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Abstract

We overview the existing condi-
tional independence concepts from
the viewpoint of their relation to
possibility theory. We will show that
a suitable notion — from this per-
spective — seems to be strong inde-
pendence in the wider framework of
credal sets.
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1 Introduction

The complexity of practical problems that are
of primary interest in the field of artificial in-
telligence usually results in the necessity to
construct models with the aid of a great num-
ber of variables: more precisely, hundreds or
thousands rather than tens. Processing dis-
tributions of such dimensionality would not
be possible without some tools allowing us to
reduce demands on computer memory. Con-
ditional independence, which belongs among
such tools, allows the expression of these mul-
tidimensional distributions by means of low-
dimensional ones, and therefore to substan-
tially decrease demands on computer memory.

For three centuries, probability theory has
been the only mathematical tool at our dis-
posal for uncertainty quantification and pro-
cessing. As a result, many important the-
oretical and practical advances have been

achieved in this field. However, during the
last forty years some new mathematical tools
have emerged as alternatives to probability
theory. They are used in situations whose
nature of uncertainty does not meet the re-
quirements of probability theory, or those in
which probabilistic approaches employ crite-
ria that are too strict. Nevertheless, proba-
bility theory has always served as a source of
inspiration for the development of these non-
probabilistic calculi and these calculi have
been continually confronted with probability
theory and mathematical statistics from var-
ious points of view. Good examples of this
fact include the numerous papers studying
conditional independence in various calculi
[2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 16].

With this contribution, we will concentrate
ourselves to evidence theory, which can be
viewed as a generalization of both probabil-
ity and possibility theories. After a brief re-
view of basic notation and terminology nec-
essary for understanding the next part of the
paper (Section 2) we will summarize in Sec-
tion 3 the notions of conditional independence
in evidence theory proposed by various au-
thors, and show that although all these no-
tions are generalizations the notion of con-
ditional independence in probability theory,
nothing similar holds for possibility theory.
In Section 4 we will suggest how this prob-
lem can be solved within a wider framework
of credal sets and in Section 5 we will study
the relation of strong independence to condi-
tional T -independence thoroughly studied in
[16].
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2 Basic Notions

Consider a finite index set N = {1, 2, . . . , n}
and finite sets {Xi}i∈N . In this text we will
consider multidimensional frame of discern-
ment

Ω = XN = X1 ×X2 × . . .×Xn,

and its subframes. For K ⊂ N , XK denotes
a Cartesian product of those Xi, for which
i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN

into XK will be denoted x↓K , i.e. for K =
{i1, i2, . . . , i`}

x↓K = (xi1 , xi2 , . . . , xi`) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL,
A↓K will denote a projection of A into XK :

A↓K = {y ∈ XK |∃x ∈ A : y = x↓K}.
Let us remark that we do not exclude situa-
tions when K = ∅. In this case A↓∅ = ∅.
In addition to the projection, in this text we
will need also the opposite operation which
will be called extension. By an extension of
two sets A ⊆ XK and B ⊆ XL we will under-
stand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.
Let us note that if K and L are disjoint, then

A⊗B = A×B.

Consider a basic (probability or belief ) assign-
ment (or just assignment) m on XN , i.e.

m : P(XN ) −→ [0, 1]

for which
∑

A⊆XN
m(A) = 1. For each K ⊂

N its marginal basic assignment is defined
(for each B ⊆ XK):

m↓K(B) =
∑

A⊆XN :A↓K=B

m(A).

Having two basic assignments m1 and m2 on
XK and XL, respectively (we assume that

K,L ⊆ N), we say that these assignments
are projective if

m↓K∩L1 = m↓K∩L2 ,

which occurs if and only if there exists a basic
assignment m on XK∪L such that both m1

and m2 are marginal assignments of m.

Given a basic assignment m we can obtain
belief, plausibility and commonality functions
via the following formulae:

Bel(A) =
∑
B⊆A

m(B);

Pl(A) =
∑

B∩A 6=∅
m(B);

Q(A) =
∑

A⊆B⊆XN

m(B).

Now let us concentrate our attention to two
special cases of basic assignments.

A basic assignment is called Bayesian if all
its focal elements1 are singletons. In this
case Bel(A) = Pl(A) = P (A), called a prob-
ability measure, and Q(A) = m(A) for all
A ∈ P(XN ); m can be substituted by a point
function

p : XN −→ [0, 1]

called a probability distribution.

