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Abstract

Looking at conditional probability
from the right perspective allows one
to avoid classic paradoxical aspects
of quantum mechanics. We discuss,
as an elementary analogue of quan-
tum states, a classical example (an
urn of unknown composition) with
similar (putative) paradoxical situ-
ations, despite the fact that there
is no quantum effect to which they
could be ascribed. A crucial feature
is that we look at them from an epis-
temic point of view and not from the
viewpoint of a (seemingly) ontologi-
cal reality.
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1 Introduction

Classical mechanics presupposes that a phys-
ical system can in principle be described by
referring to the notion of mass point, or par-
ticle. Until the advent of quantum physics,
looking at a physical system as a set of parti-
cles has never been questioned. Accordingly,
to correlate instantaneous positions X of a
given particle with instants of times, a de-
scription of the form X = f(t) appears as
natural, and should have meaning even when
the functional relation cannot be established,
due to practical and accidental difficulties in
the procedure of measuring X as a function
of t.

The following simple example shows that clas-
sical description must be abandoned not be-
cause of experimental difficulties, but because
its use contradicts known laws of science.
Consider the oscillating mass point consti-
tuted by the bob of a pendulum, and assume
that the bob oscillates 10'° times per sec-
ond. Since it is a fact of atomic physics that
visible light (used as medium of report) re-
quires about 1078 seconds to be emitted or
reflected, then the light—emitting mass would
have to remain in a given position for approx-
imately that length of time. In the present in-
stance, however, the bob executes 100 vibra-
tions within this period. So the classical cor-
respondence has to be ultimately abandoned
because its use would contradict the laws of
optics. The same example suggests the way—
out: notice that even a snapshot taken by a
camera is not able to show the correspondence
between X and t, nevertheless it would give
essentially a correlation between the time the
bob spends within a given interval dx and the
location of that interval. In other words, we
get a relationship between x and the proba-
bility p(z) dx of encountering the bob in dx.

This kind of description is characteristic of
quantum mechanics, which aims at deducing
such probability relations in a logically consis-
tent fashion. As a consequence, this approach
has left the concept of particle very ill defined
and loosing its physical significance. So from
this situation there has arisen a claim that
quantum mechanics leads to a dualism, to
the strange conception that fundamental enti-
ties of physics like electrons are both particles
and waves, with ensuing paradoxical conclu-
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sion and faulty agreement between theory and
empirical facts.

In this paper we emphasize the role of condi-
tional probability, and we show that looking
at it from the right perspective allows one to
avoid classic paradoxical aspects of quantum
mechanics. Moreover, we discuss, as an ele-
mentary analogue of quantum states, a classi-
cal example (an urn of unknown composition)
with similar (putative) paradoxical situations,
despite the fact that there is no quantum ef-
fect to which they could be ascribed. In fact a
great number of phenomena (even if not typ-
ical of the way of thinking required by quan-
tum theory) that seem mysterious from the
viewpoint of a (seemingly) ontological real-
ity, look instead as natural from an epistemic
point of view.

2 Probability and frequency

Probability is a general tool guiding induc-
tion and must not be restricted only to the
empirical interpretation coming from its eval-
uation by an observed frequency. It is true
that in many cases the wvalue of a probability
can be sensibly expressed by a suitable fre-
quency, but this does not entail that the lat-
ter can be taken as definition of probability.
A frequency observed in repeated trials is a
fact, not a probability.

Our discussion has a close connection with a
famous statement — “Probability does not ex-
ist” — put at the very beginning of his book|[3]
by B. de Finetti (1974, Preface): its provoca-
tive and striking flavor is a criticism of any
attempt to represent (or interpret) probabili-
ties as physically real things, similar to quan-
tities like mass or length, existing in the world
and independent of us. In fact, pursuing this
myth of objectivity leads to “define” probabil-
ity as “limit” of the frequency when the num-
ber n of trials (performed, as it is said, “under
the same conditions”) increases (by the way,
if the trials were really performed under ex-
actly the same conditions, they would always
produce the same result!).

But notice that we have the following alter-
natives:
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(a) Either the “limit” frequency does not ex-
ist,

or it exists (and so, beyond a suitable n, —
which is, by the way, unknown! - the ob-
served frequency coincides with the “limit”
frequency within an arbitrarily preset level
e > 0 of approximation) and we can then dis-
tinguish two situations:

((1) either the number of observed trials is
not sufficient (smaller than n,),

(B2) or these trials are enough (at least n,).

