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Abstract

In this paper we consider imprecise
conditional prevision assessments on
random quantities with finite set of
possible values. We use a notion
of generalized coherence which is
based on the coherence principle of
de Finetti. We consider the checking
of g-coherence, by extending some
previous results obtained for impre-
cise conditional probability assess-
ments. Then, we study a connec-
tion property of interval-valued g-
coherent prevision assessments, by
extending a result given in a previ-
ous paper for precise assessments.
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imprecise prevision assessments, generalized
coherence, checking of g-coherence, connec-
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1 Introduction

In this paper we continue the study, started
in [4], of imprecise conditional prevision as-
sessments defined on families of conditional
random quantities with a finite set of pos-
sible values. We use a notion of general-
ized coherence (g-coherence) which is based
on the coherence principle of de Finetti and is
equivalent to avoiding uniform loss property
(AUL) introduced by Walley for lower previ-
sions. Theoretical results and algorithms in
the framework of coherence have been given
by many authors (see, for instance, [5], [7],

[8], [9], [15]). The checking of coherence and
the extension of precise conditional prevision
assessments have been studied in [6].
In the paper, after some preliminary results,
we define the notion of g-coherence of interval-
valued prevision assessments on conditional
random quantities having a finite set of pos-
sible values. We characterize the notion of
g-coherence by two different results. Then,
we give an algorithm for checking g-coherence.
We also examine the equivalence between g-
coherence and AUL property of lower pre-
visions. Then, we extend a result given in
[4] on the connection property of precise pre-
vision assessments to the case of g-coherent
interval-valued assessments. We observe that
the connection property is useful to determine
imprecise prevision assessments which are in-
termediate between other assessments judged
too extreme. We conclude the paper by some
final comments.

2 Some preliminary notions

We give some preliminary notions on coher-
ence and generalized coherence of precise and
imprecise conditional prevision assessments
on finite families of conditional random quan-
tities. We denote by Ac the negation of A and
by A∨B (resp., AB) the logical union (resp.,
intersection) of A and B. We use the same
symbol to denote an event and its indicator.
For each integer n, we set Jn = {1, 2, . . . , n}.
We denote by K an arbitrary family of con-
ditional random quantities, with finite sets of
possible values.
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2.1 Precise conditional prevision
assessments

Given a prevision function P defined on an
arbitrary family of conditional random quan-
tities K, let Fn = {Xi|Hi, i ∈ Jn} be a finite
subfamily of K and Mn the vector (µi, i ∈
Jn), where µi = P(Xi|Hi) is the assessed pre-
vision for the conditional random quantity
Xi|Hi. With the pair (Fn,Mn) we associate
the random gain Gn =

∑
i∈Jn

siHi(Xi − µi),
where s1, . . . , sn are arbitrary real numbers
and H1, . . . ,Hn denote the indicators of the
corresponding events. We set Hn = H1∨· · ·∨
Hn; moreover, we denote by Gn|Hn the re-
striction of Gn to Hn. Then, using the betting
scheme of de Finetti, we have

Definition 1. The function P is coherent if
and only if, ∀n ≥ 1, ∀Fn ⊆ K, ∀ s1, . . . , sn ∈
R, it is supGn|Hn ≥ 0.

We denote by Πn the set of coherent condi-
tional prevision assessments on Fn. Given two
points of Πn,

M′ = (µ′i, i ∈ Jn) , M′′ = (µ′′i , i ∈ Jn) ,

we set

µm
i = min {µ′i, µ′′i } , µM

i = max {µ′i, µ′′i } ,
Mm = M′ ∧M′′ = (µm

i , i ∈ Jn) ,
MM = M′ ∨M′′ = (µM

i , i ∈ Jn) .

Moreover, given any pair of points

x = (xi, i ∈ Jn), y = (yi, i ∈ Jn) ,

we set x ≤ y if and only if xi ≤ yi, ∀ i ∈ Jn.
Then, Mm ≤MM , for every M′,M′′.
We remark that, given any point M =
(µi, i ∈ Jn), we have Mm ≤ M ≤ MM if
and only if there exists a vector ∆ = (δi, i ∈
Jn) ∈ [0, 1]n such that

µi = (1− δi)µ′i + δiµ
′′
i , i ∈ Jn .

In this case we say that M is a generalized
convex combination of M′,M′′ and we write
M = M∆. Below, we recall (in a slightly
modified version) a result given in [4], which
generalizes a result obtained in [2] for condi-
tional events.