A body of evidence2 is called consonant if its
focal elements are nested. In this case

Pl(A) = max
B⊆A

Pl(B),

i.e. plausibility function becomes a possibility
measure Π and its values for any A ⊆ XN can
be obtained from a possibility distribution

π : XN −→ [0, 1]

via the formula:

Π(A) = max
x∈A

π(x).

Connection between basic assignment m and
a possibility distribution π is expressed by the
following formula:

π(x) =
∑

x∈A∈P(XN )

m(A).

1A set A ∈ P(XN ) is a focal element if m(A) > 0.
2A body of evidence is a pair (F , m), where F is

the set of all focal elements.
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3 Conditional Independence
Concepts

In this section we will overview different con-
ditional independence notions introduced in
the framework of evidence theory. Before do-
ing that let us stress, that we are interested in
the conditional independence from the view-
point of decomposition of multidimensional
models and not in its behavioral interpreta-
tion.

3.1 Conditional Non-Interactivity

This notion was introduced by Ben Yaghlane
et al. [2], but their definition is, in fact, equiv-
alent to the conditional independence notion
by Shenoy and Studený [12, 14].

Let X,Y and Z be variables taking their val-
ues in X,Y and Z, respectively, and m be
a joint basic assignment on P(X × Y × Z).
Variables X and Y are conditionally non-
interactive3 given Z with respect to m iff the
equality

Q(A) ·Q↓Z(A↓Z) (1)
= Q↓XZ(A↓XZ) ·Q↓Y Z(A↓Y Z)

holds for any A ∈ P(X×Y × Z).

The authors proved that conditional non-
interactivity satisfies so-called semigraphoid
properties, usually taken as sound properties
of a conditional independence relation.

The authors also claim that their definition
of conditional non-interactivity is equivalent
to that of strong conditional independence in-
troduced by Almond [1], which is based on
Dempster’s rule.

Nevertheless, this notion of independence
does not seem to be appropriate, as it is not
consistent with marginalization. What does
it mean can be seen from the following simple
example (by Studený).

Example 1 Let X,Y and Z be three binary
variables X = Y = Z = {u, v} and mXZ

3Let us note that the definition presented in [2] is
based on conjunctive Dempster’s rule, but the authors
proved its equivalence with 1.

and mY Z two basic assignments, both of them
having only two focal elements:

mXZ({(u, v), (v, v)}) = .5,
mXZ({(u, v), (v, u)}) = .5,
mY Z({(u, v), (v, v)}) = .5,
mY Z({(u, v), (v, u)}) = .5.

Since their marginals are projective

m
↓Z
XZ({v}) = m

↓Z
Y Z({v}) = .5,

m
↓Z
XZ({u, v}) = m

↓Z
Y Z({u, v}) = .5,

there exist an extension of both of them. Nev-
ertheless, the application of the equality (1) to
these basic assignments leads to the following
values of the joint “basic assignment”:

mNI(X×Y × {v}) = .25,
mNI(X× {u} × {v}) = .25,
mNI({u} ×Y × {v}) = .25,
mNI({(u, u, v), (v, v, u)}) = .5,
mNI({(u, u, v)}) = −.25,

i.e. we ore out of evidence theory. ♦

From the viewpoint of multidimensional mod-
els it seems to be a substantial drawback.

3.2 Factorization

Another definition of conditional indepen-
dence was recently proposed by Jiroušek [9].
His definition is based on the notion of the
operator of composition introduced in the ev-
idence theory in [10] as follows:

For two arbitrary basic assignments m1 on
XK and m2 on XL a composition m1 . m2

is defined for all C ⊆ XK∪L by one of the
following expressions:

[a] if m↓K∩L2 (C↓K∩L) > 0 and C = C↓K⊗C↓L
then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L2 (C↓K∩L)
;

[b] if m↓K∩L2 (C↓K∩L) = 0 and C = C↓K ×
XL\K then

(m1 . m2)(C) = m1(C↓K);
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[c] in all other cases

(m1 . m2)(C) = 0.

The relation of above defined operator of com-
position to its probabilistic pre-image is ex-
pressed by the following simple lemma proven
in [10].

Lemma 1 Let m1 and m2 be Bayesian basic
assignments on XK and XL, respectively, for
which

m2
↓K∩L(A) = 0 =⇒ m1

↓K∩L(A) = 0 (2)

for any A ⊆ XK∪L. Then m1 . m2 is a
Bayesian basic assignment.

