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Par suite seulement d’une malheureuse cöıncidence,
ce résultat ne fut pas � quantitativement � , suivant
le langage des savants, celui qui avait été prévu.
En fait, il fut assez différent.

Pierre Boulle (1953). Le règne des sages.

Abstract

Construction of putative conditional
objects is linked to Dirichlet gener-
ating functions. Lewis’s triviality re-
sult and van Fraasen construction
are retrieved. Nonexistence of a uni-
versal extension of a given boolean
algebra where all its true probabilis-
tic conditional objects can reside is
proven.
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1 Preamble

Conditional objects have been actively dis-
cussed for over one hundred years in the lit-
erature [4] on foundations and philosophy of
probability. They are often introduced as log-
ical statements in some form of probabilistic
logic. To reason quantitatively about and with
them one needs to postulate some probabilis-
tic setting, at least a space of probabilistic
events. Once being modeled this way, a few
questions arise immediately:

• can these objects interact with the ordi-
nal objects (events)? with one another?

• can one build iterated conditional ob-
jects, ie. how to condition a conditional?

• can these objects be modeled in he origi-
nal space? or in a fixed, though perhaps
large extension of the original space.

Several constructions of such objects have
been proposed. They model some aspects of
these objects, typically permitting a one-step
iteration of conditioning. Depending on se-
mantics of such intended objects, they can be
modeled statically or with recognition of some
temporal logical structure. Further, depend-
ing on the intended applications one can be
satisfied with limited interaction among the
objects. Perhaps one would define (A|B) and
P ((A|B)|C), but not necessarily ((A|B)|C)
and P (((A|B)|C)|D).

Then again, one could be satisfied with com-
puting just the probabilities of these simpler
conditional objects, without constructing a
complete probability distribution on the en-
tire space where these objects might live.

2 Intended properties and results

Conditional objects in probabilistic contexts
are usually intended as an algebraic or com-
binatorial constructs that can, functionally,
carry the conditional probability. Assuming a
probability space X and events A,B, . . . ⊆ X
we want to have a function f(A,B) =: A|B,
where (A|B) is to live either in the original
spaceX or in some extension E(X) thereof. It
is posited that there be a natural way to con-
struct probability distribution PE on E(X),
given P on X.
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We want PE((A|B)) = P (A|B), the latter un-
derstood as the usual conditional probability.
It is often tacitly assumed that the conditional
objects, once constructed, are suitable for an
arbitrary probability distribution. Thus this
equality would have to hold for any P on X.
A weaker solution would only produce such
objects specialised to a specific probability as-
signment.

Logical process of conditioning should, in a
sense, ‘subtract’ the information. Lifted to
the probabilistic setting one might expect
that the hypothetical (A|B) is independent
of B. Ideally, the joint probability distribu-
tion on (A|B) ⊗ B should be isomorphic to
that on A∩B. A weaker property would have
some joint distribution on (A|B) × B that is
isomorphic to one on A∩B and which would
marginalise to those given on (A|B) and B. In
this weaker form we do not require indepen-
dence of (A|B) and B, just that we can ‘de-
rive’ the common part A∩B from the condi-
tional object (A|B) and the conditioning ob-
ject B. It is the main result of this paper
that such a reconstruction is, in principle, not
possible.

We approach the putative construction of
such objects through the analysis of Dirich-
let generating functions associated with prob-
ability distributions. We will be computing
such functions for the hypothetical objects.
The motivation for our method was the anal-
ysis of the entropy values of various condi-
tionals. Accordingly, these Dirichlet sums can
be termed entropy or information generating
functions.

Lewis provided the triviality lemma [4], stat-
ing that a probability assignment to a boolean
algebra with more than four values cannot ad-
mit conditional objects within the algebra it-
self. It is to mean that there is no boolean
operation oP : 〈A,B〉 → (A|B) which would
be congruent with probabilistic conditioning
under P . We can give it a one-line proof us-
ing such generating function.

We then carry out a form of ‘reverse engi-
neering’ known formally as decategorification
to produce a combinatorial object to which a

Dirichlet sum, approximating that of a ‘true’
conditional might be associated. This leads
directly to Goodman-Nguyen-van Fraasen al-
gebra. Compromises made in this construc-
tion process make apparent that these con-
ditional are imperfect - the joint probability
distribution constructed from the condition-
ing event B and the conditional (A|B) must
be different than that of the combined event
A ∩B, except for some trivial conditioning.

Finally we prove that is a necessary situation
and there can be no algebra of conditional
events, however complex in its structure, that
would make the combined event match pre-
cisely the product of the conditional and the
conditioning events.