Clearly, in the first two cases (“limit” fre-
quency nonexistent or number of trials less
than n,) we cannot conclude anything. To
make significant the conclusions that could be
drawn in the case ((33), we need assuming that
this case is “much more probable” than the
other two (and the only meaning of “proba-
ble” can be the subjective one as degree of
belief). But the latter is just the meaning
that one would — by resorting to the frequency
evaluation — aim at avoiding ...!

Therefore a strict frequentist view, as that
often considered in statistical physics and in
quantum mechanics, cannot avoid a subjec-
tive framework; moreover, it ends up by trans-
ferring the reasoning from practically veri-
fiable events (such as a frequency on a fi-
nite number of trials) into fictitious entities,
practically out of control and absolutely inde-
terminate. In other words, it needs resort-
ing to two unjustifiable (and inconclusive) ar-
guments: firstly from a finite framework to
an infinite one (the putative existence of the
“limit” frequency); and then from an infinite
framework to a finite one (as an approxima-
tion for “large” n).

3 “Small” probabilities

Even if it is true that in many cases the value
of a probability is “very near” to a suitable
frequency, in every situation in which some-
thing “very probable” is looked on as “practi-
cally certain”, there are “small” probabilities
that are actually ignored, so making illegiti-
mate also any probabilistic interpretation of
physical laws. For example, a probabilistic
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explanation of the diffusion of heat must take
into account the fact that the heat could acci-
dentally move from a cold body to a warmer
one, making the former even colder and the
latter even warmer. This fact is very improb-
able only because the “unordered” configura-
tions (i.e., heat equally diffused) are far more
numerous than the “ordered” onmes (i.e., all
the heat in one direction), and not because
unordered configurations enjoy some special
status.

As a second example, consider the following
(very simple) one: when we press “at ran-
dom” 18 keys on a keyboard, we would like
to explain why the statement “to be or not to
be” has not been written; on the other hand,
while forecasting the occurrence of any one of
all other sequences, we cannot consider it im-
possible that “to be or not to be” could come
out. In fact, if we were arguing in this way, it
would mean also denying the possibility of ex-
plaining why we got just that sequence which
we actually got — since it had the same prob-
ability of being typed as that piece of “Ham-
let”. So, why it is so difficult to see that piece
by Shakespeare coming out — or else: to see
water freezing on the fire — even in a long se-
ries of repetitions of the relevant procedure?
It is just because the relevant “waiting times”
(inversely proportional to the corresponding
probabilities) are extremely large.

Notice that the difference between an im-
possible fact and a possible one — also with
a very small probability, or even zero (it is
well-known that we may have “many” possible
events with zero probability) — is really enor-
mous, since it is not a matter of a numerical
difference, but of a qualitative (i.e., logical)
one. In conclusion: a probabilistic law can-
not be falsified (in the sense of Popper); it
may possibly be modified, if one thinks that
the new one is a better model (a sort of “up-
dating”, in the sense of Bayesian inference).

We could say that a “law” which is based on
a probabilistic interpretation does not play
the role of forecasting that a fact will oc-
cur, but rather that of explaining why we
forecast that this fact will (with high
probability) occur.
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4 Conditional probability and
coherence

Before proceeding further in the discussion, it
is essential to make a digression on probability
theory through the concept of coherence[3].

Coherence allows you to assess your probabil-
ity for as many or as few events as you feel
able and interested, possibly then going on
by extending it to further events. This has
many important theoretical and applied con-
sequences: for example, the axiomatic coun-
terpart of de Finetti’s theory is weaker than
the traditional Kolmogorov’s approach and
makes simpler and more effective the “opera-
tional” aspects.

An event can be singled-out by a (nonambigu-
ous) proposition E, that is a statement that
can be either true or false (corresponding to
the two “values” 1 or 0). Since in general it
is not known whether E is true or not, we are
uncertain on E. Classical examples of events
are: (i) any proposition that describes the so-
called “favorable” cases to a possible outcome
E, a situation which is typical in the well
known classical (or combinatorial) approach
to probability; (ii) given a (finite) sequence of
trials performed “under similar conditions”,
any proposition describing a possible result
occurring in each trial (frequentist approach);
but notice that an event is also anything
else that can be expressed by a sensi-
ble proposition.