The ternary relation of factorization is defined
(for disjoined I, J,K ⊂ N, I 6= ∅ 6= J) in the
following way

XI ⊥⊥m XJ |XK ⇐⇒
m
↓I∪J∪K

= m
↓I∪K

. m
↓J∪K

.

It was shown in [9] that this relation also
satisfies semigraphoid properties, but, in con-
trary to conditional non-interactivity, it does
not suffer from the drawback of inconsistency
with marginalization, as can be seen from the
following example.

Example 1 (Continued) Taking into consid-
eration the results obtained in the previous
part, one can easily realize that using the
above presented definition of the operator of
composition we will obtain the following joint
assignment (under factorization):

mF (X×Y × {v}) = .5
mF ({(u, u, v), (v, v, u)}) = .5 ♦

3.3 Relation to Probability and
Possibility Theories

Evidence theory can be understood as a gen-
eralization of both probability and possibil-
ity theories. From this perspective, one could
expect, that the (conditional) independence
notion should be a generalization of (condi-
tional) independence notions of both theories.

X1 0 1
π1 1 .7

X2 0 1
π2 .5 1

Table 1: Possibility distributions π1 and π2.

It is valid for both concepts (non-interactivity
and factorization) for probability theory. As
concerns conditional non-interactivity, it can
be seen from the fact, that commonality func-
tion of Bayesian basic assignment equals this
basic assignment. In that case (1) becomes

p(x, y, z) · p(z) = p(x, z) · p(y, z)

for all (x, y, z) ∈ X×Y × Z.

For factorization concept it follows from
Lemma 1 and the following lemma taken from
[8].

Lemma 2 Let I, J,K be disjoint subsets of
N , I and J be nonempty. For a probability
distribution p defined on XN

p
↓I∪J∪K

= p
↓I∪K

. p
↓J∪K

if and only if XI and XJ are conditionally
independent given XK with respect to p.

Unfortunately, it does not hold for possibility
theory. It is even worse, having two indepen-
dent consonant bodies of evidence, the result-
ing body of evidence is not consonant. Let us
demonstrate it by the following simple exam-
ple. Before doing that let us note that both
conditional independence concepts presented
above collapse, if K = ∅, to

m(A) = m
↓I

(B) ·m↓J
(C) (3)

for all A = B × C and m(A) = 0 otherwise.

Example 2 Let X1 = X2 = {0, 1} be two
frames of discernment and π1, π2 defined by
Table 1 be possibility distributions defined on
them.

From these marginal possibilities we can get
basic assignments contained in Table 2 and
(under the independence assumption) via for-
mula (3) the joint assignment in Table 3.
It is evident that the focal elements are not
nested. ♦
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A1 {0} X1

m1 .3 .7
A2 {1} X2

m2 .5 .5

Table 2: Corresponding basic assignments m1

and m2.

A1 ×A2 m1 ·m2

{0} × {1} .15
{0} ×X2 .15
X1 × {1} .35
X1 ×X2 .35

Table 3: Resulting basic assignments on X1×
X2.

4 Strong Independence

This problem can be avoided if we take into
account the fact that both evidence and pos-
sibility theories can be considered as special
kinds of imprecise probabilities. Let us start
with the definition of the fundamental con-
cept of a credal set.

A credal set M(X) about a variable X is de-
fined as a set of probability measures about
the values of this variable. In order to simplify
the expression of operations with credal sets,
it is often considered [11] that a credal set is
the set of probability distributions associated
to the probability measures in it. Under such
consideration a credal set can be expressed as
a convex hull of its extreme distributions

M(X) = CH{ext(M(X ))}.

Again, there exist numerous definitions of in-
dependence for credal sets [6], but we have
chosen strong independence, as it seems to be
most proper for multidimensional models.

We say that X and Y are strongly indepen-
dent with respect to M(XY ) iff (in terms of
probability distributions)

M(XY ) (4)
= CH{p1 · p2 : p1 ∈M(X), p2 ∈M(Y )}.

Note that any possibility distribution can be
associated with a credal set

M(π) = {p : p(x) ≤ π(x), x ∈ X}.