3 Notation

We deal, almost exclusively, with discrete
probability distributions. Given two indepen-
dent distributions P and Q, with domains X
and Y respectively we denote P ⊗ Y their
cartesian product - a joint distribution with
X × Y as its domain. If an infinite series
of such independent distributions P1, P2, . . .

needs to be ‘multiplied’ we write
∞∏
j=1

Pj for

the joint distribution on the cartesian product
of Xj . Although this construction is, techni-
cally, not a discrete distribution, we always
need only a ‘weak product’

∞⋃
k=1

k∏
j=1

Xj = X1∪X1×X2∪X1×X2×X3∪ . . .

To each probability distribution we shall as-
sign a certain analytic function f(u) defined
as a finite or infinite sum∑ ai

zui
.

Such sums are known as general Dirichlet se-
ries [5]. They are analytic in a half-plane,
thus have an abscissa of convergence. It is
the intercept on the real axis of the vertical
line in the complex plane, such that there is
convergence to the right of it, and divergence
to the left. We need only the most basic fact

Proceedings of IPMU’08 979



- that the arithmetic operations on such se-
ries or differentiation lead to other analytic
functions that also can be expanded into such
series.

4 Information generating functions

Golomb [3] defined information generating
function as

fP (x) =
∑

pxj .

Its key property is H(P ) = −f ′P (1). More-
over, it has the multiplicative property
fP⊗Q(u) = fP (u)fQ(u), from which one can
derive the additivity of entropies

f ′P⊗Q(1) = (fP fQ)′(1)
= (f ′P fQ + f ′QfP )(1) = f ′P (1) + f ′Q(1)

as fP (1) = fQ(1) = 1.

The present author, independently though 20
odd years later, introduced an entropy (or un-
certainty) generating function1

fP (x) =
∑

p1−x
j =

∑ pj
pxj
.

It is again a Dirichlet generating function,
now making explicit which are the intended
coefficients and the exponentials. This form
has certain advantages over the Golomb’s one.
As the coefficients (written in numerator) are
explicit, they can be taken from a different
probability assignment than the exponentials
(written in denominator). This leads to gen-
erating information distance - I-divergence.
And as a minor nicety, now H(P ) = f ′(0).

The author also noted that, as fP (u) is an
analytic function, its logarithm is analytic as
well. Writing gP (u) = log fP (u) gives

g′(u) =
f ′(u)
fP (u)

; gP⊗Q(u) = gP (u) + gQ(u)

which for the entropies means that

H(P ) = g′(0)
H(P ⊗Q) = (gP + gQ)′(0) = H(P ) +H(Q).

1Here and in the rest of the paper we avoid prolif-
eration of function symbols by reusing f(u) and g(u)
for various related generating functions.

Thus gP (u) is additive wrt formation of carte-
sian products.

Another advantage was pointed out by
Csiszar (unrelated to any entropy computa-
tions). Namely, the latter function is a mo-
ment generating function of the logarithmic
random variable V : P (V = − log pi) = pi.
This suggests the next step - using character-
istic functions instead of moment-generating
ones. Here, we would define

fP (u) =
∑

p1−ix
j , i =

√−1; gP (u) = log f(P (u).

Properties of characteristic functions are bet-
ter understood and this plays important role
in the later nonexistence proof.

Along with these functions based on the prob-
ability assignment on the entire domain, we
will use functions corresponding to the par-
tial probability distribution on a subset of the
domain A ⊆ X. We write2

fP ;A =
∑
A

p1−x
j or fP ;A =

∑
A

p1−ix
j .

Differentiating and evaluating at 0 gives par-
tial entropy

f ′P ;A(0) = −
∑
A

pj log pj = H(P ;A).

Though we refer to Shannon entropy, most
of the reasoning about conditionals could
be carried out using other entropies. For
example, Renyi entropy of order α is
R(α)(P ) = fP (α)−1

α . Now 1 = fP (0) and
limα→0

fP (α)−1
α = f ′P (0). This gives the clas-

sical limit limα→0R
(α)(P ) = H(P ).

5 Constructing probabilistic
conditionals

If a conditional object be constructed as an
event ( a subset) in an a probability space
then its function FP should satisfy

fP :(A|B)(u) =
fP ;A∩B(u)
fP ;B(u)

.

2We simplify the subscripts whenever possible
without confusion; here these summations should read

as
∑

j:xj∈A

. In other places we omit probability assign-

ment or the domain if those can be inferred from the
context.
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This equation is a direct generalisation of the
equality of total probability values

P ((A|B)) = P (A|B) =
P (A ∩B)
P (B)

.