Probability is looked upon as an “ersatz” for
the lack of information on the actual “value”
(true or false) of the event F, and it can be re-
garded as a measure of the degree of beliefin E
held by the subject that is making the assess-
ment. In particular, the two most popular ap-
proaches to probability may be taken just as
useful methods of evaluation (when we judge
that a suitable “symmetry” exists allowing an
assessment based on combinatorial consider-
ations, or that the different trials needed for
a frequentist assessment are performed under
“similar” conditions). Notice that an uncer-
tain event F may become true (e.g., statistical
data), so reducing to the certain event Q0 , or
become false (when its contrary E€ is true),
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so reducing to the impossible event ().

In general, it is not enough directing atten-
tion just toward an event E' in order to assess
“convincingly” its probability, but it is also es-
sential taking into account other events which
may possibly contribute in determining the
“information” on F. Then the fundamental
tool is conditional probability, since the true
problem is not that of assessing P(F), but
rather that of assessing P(E|H), taking into
account all the relevant information carried
by some other event H (possibly correspond-
ing to statistical data, necessarily regarded as
“assumed” and not as “acquired”: for a clar-
ification of these two terms, see Sect.5).

Definition — Let £ and H be two families of
events, with ) ¢ H, where £ is an algebra
and HU {0} is a subalgebra of £. A nonnega-
tive function P(-|-) is said a (finitely additive)
conditional probability on £ x H if

(a) for any given event H € H and n mutually

exclusive events Aj,..., A, € &, the function

P(-|H), defined on &, satisfies

PUU Al = 30 P POl =1
k=1 k=1

(b) P(H|H) =1 for any H € H ;
(c) given E, H, A such that £ € £, A € &,
H € H, then

P(ENA|H) = P(E|H)P(A|E N H).

In particular, choosing H = {2} and putting
P(E|Q) = P(E) for any E € &, the function
P is said a probability if condition (a) holds.
Notice also that (¢) reduces, when H = Q, to

the classic product rule for probability.

From (a) and (c) it follows easily, for any two
events F and H:

P(E) = P(H)P(E|H) + P(H)P(E|H°),

or, more generally, given any partition
{H,,r=1,2,...,n} of the certain event

n

(%) P(BE) =) P(H,)P(E|H,).

r=1

We consider now an arbitrary set C of condi-
tional events, with no underlying structure. A
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function P on C is called coherent if and only
if P is the restriction of a conditional proba-
bility on £ x H O C. Then P may be called a
coherent conditional probability (a weaker no-
tion than that of conditional probability).

Extension Theorem (de Finetti[2]) — If C
is an arbitrary family of conditional events
and P a corresponding assessment on C, then
there exists a (possibly not unique) coherent
extension of P to any arbitrary family G of
conditional events, with G D C, if and only if
P is coherent on C.

Notice that, since P can be directly introduced
as a function whose domain is an arbitrary set
of conditional events, bounded to satisfy only
the requirement of coherence, P(FE|H) can
be assessed and makes sense for any pair of
events F/, H, with H # (), and, moreover, the
knowledge (or the assessment) of the “joint”
and “marginals” probabilities P(E N H) and
P(H) is not required. In particular, there is
no need, as in the usual approach — where the
conditional probability P(E|H) is introduced
by definition as the ratio between the prob-
abilities P(E N H) and P(H
positive probability for the given conditioning
event.

) — of assuming

If we refer just to a single event, its probabil-
ity can be assessed by an observed frequency
in the past (since a frequency is a number be-
tween 0 and 1, and this is a necessary and
sufficient condition for coherence when only
a single event is considered). But things are
not so easy when more than one event (con-
ditional or not) is involved, since consistency
problems must then be taken into account.

For a thorough treatment of coherent proba-
bilities, see the book[1].

5 Conditioning and quantum
preparation

Property (c) of conditional probability is cru-
cial in order to fully exploit its inferential
meaning. In fact, what is usually (in the rel-
evant literature) emphasized is only the role
played by property (a) — i.e., a conditional
probability P(-|H) is a probability for any
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given H € H.

For example, in the jargon of quantum proba-
bility, the set H is called the family of prepa-
rations and it is the physical counterpart of
the notion of “conditioning”: a probability
P(E|H) is interpreted as the (approximate)
relative frequency of the event F in an en-
semble of systems prepared in such a way that
the event H is certainly verified for each of
them.

