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Abstract

In this paper we deal with a single-
stage decision problem with impre-
cise utilities with some special pro-
perties. The main one is that
product measurability of the utility
function is not required, so that, ite-
rated expectations are used instead
of integrals over a product space.
Equivalence between the two forms
of the Bayesian analysis are obtained
under these conditions.
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1 Introduction

Uncertainty yields in the construction of
many decision problems. Thus, sometimes
we an action is chosen, the consequences of
this election are imprecise, and the decisor
is not able to express the values of the con-
sequences of his/her choices in a real-valued
scale. That is the case, for instance, of util-
ity assessments like “safe”, “risky”, “satisfac-
tory”, “very expensive”, “rather dangerous”
and so on. Therefore, several studies have
been developed to enlarge the scale to evalu-
ate utilities. See, for instance, chronologically
ordered: [18], [17], [6], [2], [3], [7] or [8].

In [7], a model for the single-stage decision

problem with imprecise utilities was intro-
duced. Under the conditions stated there, it
was obtained the equivalence between the ex-
tensive and the normal forms of the Bayesian
analysis. Later, in [8], this model was im-
proved to deal with a wider class of utilities.

However, this model was based on a version
of a Fubini Theorem for random upper semi-
continuous functions (namely, fuzzy random
variables of random fuzzy sets) which requires
the product measurability.

The present work is devoted to the analysis of
single-stage decision problems with imprecise
utility functions when they are not necessarily
product measurable. The theoretical core for
the results obtained in this paper has been re-
cently developed in [16], by studying iterated
expectations of random upper semicontinuous
functions without product measurability.

The paper is organized in the following sec-
tions: Section 2 gathers preliminary concepts
and results; Section 3 contains the new math-
ematical model for single-stage decision prob-
lems and the Bayesian analysis for that prob-
lem. Finally, some possible future lines of
work are outlined.

2 Preliminaries

Let Kc be the class of nonempty compact con-
vex subsets of R. This class is endowed with
the Minkowski addition and the product by a
scalar and becomes a semilinear space.

The Hausdorff metric on Kc is given by

dH(M, N)
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= max { | inf M − inf N |, | supM − supN | }.

Let (Ω,A) be a measurable space, a random
set is A|BdH

-measurable mapping S : Ω →
Kc, where BdH

denotes the Borel σ-field gen-
erated by the topology induced by dH on Kc.

If µ : A → R is a measure, a random set S is
said to be integrably bounded with respect to
µ, if ‖S‖ ∈ L1(Ω,A, µ).

The integral of S, or expected value in case of
µ being a probability, is given by the Kudō-
Aumann integral (see [10] and [1]), this is,{∫

Ω
f(ω) dµ(ω) | f : Ω → R,

f ∈ L1(Ω,A, µ), f ∈ S a.e. [µ]
}
.

This set will be denoted by E(S|µ). It is easy
to see that

E(S|µ)

=
[ ∫

Ω
inf S(ω) dµ(ω),

∫
Ω

supS(ω) dµ(ω)
]
.

Let Fc denote the class of upper semicon-
tinuous functions U : R → [0, 1] such that
Uα ∈ Kc if α ∈ [0, 1], where Uα = {x ∈ R :
U(x) ≥ α} for α ∈ (0, 1], and U0 = cl {x ∈
R : U(x) > 0}, cl denoting the topological
closure. These mappings are also referred to
as fuzzy sets of R, and the sets Uα as the as-
sociated α-level sets.

The class Fc is endowed with the addition and
the product by a scalar, defined by means
of Zadeh’s extension principle (see [20]), or
equivalently (see [13]) these operations can be
levelwise calculated as (U + V )α = Uα + Vα

and (λU)α = λUα for all U, V ∈ Fc, λ ∈ R
and α ∈ [0, 1].

On Fc we consider the d∞ metric (see [13])
given by d∞(U, V ) = supα∈[0,1] dH(Uα, Vα),
with U, V ∈ Fc.

The magnitude of U ∈ Fc is defined by ‖U‖ =
d∞(U,1{0}) = dH(U0, {0}).
Given a measurable space (Ω,A), a mapping
X : Ω → Fc is said to be a random upper
semicontinuous function) if Xα : Ω → Kc with
Xα(ω) = (X(ω))α for all ω ∈ Ω, is a random
set for all α ∈ [0, 1] (see [15]).

A random upper semicontinuous function X
is said to be integrably bounded with respect to
a measure µ : A → R, if the mapping ‖X‖ ∈
L1(Ω,A, µ), where ‖X‖ : Ω → R is given by
‖X‖(ω) = ‖X(ω)‖ for all ω ∈ Ω.