Theorem 1. [Biazzo and Gilio (2007)]. Let
M′ = (µ′i, i ∈ Jn), M′′ = (µ′′i , i ∈ Jn) be
two coherent prevision assessments defined on
Fn = {Xi|Hi, i ∈ Jn}. There exists a continu-
ous curve C with extreme points M′,M′′ such
that for every M∈ C, we have:
(i) M is a coherent conditional prevision as-
sessment on Fn;
(ii) each M ∈ C is a generalized convex com-
bination of M′,M′′; i.e. Mm ≤M ≤MM .

Theorem 1 assures that, for every pair of co-
herent prevision assessments M′,M′′ on Fn,
we can construct (at least) a continuous curve
C ⊆ Πn (fromM′ toM′′) whose points are in-
termediate coherent prevision assessments be-
tween M′ and M′′. Hence, the assessments
M′,M′′ are connected by the intermediate
prevision assessments M∈ C.
We remark that in general the number of
curves like C is infinite.

2.2 Interval-valued conditional
prevision assessments

Let An = ([li, ui], i ∈ Jn) be any interval-
valued conditional prevision assessment on a
finite family Fn = {Xi|Hi, i ∈ Jn} ⊆ K. We
give below a notion of generalized coherence
(g-coherence), already used in [1] for the case
of conditional events (and simply named ’co-
herence’ in [11]).
Definition 2. An interval-valued prevision
assessment An = ([li, ui], i ∈ Jn), defined on
a family of n conditional random quantities
Fn = {Xi|Hi, i ∈ Jn}, is g-coherent if there
exists a coherent precise prevision assessment
Mn = (µi, i ∈ Jn) on Fn, with µi = P(Xi|Hi),
which is consistent with An, that is such that
li ≤ µi ≤ ui for each i ∈ Jn.

We denote by =n the set of g-coherent
interval-valued conditional prevision assess-
ments on a family of n conditional random
quantities Fn.

3 Checking g-coherence of
conditional prevision assessments

Given a family of n conditional random
quantities Fn = {X1|H1, . . . , Xn|Hn}, let
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An = ([lj , uj ], j ∈ Jn) be an interval-valued
prevision assessment on Fn. We want to
check g-coherence of An; that is, the exis-
tence of a precise prevision assessment M =
(µ1, . . . , µn) on Fn, where µi = P(Xi|Hi),
such that li ≤ µi ≤ ui, ∀ i ∈ Jn. For each
i ∈ Jn we assume Xi ∈ {xi1, . . . , xiki

}; then,
we set

Aij = (Xi = xij) , j = 1, . . . , ki , i ∈ Jn .

Of course, for each i ∈ Jn, the family
{Aij , j = 1, . . . , ki} is a partition of the sure
event Ω. Moreover, for each i ∈ Jn, the family
{Hc

i , AijHi , j = 1, . . . , ki} is a partition of Ω
too. Then, the constituents generated by the
family K are (the elements of the partition of
Ω) obtained by expanding the expression∧

i∈Jn

(Ai1Hi ∨ · · · ∨Aiki
Hi ∨Hc

i ) .

We set C0 = Hc
1 · · ·Hc

n (it may be C0 = ∅);
moreover, we denote by C1, . . . , Cm the con-
stituents contained in Hn = H1 ∨ · · · ∨ Hn.
Hence∧

i∈Jn

(Ai1Hi ∨ · · · ∨Aiki
Hi ∨Hc

i ) =
m∨

h=0

Ch .

We give below, without proof, an obvious nec-
essary and sufficient condition for the coher-
ence of precise conditional prevision assess-
ments.
Proposition 1. The assessment M =
(µ1, . . . , µn) on Fn is coherent if and only if
there exists a coherent probability assessment
P = (pij , j = 1, . . . , ki; i ∈ Jn) on the fam-
ily of conditional events Φ = {Aij |Hi , j =
1, . . . , ki; i ∈ Jn}, where pij = P (Aij |Hi),
such that

∑ki
j=1 pijxij = µi , i ∈ Jn.