πS X2 0 1
X1 = 0 .5 1
X1 = 1 .35 .7

Table 4: Joint possibility distribution ob-
tained by strong independence

We can utilize this fact to find an extension
under strong independence of the distribu-
tions in Example 2.

Example 2 (Continued) Possibility distri-
bution π1 can be associated with the credal
set

M(π1) = {p1 : p1(1) ≤ 0.7, p1(0) = 1− p1(1)}
= CH{(0.3, 0.7), (1, 0)}

and similarly π2 to the set

M(π2) = {p2 : p2(0) ≤ 0.5, p2(1) = 1− p2(1)}
= CH{(0.5, 0.5), (0, 1)}.

The set M(π1 · π2) can be then obtained via
formula (4):4

M(π1 ·π2)=CH{(.15, .15, .35, .35),(.5, .5, 0, 0),
(0, .3, 0, .7), (0, 1, 0, 0)}.

As suprema must be achieved in extreme
points, one can easily obtain the joint pos-
sibility distribution πS in Table 4. ♦

There exist several generalizations of this no-
tion to conditional independence, see e.g. [11],
but the following definition is suggested by
the authors as the most appropriate for the
marginal problem, which is in the center of
our attention for a long time.

Given three variables X,Y and Z we say that
X and Y are independent on the distribution
given Z under global set M(X,Y, Z) iff

M(X,Y, Z)={(p1 · p2)/p
↓Z
1 : p1 ∈M(X,Z),

p2 ∈M(X,Z), p
↓Z
1 = p

↓Z
2 } .

It was proven by Moral and Cano [11] that
strong independence on distribution satisfies

4Let us note that the extreme points are
(p(0, 0), p(0, 1), p(1, 0), p(1, 1)).
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semigraphoid properties. Therefore, from this
formal point of view it is comparable with the
notions of conditional non-interactivity and
factorization presented in Section 3.

It seems to be interesting how Example 1 can
be solved by strong independence.

Example 1 (Continued) From the values of
the basic assignments mXZ and mY Z we will
obtain

pXZ(u, u) = 0 = pY Z(u, u)
pXZ(u, v) ∈ [0, 1] 3 pY Z(u, v),
pXZ(v, u) ∈ [0, .5] 3 pY Z(v, u),
pXZ(v, v) ∈ [0, .5] 3 pXZ(v, v).

Credal set M(XZ) is therefore

M(XZ) = CH{(0, 1, 0, 0), (0, .5, 0, .5)
(0, .5, 0.5, 0), (0, 0, .5, .5)}

and credal set M(Y Z) is identical. We can
see, that the first two probability distribu-
tions are projective and the remaining two
as well. Therefore under the assumption of
strong conditional independence we will get
the following joint credal set

M(XY Z) = CH{(0, 1, 0, 0, 0, 0, 0, 0),
(0, .5, 0, .5, 0, 0, 0, 0),
(0, .5, 0, 0, 0, .5, 0, 0),
(0, .25, 0, .25, 0, .25, 0, .25),
(0, .5, 0, 0, 0, 0, .5, 0),
(0, .0, 0, .5, 0, 0, .5, 0),
(0, 0, 0, 0, 0, .5, .5, 0),
(0, 0, 0, 0, 0, 0, .5, .5)}.

From M(XY Z) we can easily get values of
upper and lower probabilities of all singletons
as well as values of bigger subsets. For ex-
ample, for the focal elements obtained by the
operator of composition . we have

P (X×Y × {v}) ∈ [.5, 1],
P ({(u, u, v), (v, v, u)}) ∈ [.5, 1],

which perfectly coincides with the results ob-
tained under factorization. It is easy but
rather tiresome to check that it holds for all
255 nonempty subsets of {u, v}3. ♦

5 Relation to T -independence

In this section we will recall the notion of pos-
sibilistic T -independence introduced in [15]
and studied in more details in [16, 17] and
study its relation to strong conditional inde-
pendence in the framework of possibility the-
ory.

Before doing that let us recall the notion of a
triangular norm, because T -independence is
parameterized by it.

A triangular norm (or a t-norm) T is an iso-
tonic, associative and commutative binary op-
erator on [0, 1] (i.e. T : [0, 1]2 → [0, 1]) satisfy-
ing the boundary condition: for any x ∈ [0, 1]

T (1, x) = x.

A t-norm T is called continuous if T is a con-
tinuous function.