For an integrably bounded fuzzy random vari-
able, in [15] its integral is defined, denoted by∫
Ω X(ω) dµ(ω) or E(X|µ), as the unique set

in Fc such that

E(X|µ)α = E
(
Xα

∣∣µ)
for every α ∈ [0, 1]. When Ω = [a, b], we will
use also the notation

∫ b
a X(ω) dµ(ω).

If µ is a probability measure, an fuzzy random
variable is also referred to as a fuzzy random
variable or random fuzzy set and its integral
as the fuzzy expected value of X.

We will denote by BΩ the Borel σ-field on
Ω, for any set Ω ⊂ Rk with k ∈ N. Given
(Ω,BΩ) and m1,m2 : Ω → R two σ-finite
measures, m1 ¿ m2 will indicate that m1

is absolutely continuous with respect to m2,
and dm1

dm2
will denote a Radon-Nikodym deriva-

tive of m1 with respect to m2. If it is sup-
posed that there exists a continuous Radon-
Nikodym derivative, then dm1

dm2
will denote this

particular function.

In [16] some results about iterated integrals
are stated, and they will be the basis of the
framework that we have developed here.

Theorem 2.1. Let (Ω,BΩ, P ) be a probabil-
ity space with Ω ⊂ Rk and let m denote the
Borel measure on the interval T = [a, b]. For
every t ∈ T , let Pt be a probability measure
on (Ω,BΩ) such that Pt ¿ P and there ex-
ists a continuous Radon-Nikodym derivative.
For every ω ∈ Ω, let Pω be a probability on
(T,BT ) such that Pω ¿ m and there exists a
continuous Radon-Nikodym derivative.

Let X : Ω × T → Fc be a mapping satisfying
that:

i) for every t ∈ T , Xt is an integrably
bounded fuzzy random variable with res-
pect to Pt,

ii) for every ω ∈ Ω, Xω is an integrably
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bounded fuzzy random variable with res-
pect to Pω and it is continuous a.s. [P ],

iii) there exists h1 ∈ L1(Ω,BΩ, P ) such that∥∥X(ω, t)dPω
dm (t)

∥∥ ≤ h1(ω) a.s. [P ] for e-
very t ∈ T , and the mapping ω 7→
X(ω, t)dPω

dm (t) is continuous a.e. [m],

iv) there exists a mapping g ∈
L1([a, b],B[a,b],m) such that for every
ω ∈ Ω, ‖X(ω, t)dPω

dm (t)‖ ≤ g(t) a.e. [m]
for every ω ∈ Ω,

v) the mapping t 7→ X(ω, t)dPt
dP (ω) is con-

tinuous on T a.s. [P ],

vi) there exists h2 ∈ L1(Ω,BΩ, P ) such that
‖X(ω, t)dPt

dP (ω)‖ ≤ h2(ω) a.s. [P ] for ev-
ery t ∈ T .

Let m′ be a probability measure on (T,BT )
such that m′ ¿ m and there exists a contin-
uous Radon-Nikodym derivative. If for every
t ∈ T , the equality

dPω

dm
(t) =

dPt

dP
(ω)

dm′

dm
(t) a.s. [P ]

holds, then∫
Ω

( ∫ t

a
X(ω, s) dPω(s)

)
dP (ω)

=
∫ t

a

( ∫
Ω

X(ω, s) dPs(ω)
)

dm′(s)

for every t ∈ T .

Theorem 2.2. Assume the conditions in
Theorem 2.1 with the interval T being
not necessarily bounded, and suppose that
there exists g′ ∈ L1(Ω,BΩ, P ) such that∫
T ‖X(ω, s)‖dPω(s) ≤ g′(ω) a.s. [P ]. Then,

the following equality holds,∫
Ω

( ∫
T

X(ω, s) dPω(s)
)

dP (ω)

=
∫

T

(∫
Ω

X(ω, s) dPs(ω)
)

dm′(s) .

It should be remarked that the conditions in
Theorems 2.1 and 2.2 do not imply that X
is an fuzzy random variable on the product
measurable space as it is illustrated in [16].

3 A model for single-stage decision
problems

In this section we state a model to study
single-stage decision problems with impre-
cise utilities, and the model is valid even for
not necessarily measurable utility functions.
Once the model is stated, we study the condi-
tions to guarantee the equivalence of the nor-
mal and extensive forms of the Bayesian anal-
ysis involving imprecise utilities.

