 1, x ∈ ℜ.

Lemma 2.2 (Liu [6]) Let ξ be a fuzzy
variable with membership function µ. Then
for any set B of real numbers, we have

Cr{ξ ∈ B} =
1
2

(
sup
x∈B

µ(x) + 1− sup
x∈Bc

µ(x)
)

.

Definition 2.5 (Liu and Gao[9]) The
fuzzy variables ξ1, ξ2, · · · , ξm are said to be
independent if and only if

Cr

{
m⋃

i=1

{ξi ∈ Bi}
}

= max
1≤i≤m

Cr{ξi ∈ Bi}

for any sets B1, B2, · · · , Bm of ℜ.

Definition 2.6 (Liu and Liu [8]) Let ξ be
a fuzzy variable. Then the expected value of ξ
is defined by

E[ξ] =
∫ ∞

0
Cr{ξ ≥ r}dr−

∫ 0

−∞
Cr{ξ ≤ r}dr.

Lemma 2.3 (Liu and Liu [10]) Assume
that ξ and η are independent fuzzy variables
with finite expected values. Then for any real
numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η].

Definition 2.7 (Liu [5]) Let ξ be a fuzzy
variable, and α ∈ (0, 1]. Then

ξsup(α) = sup{r | Cr{ξ ≥ r} ≥ α}

is called the α-optimistic value to ξ, and

ξinf(α) = inf{r | Cr{ξ ≤ r} ≥ α}

is called the α-pessimistic value to ξ.

Lemma 2.4 (Liu [6]) Suppose that ξ and
η are independent fuzzy variables, then for
any α ∈ (0, 1] and nonnegative real numbers
a and b, we have

1. (aξ + bη)sup(α) = aξsup(α) + bηsup(α);

2. (aξ + bη)inf(α) = aξinf(α) + bηinf(α).

Definition 2.8 (Liu [5]) We have three
ranking criteria for fuzzy variables ξ and η:

1. Expected Value Criterion: ξ < η if
and only if E[ξ] < E[η];

2. Optimistic Value Criterion: ξ < η if
and only if ξsup(α) < ηsup(α) for some
predetermined confidence level α ∈ (0, 1];

3. Pessimistic Value Criterion: ξ < η
if and only if ξinf(α) < ηinf(α) for some
predetermined confidence level α ∈ (0, 1];

3 Credibilistic Equilibria

While considering finite extensive games be-
fore, each player’s payoffs are crisp numbers,
thus they can be evaluated and compared eas-
ily. But in real life, extensive games may con-
sist of a large number of players and strate-
gies, each player has to make decisions for sev-
eral rounds. Sometimes, it is impracticable to
identify the specific effect belonging to each
strategy of every player i ∈ N since the out-
come is yielded by the interacting influences of
a strategy profile s = (si)i∈N , moreover, each
strategy si may be constituted by numerous
actions. For these reasons, making accurate
or stochastic estimations about the payoffs are
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almost impossible for the players. We intro-
duce fuzzy payoff functions to describe the in-
tricate situation in finite extensive game with
complete information. First, we present the
definition for such games.

Definition 3.1 A finite extensive game with
fuzzy payoffs 〈N,H,P, fc, (ui)〉 (FEGF) is a
finite extensive game with complete informa-
tion and chance moves, the preference relation
for every player i ∈ N is represented by inde-
pendent fuzzy payoff function ui.

The new definition is almost the same as the
traditional one, and we will prove that equi-
libria in FEGF do possess similar properties
as equilibria in deterministic environment.

The basic idea of any Nash equilibrium s∗ =
(s∗i )i∈N in extensive games is that no player
i ∈ N can make himself better by choosing a
strategy other than s∗i , given that every other
player j insists on s∗j . In deterministic envi-
ronment, this idea is equivalent to

O(s∗−i, s∗i ) �i O(s∗−i, si)

for every strategy si of player i and also equiv-
alent to the condition that

ui(s∗−i, s∗i ) ≥ ui(s∗−i, si)

for every strategy si of player i.

In FEGF, payoff functions are fuzzy variables
and cannot be compared directly, hence we
have to define some new versions of Nash equi-
librium in FEGF.