Here are the most important examples of con-
tinuous t-norms:

(i) Gödel’s t-norm: TG(a, b) = min(a, b);

(ii) product t-norm: TΠ(a, b) = a · b;

(iii)  Lukasziewicz’s t-norm: TL(a, b) =
max(0, a+ b− 1).

Given a possibility measure Π on X × Y ×
Z with the respective distribution π(x, y, z),
variables X and Y are possibilistically
conditionally T -independent5 given Z if, for
any pair (x, y) ∈ X×Y,

πXY Z(x, y, z) (5)
= T (πX|

T
Z(x|

T
z), πY Z(y, z)),

where πX|
T
Z(x|

T
z) is defined as any solution

of the equation

π(x, z) = T (π(z), π(x|z)).

For more details see on conditional T -
independence see [16].

5Let us note that the definition presented in [15] is
a bit different, but (5) is one of its equivalent charac-
terizations.
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πT X2 0 1
X1 = 0 .5 1
X1 = 1 T (0.5, 0.7) .7

Table 5: Joint possibility distribution ob-
tained by T -independence

To get a basic idea about this notion (al-
though in the unconditional case), let us apply
it to the possibility distributions from Exam-
ple 2.

Example 2 (Continued) Under the assump-
tion of T -independence we will obtain using
(5) the joint distribution contained in Table 5.
One can easily see that the values of πT are
identical for different t-norms with the excep-
tion of πT (1, 0), which is the only one depend-
ing on its choice. For product t-norm, we will
get the same result as for strong independence
(cf. Table 4). ♦
One can hardly expect that conditional strong
independence is equivalent to conditional
product-independence. Nevertheless, the fol-
lowing assertion expresses their relationship.

Theorem 1 Let X and Y are strongly con-
ditionally independent in distribution given
Z. Then X and Y are conditionally product-
independent.

Proof. Let M(πXZ) = {pXZ : pXZ(x, z) ≤
πXZ(x, z), (x, z) ∈ X × Z} and M(πY Z) =
{pY Z : pY Z(y, z) ≤ πY Z(y, z), (y, z) ∈ Y×Z}.
The conditional independence means that
any probability distribution p(x, y, z) from
M(πXY Z) can be expressed as

p(x, y, z) =
pXZ(x, z) · pY Z(y, z)

p
↓Z
XZ(z)

,

for pXZ ∈M(πXZ) and pY Z ∈M(πY Z) such
that p

↓Z
XZ = p

↓Z
Y Z . As π(x, y, z) should be the

upper envelope of M(πXY Z), it can be ex-
pressed as

π(x, y, z)
= sup

p∈M(πXY Z)
p(x, y, z)

= sup
pXZ∈M(πXZ)
pY Z∈M(πY Z)

pXZ(x, z) · pY Z(y, z)
p
↓Z
XZ(z)

= sup
pXZ∈M(πXZ)

pXZ(x, z)
p
↓Z
XZ(z)

· sup
pY Z∈M(πY Z)

pY Z(y, z)

= πX|Z(x|z) · πY Z(y, z).

In the last equality we utilized the fact that
πY Z is the upper envelope of M(πY Z), and
as proven by Walley and de Cooman [18], the
same holds for πX|Z , if the conditional distri-
bution is obtained by Dempster’s conditioning
rule, i.e. is based on the product t-norm.

The reverse implication is not valid, as can be
seen from the following simple example.

Example 2 (Continued) One can easily see
that the set M(πT ) contains a probability
distribution (.15, .3, .35, .2) which is not con-
tained inM(π1 ·π2), as there does not exist a
linear combination of its extreme points equal
to this distribution. ♦

The implication can be reversed in the totally
uninformative case, i.e. when π ≡ 1. We
conjecture that it is the only case.

6 Conclusions

We have presented two different notions of
conditional independence in evidence the-
ory proposed by Ben Yaghlane et al. and
Jiroušek, both of them satisfying semi-
graphoid axioms. While the first one is not
consistent with marginalization, the latter
does not suffer from this drawback.

Nevertheless, we have shown, that although
both of them are generalizations of condi-
tional independence concept in probability
theory, they cannot be applied to possibility
theory.

As a solution of this problem we proposed
to use strong independence of credal sets
and demonstrated its relation to possibilistic
conditional T -independence, more exactly we
proved that conditional strong independence
implies conditional T -independence based on
the product t-norm but not vice versa.
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JČMF, Prague, 1998, 575–580.
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