This is a very restrictive (and misleading)
view of conditional probability, corresponding
trivially to just a modification of the so-called
“sample space” . It is instead essential —
for a correct handling of the subtle and del-
icate problems concerning the use of condi-
tional probability — to regard as a “variable”
also the conditioning event H. In other words,
the “status” of H in F|H is not just that of
something representing a given fact, but that
of an (uncertain) event (like E) for which the
knowledge of its truth value is not necessarily
required.

In order to see the problem from a differ-
ent perspective (and also in a context which
has nothing to do with statistical physics or
quantum mechanics), we discuss some funda-
mental remarks concerning, for a given con-
ditional event F|H, the “information” repre-
sented by H: the main point is a distinction
between “assumed” and “acquired” H.

For example, in Bayesian inferential statis-
tics, given any event F, with prior probability
P(E), and a set of events E1, ..., F,, represent-
ing the possible statistical observations, with
likelihoods P(FE1|E),..., P(E,|E), all poste-
rior probabilities P(FE|E;),..., P(E|E,) are
usually pre-assessed through Bayes’ theorem
(which, by the way, is a trivial consequence
of conditional probability rules). In doing so,
each Ey (k = 1,...,n) is clearly regarded as
“assumed”. If an F} occurs, P(E|E}) is cho-
sen — among the prearranged posteriors — as
the updated probability of E: this is the only
role played by the “acquired” information Ej
(the sample space is not changed!).

In other words, the above procedure corre-
sponds, putting P(F|Ey) = p, to regard a
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conditional event E|H as a whole and in-
terpret p as “the probability of (F given H)”
and not as “(the probability of E), given H”.
In fact, the latter interpretation is unsustain-
able, since it would literally mean “if H oc-
curs, then the probability of E is p”, which
is actually a form of a logical deduction lead-
ing to absurd conclusions, as in the following
simple example.

Consider a set of five balls {1,2,3,4,5} and
the probability of the event E that a number
drawn from this set at random is even (which
is obviously 2/5): this probability could in-
stead be erroneously assessed (for instance)
equal to 1/3, since this is the value of the
probability of E conditionally on the occur-
rence of each one of the events £y = {1,2, 3}
or Ey = {3,4,5}, and one (possibly both) of
them will certainly occur.

6 Urn of unknown composition

Take a box with a given number N of balls:
each one is either white or black, but the ac-
tual composition of the boz (i.e., the number
r of white balls and hence that N —r of black
ones) is not known. Consider the random ex-
periment consisting in drawing one ball from
it: how to assign a probability to the event
(denoted by E) “the ball drawn from the box
is white”? A strict supporter of probability
measured only by means of an observed fre-
quency, could make the choice of simply ignor-
ing the fact that the composition of the box
is unknown: given a “sufficiently large” nat-
ural number n, , he could perform the exper-
iment consisting of n, drawings with replace-
ment from the box and evaluate (a posteriori)
the required probability by the ratio between
the observed number X of white balls and the
number n, of drawings. But he is not willing
to assign any a priori probability to E: for
him this probability does not exist.

However, since probabilities exist inasmuch
as one creates them as useful substitutes for
a lack of information about something, no
“physical” or combinatorial interpretation is
needed. Given any set of events whatsoever,
coherence essentially imposes on the probabil-
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ities that may be assigned to them the only
restriction that they must not be in contra-
diction amongst themselves, according to the
aforementioned syntactic rules.

So in the example under consideration we may
assign a probability distribution to the possi-
ble compositions of the box, i.e. to the N +1
events “there are r white balls in the box”,
with r =0,1,2,..., N, and so, denoting by H,
these events and introducing suitable condi-
tional probabilities P(E|H,), the probability
of E can be represented by

(1) ZP

In particular, we may think (for example)
as if the given box were chosen at random
among N + 1 boxes corresponding to all pos-
sible compositions, so that the probabilities
P(H,) (summing up to 1) are equal: then for-
mula (1) takes the simpler form

P(E|H,).

=3 ).

On the other hand, evaluating, for each given
T?

r
(2) P(E|H;) =+,
we may conclude, by straightforward compu-
tations, that

(3) P(E) = 3.