Let the fuzzy payoff functions be u = (ui)i∈N ,
given any strategy profile s = (si)i∈N , by
the existence of chance moves in FEGF, the
payoff ui(s∗−i, s∗i ) is a weighted average of
outcomes to some certain terminal histories
(h1, . . . , hm), every history hj is determined
by s∗. Denote the weights as λj ≥ 0 and
m∑

j=1
λj = 1, ui(hj) is the fuzzy payoff to player

i ∈ N of terminal history hj, we have

ui(s∗−i, s∗i ) = λ1ui(h1) + . . . + λmui(hm)

then
O(s∗−i, s∗i ) �i O(s∗−i, si)

for every strategy si of each player i ∈ N , if
and only if fuzzy variable ui(s∗−i, s∗i ) is greater
than ui(s∗−i, si) for every strategy si of each
player i ∈ N under certain ranking criterion.

We next give the precise definitions of three
new versions of Nash equilibrium in FEGF.

Definition 3.2 An expected cred-
ibilistic equilibrium (ECE) of
FEGF=〈N,H,P, fc, (ui)〉 is a strategy
profile s∗ such that for every player i ∈ N we
have

E
[
ui(s∗−i, s∗i )

] ≥ E
[
ui(s∗−i, si)

]
for every strategy si of player i.

When we adopt the optimistic value criterion,
we mean that the players are risk averse. Un-
der a predetermined confidence level α, they
want to maximize the optimistic profits, the
essence of such equilibrium is similar as the
maximin criterion with deterministic payoffs.

Definition 3.3 An α−credibilistic equilib-
rium (α−CE) of FEGF=〈N,H,P, fc, (ui)〉 is
a strategy profile s∗ such that for every player
i ∈ N we have

sup
{
r | Cr{ui(s∗−i, s∗i ) ≥ r} ≥ α

}
≥ sup

{
r | Cr{ui(s∗−i, si) ≥ r} ≥ α

}
for every strategy si of player i and a prede-
termined confidence level α ∈ (0, 1].

In some circumstances, players may act as risk
lovers, then the pessimistic criterion is a fea-
sible means to compare the fuzzy payoffs. In
detail, every player computes the pessimistic
value for each fuzzy payoff, the credibility that
real payoff is less than the pessimistic value
is α, player then choose the strategy maxi-
mizing the pessimistic value in the game. It
sounds ridiculous for the players, but in fact,
although the real payoff will be less than the
pessimistic value with credibility α, the dif-
ference of them maybe tiny, risk lovers will be
probable and reasonable to seek high profit
with great risk.

Definition 3.4 An α−credibilistic equilib-
rium (α−CE) of FEGF=〈N,H,P, fc, (ui)〉 is
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a strategy profile s∗ such that for every player
i ∈ N we have

inf
{
r | Cr{ui(s∗−i, s∗i ) ≤ r} ≥ α

}
≥ inf

{
r | Cr{ui(s∗−i, si) ≤ r} ≥ α

}
for every strategy si of player i and a prede-
termined confidence level α ∈ (0, 1].

We then generalize Lemma 2.1 of Nash equi-
librium in deterministic environment to our
new versions of Nash equilibrium in FEGF by
the following procedure. The next theorem
proves the existence of expected credibilistic
equilibrium in FEGF.

Theorem 3.1 Every
FEGF=〈N,H,P, fc, (ui)〉 has an ECE in
pure strategies.

Proof Let P (∅) = P1 and all histo-
ries with length 1 be (h1, h2, . . . , hr−1, hr),
using the notion of subgames, we have
(Γ(h1),Γ(h2), . . . ,Γ(hr)). Let ui|h be the
fuzzy payoffs to player i ∈ N in Γ(h)
and s(j) = (sij)i∈N be pure strategies for
each player in Γ(hj) (1 ≤ j ≤ r). Then
ui(s), ui|hj

(s(j)) represent the payoffs to
player i in FEGF and Γ(hj), respectively. See
Figure 1.

We prove the theorem by induction on the
finite length of FEGF. Suppose the length
of FEGF to be M , clearly the subgames
Γ(h1),Γ(h2), . . . ,Γ(hr) have length at most
M − 1.

1. M = 0, the result is trivially true;

2. M = 1, the only one player can simply
choose the strategy which yields the max-
imized expected fuzzy payoffs, the pure
strategy is an ECE;

3. Suppose the result holds for FEGF with
length at most M − 1, in particular for
Γ(h1),Γ(h2), . . . ,Γ(hr), let s∗(j) be the
ECE strategy profile in Γ(hj), respec-
tively, that is

E
[
ui|hj

(s∗−i(j), s∗i (j))
]

≥ E
[
ui|hj

(s∗−i(j), si)
]

for every strategy si of player i in Γ(hj).

we will construct an ECE strategy profile
for FEGF.