By Proposition 1, coherence of M could be
checked by the following two steps:
(i) compute the set of solutions of the fol-
lowing system, in the unknowns pij , j =
1, . . . , ki; i ∈ Jn,{ ∑ki

j=1 pijxij = µi , i ∈ Jn ;∑ki
j=1 pij = 1 , i ∈ Jn , pij ≥ 0 , ∀ i, j ;

(ii) find a solution P = (pij , j = 1, . . . , ki; i ∈
Jn) of the above system which, as a probabil-
ity assessment on Φ, is coherent.

However, in what follows, we will avoid the
explicit use of the quantities pij .
We observe that, given a conditional random
quantity X|H, the upper prevision bound
P(X|H) ≤ u is equivalent to the lower
prevision bound P(−X|H) ≥ −u; then, the
g-coherence of the interval valued prevision
assessment An = ([lj , uj ], j ∈ Jn) on the
family Fn = {X1|H1, . . . , Xn|Hn} is equiva-
lent to the g-coherence of the lower bound
assessment (lj ,−uj , j ∈ Jn) on the family
{X1|H1,−X1|H1, . . . , Xn|Hn,−Xn|Hn}.
Therefore, to check g-coherence of interval-
valued conditional prevision assessments, we
only consider lower bounds. Given any vector
of lower prevision bounds L = (l1, . . . , ln) on
Fn, with each constituent Ch, h ∈ Jm, we
associate a vector Vh = (vh1, . . . , vhn), where

vhi =


xi1 , Ch ⊆ Ai1Hi ,
..... ..................
xiki

, Ch ⊆ Aiki
Hi ,

li , Ch ⊆ Hc
i .

(1)

We observe that, in more explicit terms, for
each j ∈ {1, . . . , ki} the condition Ch ⊆ AijHi

should be written

Ch ⊆ Ac
i1 · · ·Ac

i,j−1AijA
c
i,j+1 · · ·Ac

irA
c
iki

Hi .

Given any vector Λ = (λh , h ∈ Jm) and
any event A, we simply denote by

∑
A λh the

quantity
∑

h:Ch⊆A λh. Moreover, observing
that Hi =

∨ki
j=1 AijHi, for each i ∈ Jn it is∑

h∈Jm
λhvhi =

∑
Hi

λhvhi +
∑

Hc
i
λhvhi =

=
∑ki

j=1 xij
∑

AijHi
λh + li

∑
Hc

i
λh .

(2)
Then, we examine the satisfiability of the con-
dition∑
h∈Jm

λhVh ≥ L ,
∑

h∈Jm

λh = 1 , λh ≥ 0 , ∀h ;

that is, the solvability of the following system
Σ associated with the pair (F , L), in the non-
negative unknowns λ1, . . . , λm,{ ∑

h∈Jm
λhvhi ≥ li , i ∈ Jn ,∑

h∈Jm
λh = 1 , λh ≥ 0 , ∀h .

(3)

We remark that XiHi =
∑ki

j=1 xijAijHi;
hence, by interpreting the vector (λh, h ∈ Jm)
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as a probability assessment on the family
{C1|Hn, . . . , Cm|Hn}, one has P(XiHi|Hn) =∑ki

j=1 xij
∑

AijHi
λh = P(Xi|Hi)P (Hi|Hn),

with P (Hi|Hn) =
∑

Hi
λh. Then, by

decomposition formula (2), the inequality∑
h∈Jm

λhvhi ≥ li in system (3) represents the
condition P(XiHi|Hn) ≥ liP (Hi|Hn).
Given a subset J ⊆ Jn, we set

FJ = {Xi|Hi , i ∈ J} , LJ = (li , i ∈ J) ;

then, we denote by ΣJ , where ΣJn = Σ,
the system like (3) associated with the pair
(FJ , LJ). Then, we have
Theorem 2. [General characterization of
g-coherence]. Given a family of n conditional
random quantities F = {X1|H1, . . . , Xn|Hn}
and a vector L = (l1, . . . , ln), the imprecise
conditional prevision assessment

P(X1|H1) ≥ l1 , . . . , P(Xn|Hn) ≥ ln

is g-coherent if and only if, for every subset
J ⊆ Jn, defining FJ = {Xi|Hi , i ∈ J}, LJ =
(li , i ∈ J), the system ΣJ associated with the
pair (FJ , LJ) is solvable.