(One could use a more refined, symmetric for-
mula fP ;(A|B) · fP ;B = fP ;A∩B · fP ;X corre-
sponding to P (A|B)P (B) = P (A ∩ B)P (X),
but it only leads to a more complicated con-
struction.)

We discuss so far the generating functions but
need the actual objects. To construct them
we use the paradigm of decategorification [1],
here a construction of a combinatorial species
(‘espèce de structure’) [2]. Such a construc-
tion can be carried out faithfully for ordinary
and exponential generating functions. Here
we need to resort to a bit of ‘cheating’ to ef-
fect a useful construction.

As a minimum we are interested in probabil-
ities of the objects that will represent (A|B)
for any pair of subsets A,B of the domain
X. We will be replacing the function FX with
just the constant fX(0) = 1, representing the
probability of X. We can write

fA|B(u) =
fA∩B(u)
fB(u)

=
fA∩B(u)

fX(u)− fB(u)

After the replacement

fA|B(u) =
fA∩B(u)

1− fB(u)

= fA∩B(u)(1 + fB(u) + f2
B

(u) + . . .)

= fA∩B + fBfA∩B + f2
B
fA∩B + . . .

The corresponding combinatorial object is not
difficult to build. We take E = X∞ as the
extension of our base space X. We associate
to every product of functions fA1 · fA2 · · · fAk

the cartesian product A1×A2× . . .×Ak and
complete it to

A1 ×A2 × . . .×Ak ×
∞∏

i=k+1

X.

Then we take the union of such sets to corre-
spond to the sum of the series. We find

(A|B) = (A ∩B)×X × · · ·
∪ B × (A ∩B)×X × · · ·
∪ B ×B × (A ∩B)×X × · · ·
∪ . . . . . .

where the products in different lines are triv-
ially disjoint. Space X∞ has a natural prob-
ability structure, which defines the proba-
bilities of all conditional objects immersed
there. The resulting construction is known
as Goodman-Nguyen-van Fraasen algebra [4].
Objects like (A|B) can now be mixed among
themselves using standard boolean opera-
tions.

Classical subsets of A,B ⊆ X correspond to

A ×
∞∏
2

X. It is immediate that conditioning

on the entire X amounts to no action (as it
should)

(A|X) = A = A×
∞∏
2

X

as the later terms of the set union are all
empty. We can compute the values like
P (((A|B)|C) or P ((A|B)|(C|D)). Though,
these are only the numerical probability val-
ues; there are no corresponding conditional
objects.

In our approach of linking conditionals with
generating functions we can compute much
more than the overall probabilities of con-
ditional objects. For example, we can com-
pute their entropies and other information pa-
rameters. However, the entire construction is
imperfect in one very important aspect - we
must pay the price for our light-hearted sub-
stitution of constant 1 for the entire function
fX(u).

However, as long as we deal only with the
probabilities of conditionals the model works
very well. For example, (A|B) and B are
stochastically independent, as we would ex-
pect of logically independent objects. It is
easily checked that the intersection (A|B)∩B
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corresponds to (A ∩B)×
∞∏
2

X. We get

P ((A|B) ∩B) = P (A ∩B)

=
P (A ∩B)
P (B)

P (B)

= P (A|B)P (B)

6 Nonexistence

Lewis stated that there can be no two-
argument boolean operator o : 〈A,B〉 7→
(A|B), its values within the same boolean
algebra. Using our approach we would ask
whether

fA∩B(u)
fB(u)

=
∑
A∩B p

1−u
j∑

B p
1−u
j

can be presented as
∑
C

p1−u
j for some C ⊂ X.

Trivially, it is impossible in general, giving our
promised one-line proof of triviality lemma.

The main result is that there can be no univer-
sal construction of E(X) such that the com-
plete conditional objects can live there. We
proceed as before, but use now the character-
istic function (of the logarithmic rv) fA(u) =∑
A

p1−iu
j . The question becomes whether

fA∩B(u)
fB(u) can ever be a characteristic function.

There are numerous conditions known to be
required of a function for it to be a character-
istic function of ‘anything’. For one, it must
go to zero as its argument goes to infinity. It is
trivial to find examples when the ratio above
does not satisfy this property.

7 Closing remarks

Our results do not affect most of the work on
construction and analysis of conditional ob-
jects. On the contrary, we emphasise that
many such constructions are possible and
that, in light of our results, none can claim
to be a completely perfect answer to the con-
ditioning problem.

A similar discussion can be conducted in the
possibilistic setting. It will be complicated

somewhat by the fact that there are several
methods of conditioning in that framework.
However, we expect that most of them admit
similar impossibility results.

We give only a few basic references; some of
them contain excellent extensive overviews of
the work on building conditional objects.
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