Case 1. P1 is a chance move. Let

λ1, λ2, . . . , λr, λj ≥ 0 and
r∑

j=1
λj = 1, de-

note the probabilities for selecting subgame
Γ(h1),Γ(h2), . . . ,Γ(hr). Define a strategy pro-
file s∗ of FEGF as s∗|hj

= s∗(j), then all the
strategies of every player i ∈ N are deter-
mined and we next prove this strategy profile
is an ECE. For any strategy si of player i ∈ N ,

E
[
ui(s∗−i, si)

]
= E

 r∑
j=1

λjui|hj
(s∗−i|hj

, si|hj
)


=

r∑
j=1

λjE
[
ui|hj

(s∗−i(j), si|hj
)
]

(1)

thus

E
[
ui(s∗−i, s∗i )

]
=

r∑
j=1

λjE
[
ui|hj

(s∗−i(j), s∗i (j))
]

≥
r∑

j=1

λjE
[
ui|hj

(s∗−i(j), si|hj
)
]

(2)

since s∗(j) is an ECE strategy profile for Γ(hj)
and (1), thus we have

E
[
ui(s∗−i, s∗i )

] ≥ E
[
ui(s∗−i, si)

]
i.e., s∗ is an ECE strategy profile in FEGF.

Case 2. P1 is a player in N . Without loss
of generality, we can suppose P1 to be player
1. Suppose action α taken by player 1 at the
initial of the game to be the choice of j = α
that

max
1≤j≤r

E
[
ui|hj

(s∗(j))
]

is obtained. Define a strategy profile s∗ of
FEGF as s∗ = (s∗−1, s

∗
1) where s∗|hj

= s∗(j)
and s∗1(∅) = α, then all the strategies of each
player i ∈ N are designated. We then prove
s∗ is an ECE.
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hrh1

P1

hr−1h2

P2 P2 P2 P2

Figure 1: FEGF= 〈N,H,P, fc, (ui)〉

We have

E
[
u1(s∗−1, s∗1)

]
= E

[
u1|hα(s∗−1(α), s∗1(α))

]
≥ E

[
u1|hj

(s∗−1(j), s∗1(j))
]
, 1 ≤ j ≤ r

And for any strategy s1 of player 1 with
s1(∅) = j,

E
[
u1(s∗−1, s1)

]
= E

[
u1|hj

(s∗−1|hj
, s1|hj

)
]

≤ E
[
u1|hj

(s∗−1(j), s∗1(j)
]

because s∗(j) is an ECE in Γ(hj), thus for any
strategy s1

E
[
u1(s∗−1, s∗1)

] ≥ E
[
u1(s∗−1, s1)

]
(3)

For every player i ∈ N, i 6= 1 and any strategy
si, we have

E
[
ui(s∗−i, si)

]
= E

[
ui|hα(s∗−i|hα , si|hα)

]
= E

[
ui|hα(s∗−i(α), si|hα)

]
≤ E

[
ui|hα(s∗−i(α), s∗i (α))

]
since s∗(α) is an ECE in Γ(hα). Hence for
every player i 6= 1, for any strategy si,

E
[
ui(s∗−1, s∗1)

] ≥ E
[
ui(s∗−i, si)

]
(4)

With (3) and (4) hold, we have constructed an
ECE s∗ in FEGF. The proof is then finished.
�
The existence of α−credibilistic equilibrium
in FEGF can be similarly proved.

Theorem 3.2 Every
FEGF=〈N,H,P, fc, (ui)〉 has an α−CE
for any predetermined confidence level
α ∈ (0, 1] in pure strategies.

Proof Define the symbols as Theorem 3.1,
since payoff functions are independent fuzzy
variables, we can rewrite (1) and (2) as

sup {r | Cr{ui(s
∗
−i, si) ≥ r} ≥ α}

= sup

{
r
∣∣∣Cr

{ r∑
j=1

λjui|hj (s
∗
−i|hj , si|hj ) ≥ r

}
≥ α

}

=

r∑
j=1

λj sup

{
r
∣∣∣Cr

{
ui|hj (s

∗
−i(j), si|hj ) ≥ r

}
≥ α

}

and

sup {r | Cr{ui(s
∗
−i, s∗i ) ≥ r} ≥ α}

=
r∑

j=1

λj sup

{
r
∣∣∣Cr

{
ui|hj (s

∗
−i(j), s∗i (j)) ≥ r

}
≥ α

}

≥
r∑

j=1

λj sup

{
r
∣∣∣Cr

{
ui|hj (s

∗
−i(j), si|hj ) ≥ r

}
≥ α

}

by Lemma 2.4. Then the result can be simi-
larly proved as Theorem 3.1. �
Further more, the next theorem asserts
that the α−credibilistic equilibrium exists in
FEGF.