Proof. If the vector of lower prevision bounds
L is g-coherent, then there exists a coherent
assessment M = (µ1, . . . , µn) on F , with µi =
P(Xi|Hi) ≥ li. Then, by Proposition 1, there
exists a coherent extension

pi1, . . . , piki
, i ∈ Jn, (4)

with
∑ki

j=1 pij = 1 for each i, on the con-
ditional events Ai1|Hi, . . . , Aiki

|Hi , i ∈ Jn,
such that

pi1xi1 + · · ·+ piki
xiki

= µi ≥ li , i ∈ Jn. (5)

Considering the constituents C1, . . . , Cm con-
tained in Hn, we denote by Λ = (λ1, . . . , λm)
any probability extension of (4) on the con-
ditional events C1|Hn, . . . , Cm|Hn. Then, ob-
serving that

P (AijHi|Hn) = P (Aij |Hi)P (Hi|Hn) ,

that is
∑

AijHi
λh = pij

∑
Hi

λh, by (5) we
obtain

ki∑
j=1

xij

∑
AijHi

λh ≥ li
∑
Hi

λh , i ∈ Jn ,

and, by adding li
∑

Hc
i
λh to the left and the

right side of the inequality, we obtain∑
h∈Jm

λhvhi ≥ li , i ∈ Jn ,

with
∑

h∈Jm
λh = 1, λh ≥ 0, h ∈ Jm; hence

system (3) is solvable.
We observe that, for each given J ⊂ Jn,
from g-coherence of L it follows that LJ is g-
coherent too. Then, by the reasoning above,
we obtain that the system ΣJ is solvable,
∀ J ⊂ Jn.
Conversely, assuming that for every J ⊆ Jn

the system ΣJ is solvable, let S be the set of
solutions Λ = (λ1, . . . , λm) of the system (3).
We set

Γ0 = {i : maxΛ∈S

∑
Hi

λh > 0} ; (6)

then, as shown in ([2], Theorem 2), there ex-
ists a vector Λ0 = (λ0

1, . . . , λ
0
m) ∈ S such that∑

Hi
λ0

h > 0 for every i ∈ Γ0. Using Λ0 we set

pij =

∑
AijHi

λ0
h∑

Hi
λ0

h

, i ∈ Γ0 ;

then, the inequalities (5) are satisfied for every
i ∈ Γ0. Moreover, defining I0 = Jn \ Γ0, we
set

F0 = {Xi|Hi , i ∈ I0} , L0 = (li , i ∈ I0) .

By repeating the previous reasoning, as the
system ΣI0 associated with the pair (F0, L0)
is solvable, we determine a set Γ1 ⊆ I0 and a
suitable vector Λ1, by means of which we can
define the probabilities pij for each i ∈ Γ1.
In this way, the inequalities (5) are satisfied
for every i ∈ Γ1, and so on. By this proce-
dure, after a finite number of steps, we obtain
a probability assessment like (4) which satis-
fies (5). It can be proved that the assessment
obtained by the above procedure, say

(pi1, . . . , piki
, i ∈ Jn) ,

defined on the family

{Ai1|Hi, . . . , Aiki
|Hi , i ∈ Jn} ,

is coherent (see, e.g., Theorem 1 in [2]).
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By the previous reasoning we easily obtain the
following theorem, which generalizes an anal-
ogous result given in the case of conditional
events (see, for instance, [12])

Theorem 3. [Operative characterization of
g-coherence]. A vector of lower prevision
bounds L = (l1, . . . , ln) on the family Fn =
{X1|H1, . . . , Xn|Hn} is g-coherent if and only
if the following conditions are satisfied:
1. the system (3) is solvable ;
2. if I0 6= ∅, then L0 is g-coherent.

Remark 1. Notice that, if system (3) is solv-
able, then it could be proved that the sub-
assessment AΓ0 on the subfamily FΓ0 is g-
coherent.

By Theorem 3, the following algorithm can be
used to check the g-coherence of the imprecise
assessment L on Fn.

Algorithm 1. Let be given the triplet
(Jn,Fn, L).
1. Construct the system (3) and check its
solvability;
2. If the system (3) is not solvable then L is
not g-coherent and the procedure stops, oth-
erwise compute the set I0;
3. If I0 = ∅ then L is g-coherent and the
procedure stops, otherwise set (Jn,Fn, L) =
(I0,F0, L0) and repeat steps 1-3.

The algorithm ends after a finite number of
steps, by verifying if L is g-coherent or not.