Notice that the previous frequentistic evalu-
ation of the probability of the event E by
means of experiments producing the ratio
X/n, is in fact an evaluation of the condi-
tional probability P(E|H,) corresponding to
the given but unknown r: so “in the long
run” (n, “sufficiently large”) the observed fre-
quency takes (approximately) the value (2).
Instead the value (3), which is a perfectly le-
gitimate and sensible evaluation of the prob-
ability of F, should be regarded as unaccept-
able from the point of view of a strict fre-
quency interpretation of probability: in fact
the drawings (with replacement) from the
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given box will almost certainly give a fre-
quency near to the value (2), and so differ-
ent from 1/2 (except in the particular case in
which the number r of white balls was about
half of the total number N of balls).

The conclusion is that a frequentist evaluation
of P(E) leads to a violation of the (syntactic)
rule (1). Even if there is no quantum effect to
which the lack of validity of formula (1) could
be ascribed, we can picture the situation us-
ing the jargon of quantum physics: the ball
we draw from the urn is a system, the pos-
sible compositions of the urn (including the
relevant probabilities) correspond to its state
vector, and its colour is an observable.

Notice that the observation of E (white ball)
entails (by Bayes’ theorem) an updating of
the probabilities P(H,), and so also this in-
ferential aspect must be taken into account
for the subsequent observations. In fact this
information changes the state of the system.

7 Are observed frequencies
coherent extensions?

The lesson we have learned (from the discus-
sion of the previous section) is — again — that
probabilities cannot be identified with ob-
served frequencies. Moreover, these frequen-
cies correspond (depending on the — unknown
— value of r) to different and incompatible ex-
periments, each one referring to a different
(ideal) box. Nevertheless these experiments
are not (so to say) “mentally” incompatible if
we argue in terms of the general (epistemic)
interpretation of probability: then, for a co-
herent evaluation of P(E) we must necessar-
ily rely only on the above value obtained by
resorting to the second member of (1), even
if such probability does not express any sort
of “physical property” of the given box. In
other words, the previous discussion can be
seen as an instance of the problem of find-
ing a coherent extension of some beforehand
given probabilities (see the Extension Theo-
rem of Sect.4). Interpreting E as F|Q2 and H,
as H,|Q, it is easily seen that the value P(E)
given by (1) is a coherent extension of the con-
ditional probabilities P(EF|H,) and P(H,|Q),
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while in general a value of P(FE) obtained by
measuring a relevant frequency may not. In
other words: while a convex combination of
conditional probabilities can be a probability, a
convex combination of conditional frequencies
is not necessarily apt to evaluate a particular
probability ...

Therefore, if in some applications (quantum
mechanics, drawings balls from boxes, or any-
thing else) one introduces a “probabilistic”
model whose corresponding function P fails to
satisfy the relevant syntactic rules, then nec-
essarily P is not coherent, and so it should be
clear that any attempt at accepting P as a
sort of “new kind of probability” necessarily
amounts to deny and getting rid of the very
concept of conditional probability.

8 Conclusions

In quantum mechanical experiments, the
identification of (conditional) probabilities
with some statistical data (essentially, ob-
served frequencies) may lead to results which
are in contradiction with other experiments
(still involving observed or expected frequen-
cies).

The classical two-slit experiment, discussed
from a probabilistic point of view by
Feynman[4], is an interesting illustration of
the quantum mechanical way of computing
the relevant probabilities: our interpretation
in term of coherent probability has been al-
ready discussed in [5, 6]. The situation looks
very similar to what happens with Bell’s in-
equality. Without going into details, we just
recall that Bell calculates the expectation val-
ues for certain physical quantities, and then
shows that these quantum mechanical expec-
tations violate Bell’s inequality. As Stappl§]
puts it (even if not in a completely clear way),
quantum states “are to be interpreted as sym-
bolic devices that scientist uses to make pre-
dictions about what they will observe under
specific conditions”, and else “Bell’s theorem
proves that the ordinary concept of reality is
incompatible with the statistical predictions
of quantum theory”.

In conclusion, referring to repeated experi-

Proceedings of IPMU'08

ments, much care is needed when dealing with
frequencies and probabilities: making com-
putations of a conditional probability by the
frequency relevant to a given experiment in-
volves (so to say) a choice, in the sense that it
is no more allowed to consider — in the same
framework — other experiments, otherwise
the rules of conditional probability (in par-
ticular, those referring to a “variable” condi-
tioning event) could be violated.
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