Theorem 3.3 Every
FEGF=〈N,H,P, fc, (ui)〉 has an α−CE
for any predetermined confidence level
α ∈ (0, 1] in pure strategies.

Proof Under the same inductive assump-
tion, for Γ(h1),Γ(h2), . . . ,Γ(hr), let s∗(j)
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be the α−CE strategy profiles, respectively.
Then for any strategy si of player i ∈ N in
FEGF, we have

inf
{
r | Cr{ui|hj

(s∗−i(j), si|hj
) ≤ r} ≥ α

}
≤ inf

{
r | Cr{ui|hj

(s∗−i(j), s∗−i(j)) ≤ r} ≥ α
}

thus

inf {r | Cr{ui(s
∗
−i, si) ≤ r} ≥ α}

= inf

{
r
∣∣∣Cr

{ r∑
j=1

λjui|hj (s∗−i|hj , si|hj ) ≤ r
}
≥ α

}

=
r∑

j=1

λj inf

{
r
∣∣∣Cr

{
ui|hj (s∗−i(j), si|hj ) ≤ r

}
≥ α

}

≤
r∑

j=1

λj inf

{
r
∣∣∣Cr

{
ui|hj (s∗−i(j), s∗−i(j)) ≤ r

}
≥ α

}
= inf {r | Cr{ui(s

∗
−i, s∗i ) ≤ r} ≥ α}

by Lemma 2.4. We can take the same steps
to prove this theorem as Theorem 3.1. �
We now have proved the existences
of expected credibilistic equilib-
rium, α−credibilistic equilibrium and
α−credibilistic equilibrium in FEGF.

4 Examples and Discussion

In this section, we give two numerical exam-
ples to show these new equilibria are neces-
sary and suitable in FEGF. The first example
is used to show the meanings of credibilistic
equilibria in practical games. The second one
is to illustrate that different credibilistic equi-
libria are reasonable for particular people with
different preferences to decide his own strat-
egy, none of these equilibria can be omitted.

Example 1. We first consider the simple
entry game with fuzzy payoffs, the indepen-
dent fuzzy payoffs are represented by triangu-
lar fuzzy variables and the challenger’s payoff
is the first component of each pair. See Figure
2.

Let the confidence level be 0.8 for
α−credibilistic equilibria, 0.6 for
α−credibilistic equilibria. By computa-
tion, we have E[(0, 1, 2)] = 1, E[(1, 2, 3)] = 2,
(0, 1, 2)sup(0.8) = 0.4, (1, 2, 3)sup(0.8) = 1.4,
(0, 1, 2)inf (0.6) = 1.2, (1, 2, 3)inf (0.6) = 2.2.
In this entry game, the ECE, the α−CE and

Out

(0, 1, 2), (1, 2, 3)

In

Challenger

Fight

0, 0

Acquiesce

(1, 2, 3), (0, 1, 2)

Incumbent

Figure 2: Entry game with fuzzy payoffs.

the α−CE are the same, (In, Acquiesce) and
(Out, Fight).

Example 2. In this example, we illustrate
that under different ranking criteria, the equi-
libria will probably be different, let the payoffs
be independent triangular fuzzy variables and
player 1’s fuzzy payoff be the first component
of each pair. See Figure 3.

Fix(F)Change(C)

1

Fix(F)

4, (5, 6, 7)

Change(C)

3, (0, 5, 12)

2

Fix(F)

5, (2, 5, 6)

Change(C)

2, (3, 4, 5)

2

Figure 3: An FEGF with two players.

First we list the pure strategies for the two
players in this FEGF as Table 1.

Table 1: Pure strategies for the two players
Player 1 Player 2

C I. If 1 selects C, C; If 1 selects F, C
F II. If 1 selects C, C; If 1 selects F, F

III. If 1 selects C, F; If 1 selects F, C
IV. If 1 selects C, F; If 1 selects F, F

Given confidence level 0.8 for α−credibilistic
equilibria, 0.6 for α−credibilistic equilibria,
we use the strategic forms of this FEGF to
calculate the equilibria as in deterministic en-
vironment, see Table 2, 3 and 4.