Remark 2. We observe that Theorem 3 and
Algorithm 1 can be used in particular to
check coherence of precise prevision assess-
ments. More specifically, given a conditional
prevision assessmentM = (µ1, . . . , µn) on the
family Fn = {X1|H1, . . . , Xn|Hn}, with each
constituent Ch, h ∈ Jm, we associate a point
Qh = (qh1, . . . , qhn), where

qhi =


xi1 , Ch ⊆ Ai1Hi ,
..... ...................
xiki

, Ch ⊆ Aiki
Hi ,

µi , Ch ⊆ Hc
i .

Then, the starting system (3) in the algorithm
becomes{ ∑

Jm
λhqhi = µi , i ∈ Jn ;∑

Jm
λh = 1 , λh ≥ 0 , ∀h ∈ Jm .

(7)

We remark that the solvability of system (7)
has the geometrical meaning that the point
M can be represented as a linear convex com-
bination of the points Q1, . . . , Qm; that is

M =
∑
Jm

λhQh ;
∑
Jm

λh = 1 ; λh ≥ 0 , h ∈ Jm .

A geometrical approach for checking coher-
ence of prevision assessments is also used in
[13]. Concerning precise conditional prevision
assessments, a characterization theorem and
its application to inferential aspects have been
given in [6].

3.1 Equivalence between g-coherence
and AUL property of lower and
upper previsions

The property of g-coherence means that there
exists a dominating coherent precise previ-
sion; hence, g-coherence is equivalent to the
avoiding uniform loss property of lower pre-
visions ([14]), as shown below.
We recall that a lower prevision P on a fam-
ily of conditional random quantities K avoids
uniform loss (AUL) if

∀Fn = {X1|H1, . . . , Xn|Hn} ⊆ K ,

defining

P (Xi|Hi) = li , i ∈ Jn , Gn =
n∑

i=1

siHi(Xi−li) ,

the inequality sup Gn|Hn ≥ 0 is satisfied for
every s1 ≥ 0, . . . , sn ≥ 0. By exploiting the
conjugacy condition P (X|H) = −P (−X|H),
we only refer to lower previsions.
We observe that, recalling (1), the value of Gn

associated with Ch is given by

gh =
∑
i∈Jn

si(vhi − li) .

Now, given a vector of lower prevision bounds
L = (l1, . . . , ln) on Fn, let us consider the
system (3) associated with the pair (F , L).
We first recall a suitable alternative theorem.
Let A = (ahi) be a m × n−matrix. More-
over, denote by x and y, respectively, a row
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m−vector and a column n−vector. The vec-
tor x = (x1, . . . , xm) is said semipositive if it
is nonnegative and moreover

x1 + · · ·+ xm > 0 .

We have ([10], Th. 2.10)

Theorem 4. [Gale (1960)]. Exactly one of
the following alternatives holds.
Either the inequality xA ≥ 0 has a semiposi-
tive solution, or the inequality Ay < 0 has a
nonnegative solution.

Of course, if x is a semipositive solution of
the inequality xA ≥ 0, then the vector Λ =
(λ1, . . . , λm), where λh = xh∑

r xr
, is a semi-

positive solution of the same inequality, with∑
h∈Jm

λh = 1. Based on Theorem 4, we
have

Theorem 5. [Equivalence between AUL
property and g-coherence]. The system (3) is
solvable if and only if sup Gn|Hn ≥ 0.

Proof. The proof is obtained by applying The-
orem 4, with A = (ahi), where

ahi = vhi − li , xh = λh ≥ 0 , h ∈ Jm , i ∈ Jn ,∑
h∈Jm

λh = 1 , yk = sk ≥ 0 , k ∈ Jn .

Finally, the equivalence between g-coherence
and AUL property follows by Theorem 2.

4 The connection property of
interval-valued assessments

In this section we generalize to the case of
imprecise conditional prevision assessments a
result obtained in [3] concerning imprecise
probability assessments on conditional events.
More precisely, we prove that there exists an
infinite class Υ of g-coherent interval-valued
prevision assessments An = ([li, ui], i ∈ Jn),
defined on a family of n conditional ran-
dom quantities Fn, which are intermediate
between two given g-coherent interval-valued
prevision assessments

A′
n = ([l′i, u

′
i] , i ∈ Jn) , A′′

n = ([l′′i , u′′i ], i ∈ Jn) .

This means that with each An ∈ Υ we can
associate a vector ∆ = (δi, i ∈ Jn) ∈ [0, 1]n

such that

li = (1−δi)l′i+δil
′′
i , ui = (1−δi)u′i+δiu

′′
i , i ∈ Jn.

