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Abstract

We deal with information measures
and we introduce a suitable notion of
conditional independence by study-
ing the main properties.
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1 Introduction

In Weiner-Shannon information theory the
concept of information is simply derived by
the classical concept of stochastic indepen-
dence for probability by defining independent
two events A and B with respect to an infor-
mation measure I if

I(A ∧B) = I(A) + I(B).
This definition induces all the problems of the
classical independence in probability theory
(see [6, 8, 11]): stochastic independent events
with 0 or 1 probability can be logically depen-
dent. This is contrary to the intuitive idea of
independence. In fact, by using the above no-
tion we have that if I(A) = ∞, then A is in-
dependent of every event B, even though the
two events are not logically independent (for
instance are incompatible or A implies B). A
similar problem arises when I(A ∧ B) = 0.
To avoid these problems a stronger condition
of independence has been proposed both in
probability theory [6, 8], and in possibility
theory [9, 10, 12]. In the generalized informa-
tion theory, introduced by Kampé de Fériet
[13] the problem of introducing a “good” de-
finition of independence has been discussed,

starting from the seminal works [15, 16]. Most
definitions directly generalize that of Weiner-
Shannon information theory, by replacing +
with a more general operation ⊕, satisfying
some “natural” conditions. A different ap-
proach has been proposed by Benvenuti in [1],
where an axiomatic definition of conditional
information measure is introduced and so the
independence is defined by the formula:

I(A|B) = I(A).

Nevertheless, all the definitions present in the
literature are not able to avoid the counter-
intuitive questions discussed above, related
to the connection between independence and
logical independence for the events having in-
finite or null measure of information.

Starting from the general concept of condi-
tional (⊕,¯)-decomposable information mea-
sure given in [4, 5] and the relevant charac-
terization in terms of a class of unconditional
information measures, we introduce a new in-
dependence definition (inspired to that given
in [6] for probabilities and in [10, 12] for possi-
bilities) for such measures, which circumvents
the above critical situations. In fact, our de-
finition is such that if A is independent of
B, then A and B are logically independent.
Moreover, we provide a characterization and
we compare our notion with those present in
literature.

2 Kampé de Fériet information
measures

We recall the definition of (generalized) in-
formation measure given by Kampé de Fériet
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and Forte [13].

Definition 1 A function I on an algebra B
taking values on R∗ = [0,+∞] is an informa-
tion measure if it is antimonotone, i.e. the
following condition holds: for every A,B ∈ B

A ⊆ B =⇒ I(B) ≤ I(A). (1)

So, it follows that

0 ≤ I(Ω) = inf
A∈B

I(A) ≤ sup
A∈B

I(A) = I(∅).

Kampé de Fériet[13] claims that the above
inequality (1) is necessary and sufficient to
build up an information measure; neverthe-
less, to attribute a universal value to I(Ω) and
I(∅), the further conditions I(∅) = +∞ and
I(Ω) = 0 are given. The choice of these two
values is obviously aimed at reconciling with
the Wiener-Shannon theory. In general, con-
dition (1) implies only that

I(A ∨B) ≤ min{I(A), I(B)} ;

we can specify the rule of composition by in-
troducing a binary operation ¯ to compute
I(A ∨B) by means of I(A) and I(B).

Definition 2 An information measure de-
fined on an additive set of events A is ¯-
decomposable if there exists a binary operation
¯ on [0, +∞] × [0, +∞] such that, for every
A,B ∈ A with A ∧B = ∅, we have

I(A ∨B) = I(A)¯ I(B).

So “min” and the rule of Wiener-Shannon the-
ory1 are only two of the possible choices of ¯.

3 Conditional decomposable
information measure

In [4, 5], starting from a general concept of
conditional event in which the “third” value
is not the same for all conditional events, but
depends on E|H, the axioms defining a gen-
eralized (¯,⊕)-decomposable conditional in-
formation measure have been introduced.

Let ¯ and ⊕ be two commutative, associa-
tive, and increasing operations from [0,+∞]2

1x¯ y = −c log[e−x/c + e−y/c)]

to [0,+∞], having respectively +∞ and 0 as
neutral elements and with ⊕ distributive with
respect to ¯ (for instance min and +).

Definition 3 A function I : C → [0, +∞],
with C = B ×H, B a Boolean algebra, H ⊆ B
an additive set not containing {∅}, is a condi-
tional (¯,⊕)-decomposable information mea-
sure if it satisfies the following conditions

(I1) I(E|H) = I(E ∧H|H), for every E ∈ B
and H ∈ H,

(I2) for any given H ∈ H I(·|H) is a ¯-
decomposable information measure, i.e.