In order to obtain that equivalence result, it
is necessary to exchange the order of two iter-
ated integrals, as we will see later. Results in
Section 2, stated in [16], will become the main
tools for this purpose. On the other hand, if
Fubini type theorem could be applied to guar-
antee the exchange result, this case has been
already studied in [7], [11] and [8]. Therefor,
in this paper, we will provide alternative con-
ditions to handle this kind of problem in a
different framework.

We will model imprecise utilities by means of
fuzzy sets and imprecise utility functions by
means of fuzzy random variables. Thus, in
order to find the greatest utility, we will need
to rank fuzzy sets. We will use the criterion
introduced by [4], which is based on the fol-
lowing value: given U ∈ Fc, its λ, µ-average
value is defined as the real number

V λ
µ (U) =

∫ 1

0

(
λ supUα+(1−λ) inf Uα

)
dµ(α),

where λ ∈ [0, 1] represents a degree of opti-
mism/pessimism that is assumed by the deci-
sion maker (the greater λ the more optimistic
situation in a gain context), and µ is a mea-
sure on [0, 1].

Then, U ∈ Fc will be said to be greater than
or equal to W ∈ Fc in the λ, µ-average sense,
denoted by U ≥λ,µ W, if, and only if, V λ

µ (U) ≥
V λ

µ (W ).

Good properties of V λ
µ are not only related

with the way it ranks fuzzy sets, but also with
its exchangeability with the fuzzy expected
value, as it is stated in the following result,
which can be deduced from [12].

Proposition 3.1. Let (Ω,A, P ) be a prob-
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ability space and let X : Ω → Fc be an
integrably bounded fuzzy random variable If
µ : B[0,1] → R is a measure such that µ ¿ m,
where m denotes the Borel measure on the in-
terval [0, 1], then

V λ
µ

( ∫
Ω

X(ω) dP (ω)
)

=
∫

Ω
V λ

µ (X(ω)) dP (ω),

where the integral in the left-hand-side term
stands for the fuzzy expected value of X with
respect to P, whereas the integral in the right-
hand-side term represents the usual Lebesgue
integral of the random variable V λ

µ (X) with
respect to P .

We are formalizing now the concept of fuzzy
utility function. Let us consider in the follow-
ing a single-stage decision problem with state
space Θ ⊆ R, and with action space A. Let
BΘ be the Borel σ-field on Θ, and let m denote
the Borel measure on Θ.

Definition 3.1. A mapping U : Θ×A → Fc

is said to be a fuzzy utility function on Θ×A
if

i) for every a ∈ A, the projection Ua : Θ →
Fc is a fuzzy random variable on (Θ,BΘ),

ii) for every pair a1, a2 ∈ A, a1 will be con-
sidered preferred or indifferent to a2 with
respect to a probability distribution ξ on
(Θ,BΘ), if E(Ua1 |ξ) ≥λ,µ E(Ua2 |ξ) (for
fixed λ ∈ [0, 1] and measure µ).

For describing the elements of the decision
problem with fuzzy utilities we will use the
notation (Θ,A, U).

We will deal with the decision problem within
a Bayesian context, therefore wi will assume
the existence of a probability distribution π on
(Θ,BΘ), called the prior distribution. Hence,
the “value” of the decision problem will be
the fuzzy value E(Uaπ |π), being aπ a prior
Bayes action in the λ, µ-average sense, this
is, aπ ∈ A verifies E(Uaπ |π) ≥λ,µ E(Ua|π) for
all a ∈ A.

In any decision problem (despite utilities are
crisp or imprecise), it becomes helpful for in-
creasing the expected utility to add sample
information. We will use the following nota-
tion to model this situation: X will be a sta-
tistical experiment characterized by a proba-
bility space (X,BX, Pθ), being θ ∈ Θ, BX the
Borel σ-field on X ⊂ Rk and the experimental
distribution Pθ depends on the true unknown
state θ. We will denote by P the marginal
(also called predictive) distribution of the ex-
periment.

Once the experiment is performed, if X = x
is the available sample information, the fuzzy
expected utility associated with an action a ∈
A is given by E(Ua|πx), being πx the posterior
distribution of θ given X = x (πx is obtained
by means of Bayes’ formula). So, a poste-
rior Bayes action is any aπx ∈ A such that
E(Uaπx |πx) ≥λ,µ E(Ua|πx) for every a ∈ A.

The concept of decision rule is introduced to
generalize the choice of an action for every
possible sample information. A decision rule
is a mapping from X to A satisfying condi-
tions based on Theorems 2.1 and 2.2.