We say that An is a generalized convex com-
bination of A′

n,A′′
n, also denoted by A∆.

Theorem 6. [Connection property]. Given n
events H1, . . . ,Hn and n random quantities
X1, . . . , Xn, let A′

n = ([l′i, u
′
i], i ∈ Jn), A′′

n =
([l′′i , u′′i ], i ∈ Jn), be two g-coherent interval-
valued conditional prevision assessments on
the family Fn = {X1|H1, . . . , Xn|Hn}. Then,
there exists an infinite class Υ of interval-
valued prevision assessments on Fn such that:
(i) each An ∈ Υ is a generalized convex com-
bination between A′

n,A′′
n; i.e., An = A∆ for

some ∆ = (δi, i ∈ Jn) ∈ [0, 1]n;
(ii) each An ∈ Υ is g-coherent; i.e., Υ ⊆ =n.

Proof. Assume that A′
n,A′′

n are g-coherent;
then, there exist two coherent precise condi-
tional prevision assessments

M′ = (µ′1, . . . , µ
′
n) , M′′ = (µ′′1, . . . , µ

′′
n)

on the family Fn = {X1|H1, . . . , Xn|Hn},
with l′j ≤ µ′j ≤ u′j and l′′j ≤ µ′′j ≤ u′′j , j ∈ Jn.
Moreover, from Theorem 1, there exists a
continuous curve C connecting M′,M′′, with
C ⊆ Πn and with Mm ≤M ≤MM , for every
M ∈ C. With each M = (µ1, . . . , µn) ∈ C
we can associate a vector ∆ = (δ1, . . . , δn)
such that M = M∆; hence, for each j ∈ Jn

we have µj = (1 − δj)µ′j + δjµ
′′
j . We set

∆C = {∆ : M∆ ∈ C}. Then, let

A∆ = ([lj , uj ], j ∈ Jn) ,

be the generalized convex combination of
A′

n,A′′
n associated with ∆; we set Υ = {A∆ :

∆ ∈ ∆C}. Moreover, we have

lj = (1−δj)l′j +δjl
′′
j ≤ (1−δj)µ′j +δjµ

′′
j = µj ,

uj = (1−δj)u′j+δju
′′
j ≥ (1−δj)µ′j+δjµ

′′
j = µj ;

that is lj ≤ µj ≤ uj , ∀ j ∈ Jn. This means
that A∆ is g-coherent, hence Υ ⊆ =n.

By analogy with Theorem 1, we can say that
A′

n,A′′
n are connected by the interval-valued

prevision assessments contained in Υ.
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4.1 A constructive procedure for
determining a class Υ

We observe that Theorem 6 only shows the
existence of a class Υ. We give below a con-
structive procedure for determining elements
An of Υ, by choosing in a suitable way some
continuous parameters.
(Procedure.) By Theorem 2, as A′

n,A′′
n are

g-coherent, the following systems{
l′i

∑
Hi

λh ≤
∑ki

j=1

∑
AijHi

λhxij ≤ u′i
∑

Hi
λh ,

i ∈ Jn ,
∑

h∈Jm
λh = 1 , λh ≥ 0 , ∀h ,{

l′′i
∑

Hi
λh ≤

∑ki
j=1

∑
AijHi

λhxij ≤ u′′i
∑

Hi
λh ,

i ∈ Jn ,
∑

h∈Jm
λh = 1 , λh ≥ 0 , ∀h ,

respectively associated with M′ and M′′, are
solvable. We denote respectively by S′ and S′′

the sets of solutions of the previous systems.
Then, recalling (6), we set

Γ′0 = {i : maxΛ∈S′
∑

Hi
λ′h > 0} ;

Γ′′0 = {i : maxΛ∈S′′
∑

Hi
λ′′h > 0} .

As it can be easily verified, there exist two
vectors

Λ′0 = (λ′r, r ∈ Jm) ∈ S′, Λ′′0 = (λ′′r , r ∈ Jm) ∈ S′′,

such that:
∑

Hi
λ′h > 0 , ∀ i ∈ Γ′0 , and∑

Hi
λ′′h > 0 , ∀ i ∈ Γ′′0. Given any number

α0 ∈ (0, 1), let us consider the vector

Λ0 = (λh, h ∈ Jm) = (1− α0)Λ′0 + α0Λ′′0 .