I(Ω|H) = 0 , I(∅|H) = +∞,

and, for any E, A ∈ B with A∧E ∧H =
∅, one has

I((E ∨A)|H) = I(E|H)¯ I(A|H)

(I3) for every A ∈ B and E, H, E ∧H ∈ H,

I((E ∧A)|H) = I(E|H)⊕ I(A|(E ∧H)) .

Remark 1 We note that, for a given ¯, the
choice of operation ⊕ is not free (for instance,
in the case of Wiener-Shannon information
measure, we can prove that the only possible
choice for ⊕ is +). The constraints are given
by the requirement of distributivity and, ob-
viously, by the axioms. Nevertheless, if for
instance we choose ¯ = min, then we have
many different possible choices for ⊕.

In the rest of the paper we assume that ⊕ is
strictly increasing.

As proved for conditional decomposable un-
certainty measures [3, 7, 8, 10], conditional
information measures can be characterized in
terms of a nested class of information mea-
sures [4, 5]: any nested class of informa-
tion measures induces a conditional infor-
mation measure and any conditional (¯,⊕)-
decomposable information measure gives rise
to a nested class of information measures.

Definition 4 Let B be a finite algebra and
Co the set of atoms in B. The class
I = {Io, ..., Ik} of information measures, de-
fined on B is nested if (for j = 0, ..., k) the
following conditions hold:
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• Ij(Hj) = 0;

• Ij(A) = +∞ for A ∧Hj = ∅;
• Ij(A) = Ij(A ∧Hj) for A ∧Hj 6= ∅;
• for any C ∈ Co there exists a (unique) j

such that Ij(C) < +∞,

where H0 = Ω and, for j = 1, ..., k,
Cj = {C ∈ Cj−1 : Ij−1(C) = +∞} and
Hj =

∨
C∈Cj

C.

The concept of coherence, developed for un-
certainty measures (starting from de Finetti
[11] relatively to probability), is the tool to
manage partial assessments, which are defined
in arbitrary sets of (conditional) events (i.e.
sets without particular Boolean structure).
Coherence requires that some numbers associ-
ated to some events are, in fact, the restriction
of a specific uncertainty measure on a Boolean
algebra or (for conditional events) on a prod-
uct of an algebra and an additive set. In [4, 5]
for conditional (¯,⊕)-decomposable informa-
tion measures, coherence has been introduced
and characterized in terms of the existence of
a class of unconditional ¯-decomposable in-
formation measures and in terms of a solv-
ability of a sequence of systems.

Definition 5 Let E be an arbitrary set of
conditional events and I : E → [0, +∞].
The function I is a coherent conditional
(¯,⊕)-decomposable information assessment
iff it can be extended on B × H ⊃ E (with
B a Boolean algebra, H ⊆ B additive set
not containing ∅) as a conditional (¯,⊕)-
decomposable information measure.

Theorem 1 Let F = {E1|H1, ..., En|Hn} be
a finite set of conditional events, Co and B
denote, respectively, the set of atoms and the
algebra generated by {E1, H1, ..., En,Hn}.
For a real function I : F → [0,+∞] the
following two statements are equivalent:

a) I is a coherent conditional (¯,⊕)-
decomposable information assessment on F ;

b) there exists (at least) a nested class I =
{Io, ..., Ik} of information measures on B,
such that for any Ei|Hi ∈ F , I(Ei|Hi) is so-

lution of the equations

Iα(Ei ∧Hi) = x⊕ Iα(Hi) (2)

for α = 0, ..., jHi and I(Ei|Hi) is the unique
solution of equation (2) for α = jHi with
IjHi

(Hi) < +∞;

c) there exists a sequence of compatible sys-
tems Sα (with α = 0, ..., k), with unknowns
xα

r = Iα(Cr)

Sα =



⊙
Cr⊆Ei∧Hi

xα
r = I(Ei|Hi)⊕

⊙
Cr⊆Hi

xα
r

if
⊙

Cr⊆Hi

xα−1
r = +∞⊙

Cr⊆Hα
0

xα
r = 0

xα
r ≥ 0

where xα−1 (with r-th component xα−1
r )

is solution of the system Sα−1 and
x−1

r = +∞ for any Cr ∈ Co. Moreover

Hα
0 =

∨
Hi:

⊙
Cr⊆Hi

xα−1
r =+∞

Hi.

The nested class in condition b) of Theorem 1
is said to agree with the coherent conditional
information assessment.

In the sequel of the paper we call a coherent
(¯,⊕)-decomposable information assessment
briefly conditional information assessment.

4 Independence

We propose a new independence definition
for coherent conditional information assess-
ments, inspired to that given in [6] for condi-
tional probabilities and in [9, 10, 12] for some
T -conditional possibilities, which circumvents
the above critical situations.