Definition 3.2. Let (X,BX, Pθ) be the prob-
ability space of a statistical experiment X as-
sociated with the decision problem (Θ,A, U).
A decision rule is a mapping d : X → A sat-
isfying that

i) for every θ ∈ Θ, U(θ, d()) : X→ Fc is an
integrably bounded fuzzy random variable
with respect to Pθ,

ii) for every x ∈ X, U(, d(x)) : Θ → Fc is
an integrably bounded fuzzy random vari-
able with respect to πx, moreover, it is
continuous a.s. [P ],

iii) there exists h1 ∈ L1(X,BX, P ) such that∥∥U(θ, d(x))dπx
dm (θ)

∥∥ ≤ h1(x) a.s. [P ] for
every θ ∈ Θ, and the mapping x 7→
U(θ, d(x))dπx

dm (θ) is continuous a.e. [m],

iv) there exists g ∈ L1(Ω,BΩ,m) such
that for every x ∈ X, it holds that
‖U(θ, d(x))dπx

dm (θ)‖ ≤ g(θ) a.e. [m] for
every x ∈ X,
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v) the mapping θ 7→ U(θ, d(x))dPθ
dP (x) is

continuous on Θ a.s. [P ],

vi) there exists h2 ∈ L1(X,BX, P ) such that∥∥∥U(θ, d(x))dPθ
dP (x)

∥∥∥ ≤ h2(x) a.s. [P ] for
every θ ∈ Θ,

vii) there exists g′ ∈ L1(X,BX, P ) with∫
Θ ‖U(θ, d(x))‖ dπx(θ) ≤ g′(x).

Therefore, on one hand we can consider the
normal Bayesian analysis. It consists of find-
ing a Bayes decision rule, this is, a rule dB

such that∫
Θ

(∫
X

U(θ, dB(x)) dPθ(x)
)

dπ(θ)

≥λ,µ

∫
Θ

( ∫
X

U(θ, d(x)) dPθ(x)
)

dπ(θ)

for every decision rule d. In this case, the
“value” of the problem is∫

Θ

( ∫
X

U(θ, dB(x)) dPθ(x)
)

dπ(θ).

On the other hand the extensive Bayesian
analysis is considered. It consists of, for
each sample outcome x, obtaining a posterior
Bayes action aπx , and considering the decision
rule x 7→ aπx . Now, the “value” of the exper-
iment X is quantified by the fuzzy expected
terminal utility, which is defined as follows:

Definition 3.3. Given (Θ,A, U) a decision
problem and X = (X,BX, Pθ), an associated
experiment, the fuzzy expected terminal utility
of X is given by

Ut(X) =
∫
X

( ∫
Θ

U(θ, aπx) dπx(θ)
)

dP (x).

The following result states conditions to guar-
antee the exchange of the iterated integrals
appearing in the problem.

Theorem 3.2. Let (Θ,A, U) be a decision
problem, let Θ ⊂ R and let π be a prior
probability on (Θ,BΘ) such that π ¿ m with
a continuous Radon-Nikodym derivative. Let
X = (X,BX, Pθ) be an associated experiment,
and let P be the marginal distribution. For ev-
ery θ ∈ Θ, suppose that Pθ ¿ P and there ex-
ists a continuous Radon-Nikodym derivative.

For every x ∈ X, let πx be the posterior dis-
tribution on (Θ,BΘ) such that πx ¿ m with
a continuous Radon-Nikodym derivative.

If for every θ ∈ Θ, it holds that dπx
dm (θ) =

dPθ
dP (x) dπ

dm(θ) a.s. [P ], then∫
X

(∫
Θ

U(θ, d(x)) dπx(θ)
)

dP (x)

=
∫

Θ

( ∫
X

U(θ, d(x)) dPθ(x)
)

dπ(θ)

whatever the decision rule d : X→ A may be.

The next result is the natural consequence of
the previous development, and it is the main
result in this paper, stating the equivalence
between the two forms, normal and extensive,
of the Bayesian analysis.

Theorem 3.3. Under conditions in Theorem
3.2, consider the mapping associating to each
sample information x ∈ X a posterior Bayes
action aπx. If this mapping satisfies the defi-
nition of decision rule, then it is a Bayes de-
cision rule. Moreover, Ut(X) is equal, in the
λ, µ-average sense, to the fuzzy expected util-
ity associated with any Bayes decision rule,
or, equivalently:

Ut(X)

=λ,µ

∫
X

( ∫
Θ

U(θ, dB(x)) dπx(θ)
)

dP (x) .

4 Future lines

Some open problems could be suggested from
this paper. Some of then are based on us-
ing different criteria for ranking fuzzy sets,
maybe not crisp criteria but based on fuzzy
preferences. Another interesting problem is
the study of the case in which not only the in-
tegrated random elements (in particular, util-
ities) but also the probability assessments are
imprecise (see for instance [19] or [5]).
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