Then the ECE are (C, III), (F, II) and (F,
IV); the α−CE is (C, III); the α−CE are (C,
I), (F, II) and (F, IV).
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Table 2: Strategic Form for Expected Payoffs
Player 2

I II III IV
Player 1 C (3, 5.5) (3, 5.5) (4, 6) (4, 6)

F (2, 4) (5, 4.5) (2, 4) (5, 4.5)

Table 3: Strategic Form for Optimistic Pay-
offs

Player 2
I II III IV

Player 1 C (3, 2) (3, 2) (4, 5.4) (4, 5.4)
F (2, 3.4) (5, 3.2) (2, 3.4) (5, 3.2)

Table 4: Strategic Form for Pessimistic Pay-
offs

Player 2
I II III IV

Player 1 C (3, 6.4) (3, 6.4) (4, 6.2) (4, 6.2)
F (2, 4.2) (5, 5.2) (2, 4.2) (5, 5.2)

5 Conclusion

In this paper, we firstly used fuzzy variables to
characterize payoffs in extensive games due to
the incompleteness of information. Then we
proposed new concepts of credibilistic equilib-
ria in FEGF as Nash equilibrium in determin-
istic environment. Furthermore, we proved
the existence theorems that affirm these new
equilibria do exist in finite extensive games
with fuzzy payoffs. Starting from them, we
can do further researches on the properties of
credibilistic equilibria in FEGF. At the end
of this paper, we gave two numerical exam-
ples to illustrate the rationality and necessity
of these new equilibria in FEGF.

References

[1] L. Campos, A. Gonzalez, and M.A. Vila.
On the use of the ranking function ap-
proach to solve fuzzy matrix games in
a direct way. Fuzzy Sets and Systems,
49:193–203, 1992.

[2] J. Harsanyi. A general theory of rational
behavior in game situations. Economet-
rica, 34:613–634, 1966.

[3] H.W. Kuhn. Extensive games. Pro-
ceedings of the National Academy of Sci-

ences of the United States of America,
36(10):570–576, 1950.

[4] H.W. Kuhn. Extensive form games and
the problem of information. Contribtu-
ions to the Theory of Games, 2:193–216,
1953.

[5] B. Liu. Theory and Practice of Uncer-
tain Programming. Physica-Verlag, Hei-
delberg, 2002.

[6] B. Liu. Uncertainty Theory: An In-
troduction to its Axiomatic Foundations.
Springer-Verlag, Berlin, 2004.

[7] B. Liu. Uncertainty Theory. Springer-
Verlag, Berlin, 2 edition, 2007.

[8] B. Liu and Y. Liu. Expected value of
fuzzy variable and fuzzy expected value
models. IEEE Transactions on Fuzzy
Systems, 10:445–450, 2002.

[9] Y. Liu and J. Gao. The independence of
fuzzy variables in credibility theory and
its applications. International Journal
of Uncertainty, Fuzziness & Knowledge-
Based Systems, to be published.

[10] Y. Liu and B. Liu. Expected value opera-
tor of random fuzzy variable and random
fuzzy expected value models. Interna-
tional Journal of Uncertainty, Fuzziness
& Knowledge-Based Systems, 11(2):195–
215, 2003.

[11] T. Maeda. Characterization of the equi-
librium strategy of the bimatrix game
with fuzzy payoff. Journal of Mathemat-
ical Analysis and Applications, 251:885–
896, 2000.

[12] J. Nash. Equilibrium points in n-person
games. Proceedings of the National
Academy of Science of the USA, 36:48–
49, 1950.

[13] J Nash. Non-cooperative games. Annals
of Mathematics, 54:286–295, 1951.

[14] I. Nishizaki and M. Sakawa. Equi-
librium solutions for multiobjective bi-
matrix games with fuzzy payoffs and

990 Proceedings of IPMU’08



fuzzy goals. Fuzzy Sets and Systems,
111(1):99–116, 2000.

[15] M.J. Osborne and A. Rubinstein. A
Course In Game Theory. The MIT Press,
Cambridge, Massachusetts and London,
England, 1994.

[16] L. Shapley. A value for n-person games.
Contribtuions to the Theory of Games,
2:307–317, 1953.

[17] J. von Neumann and O. Morgenstern.
Theory of Games and Economic Behav-
ior. Princeton University Press, Prince-
ton, N.J., 1944.

Proceedings of IPMU’08 991