Of course, λh = (1− α0)λ′h + α0λ
′′
h, ∀h ∈ Jm.

Moreover, for each i ∈ Γ(0) = Γ′0∪Γ′′0 we have∑
Hi

λh = (1− α0)
∑
Hi

λ′h + α0

∑
Hi

λ′′h > 0 ,

with
∑

Hi
λh = 0, ∀ i ∈ I(0) = Jn\Γ(0). More-

over, from g-coherence of A′
n, A′′

n, for each
i ∈ Jn we have

l′i
∑

Hi
λ′h ≤

∑ki
j=1

∑
AijHi

λ′hxij ≤ u′i
∑

Hi
λ′h ,

l′′i
∑

Hi
λ′′h ≤

∑ki
j=1

∑
AijHi

λ′′hxij ≤ u′′i
∑

Hi
λ′′h .

Now, let us consider the interval-valued as-
sessment AΓ(0) = ([li, ui], i ∈ Γ(0)), where

li = (1− δ0
i )l

′
i + δ0

i l
′′
i ,

ui = (1− δ0
i )u

′
i + δ0

i u
′′
i ,

δ0
i =

α0
∑

Hi
λ′′

h

(1−α0)
∑

Hi
λ′

h+α0
∑

Hi
λ′′

h
=

=
α0

∑
Hi

λ′′
h∑

Hi
λh

∈ [0, 1] .

(8)

From (8), for each i ∈ Γ(0) we have∑ki
j=1

∑
AijHi

λhxij =
=

∑ki
j=1

∑
AijHi

[(1− α0)λ′h + α0λ
′′
h]xij =

= (1− α0)
∑ki

j=1

∑
AijHi

λ′hxij+
+α0

∑ki
j=1

∑
AijHi

λ′′hxij ≥

≥ (1− α0)l′i
∑

Hi
λ′h + α0l

′′
i

∑
Hi

λ′′h =

=
[

(1−α0)
∑

Hi
λ′

h∑
Hi

λh
l′i +

α0
∑

Hi
λ′′

h∑
Hi

λh
l′′i

] ∑
Hi

λh =

= [(1− δ0
i )l

′
i + δ0

i l
′′
i ]

∑
Hi

λh = li
∑

Hi
λh .

By a similar reasoning, from (8), we have

ki∑
j=1

∑
AijHi

λhxij ≤ ui

∑
Hi

λh ;

hence, for each i ∈ Γ(0), it is

li
∑
Hi

λh ≤
ki∑

j=1

∑
AijHi

λhxij ≤ ui

∑
Hi

λh .

Now, given any quantities

δ0
i ∈ [0, 1], i ∈ I(0) = Jn \ Γ(0) , (9)

let us consider the assessment An =
([li, ui], i ∈ Jn), where, for each i ∈ Jn, it
is

li = (1− δ0
i )l

′
i + δ0

i l
′′
i , ui = (1− δ0

i )u
′
i + δ0

i u
′′
i ,

and where δ0
i is defined by (8) for i ∈ Γ(0) and

by (9) for i ∈ I(0). For each i ∈ Jn we have

li
∑
Hi

λh ≤
ki∑

j=1

∑
AijHi

λhxij ≤ ui

∑
Hi

λr ;

hence, Λ0 is a solution of the system like
(3) and, considering the sets Γ0 (as defined
by (6)) and I0 = Jn \ Γ0, we have I0 ⊆
I(0) , Γ(0) ⊆ Γ0. Then, by Remark 1, the as-
sessment AΓ0 on FΓ0 is g-coherent.
By iterating the previous reasoning, after a fi-
nite number k+1 of steps, with k ≤ n−1, we
construct a g-coherent interval-valued assess-
ment A∆ = (AΓ0 ,AΓ1 , . . . ,AΓk

) on Fn, which
is intermediate between A′

n, A′′
n.
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5 Conclusions

We have considered imprecise prevision
assessments on conditional random quantities
with finite sets of possible values. We have
examined the checking of g-coherence and
the equivalence between g-coherence and
Walley’s AUL property of lower previsions.
Then, we have studied the connection prop-
erty of interval-valued g-coherent prevision
assessments, by extending a result given in
a previous paper for precise assessments. A
further development of the research should
deepen the study of imprecise prevision
assessments on more general conditional
random quantities.
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