Definition 6 Let F = {E1|H1, ...En|Hn}
be an arbitrary family of conditional events
and let B be the algebra spanned by UF =
{E1,H1, ...En, Hn} and B0 = B \ {∅}. Let I
be a coherent conditional information assess-
ment on F , and I be a nested class agree-
ing with I, then, for every event E ∈ B0, the
significant-layer of E (denoted as ◦(E)) re-
lated to I is defined as the minimum number
α such that Iα(E) < +∞.
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Moreover, define ◦(∅) = ∞.

We can define also the significant-layer of a
conditional event E|H (denoted as ◦(E|H)),
related to an agreeing class I, as the (nonneg-
ative) number

◦(E|H) = ◦(E ∧H)− ◦(H). (3)

Note that ◦(E|H) = ∞ iff E ∧H = ∅.
Significant-layers single-out a partition of the
algebra B, in particular it follows that the
significant-layer of any event E with finite
information measure (e.g. Ω) is zero (i.e.
◦(E) = 0). It is immediate to prove that the
significant-layers, related to an agreeing class
I = {I0, ..., Ik} of I, satisfy the following for-
mal properties: for every E, F ∈ B

◦(E ∨ F ) = min{◦(E), ◦(F )}

◦(E ∧ F ) ≥ max{◦(E), ◦(F )}.
These properties recall those related to the
notion of zero-layer given in de Finetti
conditional probability framework [8], the
significant-layer given for T -conditional pos-
sibility [10, 12] and the κ functions of Spohn
[17].

Moreover, by properties of conditional infor-
mation measure, for any conditioning event H
there is at least one atom C ⊆ H such that
◦(C|H) = 0.

We introduce now a definition of indepen-
dence, directly for coherent partial informa-
tion assessment defined on an arbitrary set of
conditional events.

Definition 7 Given two events A and B
(with ∅ 6= B 6= Ω) and a coherent conditional
information assessment I on a set G contain-
ing D = {A∗|B∗, B∗|A∗}, then A is indepen-
dent of B under I (in symbol A⊥⊥B [I]) if both
the following conditions hold:
(i) I(A|B) = I(A|Bc), I(Ac|B) = I(Ac|Bc);
(ii) for the restriction of I to D there exists
an agreeing class I = {Iα} such that

◦(A|B) = ◦(A|Bc) and ◦(Ac|B) = ◦(Ac|Bc).

Remark 2 Definition 7 requires for the
statement A⊥⊥B [I] that B 6= ∅ and B 6= Ω
(since conditioning events cannot be impossi-
ble). This syntactical constraint has also a
semantical counterpart: Ω and ∅ correspond
to a situation of complete information (since
the former is always true and the latter al-
ways false), and so it does not make sense to
ask whether they could “influence” the infor-
mation measure of another event.

Conversely, by definition it follows that, un-
der any coherent conditional information as-
sessment, the events Ω and ∅ are indepen-
dent of every possible (i.e. different from ∅
and Ω) event B. In fact, condition (i) holds
and, for any agreeing class, one has ◦(Ω|B) =
◦(Ω|Bc) = 0 and ◦(∅|B) = ◦(∅|Bc) = +∞.

This conclusion is natural, since the informa-
tion measure (0 and +∞, respectively) of Ω
and ∅ cannot be changed by assuming the oc-
currence of any other possible event B. This
is the first instance of a lack of symmetry in
this concept of independence.

In condition (i) of Definition 7 we require
both the equalities I(A|B) = I(A|Bc) and
I(Ac|B) = I(Ac|Bc) and not just one as for
instance in probability theory. This is due
to the fact that for the information mea-
sures I(A) and I(Ac) are not strictly linked
(as, e.g., by additivity) and so we can have,
for instance: I(A|B) = I(A|Bc) = 0, but
I(Ac|B) 6= I(Ac|Bc).

When I(A|B) = I(Ac|B) < +∞, condition
(i) of Definition 7 assures that A is inde-
pendent of B, in fact in this case all the
significant-layers in condition (ii) are equal to
0 and so condition (ii) is trivially satisfied.

On the contrary when I(A|B) = +∞, then
necessarily I(Ac|B) = 0, and so if condition
(i) holds, the independence statement A⊥⊥B
under I is ruled by the first equality under
condition (ii) (analogously I(Ac|B) = +∞).

We finally note that the statement A⊥⊥B [I]
depends only on the restriction of the assess-
ment I on D, hence the statement is not ef-
fected by the values of the assessment I on
G \D. Since (ii) depends on an agreeing class
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for the coherent conditional information as-
sessment I, and since this class is in general
not unique, it is necessary to prove that in-
dependence is well-defined by Definition 7, in
other words that it is invariant with respect to
the choice of the nested class. This is proved
by the following theorems.

Theorem 2 Let A and B be two logically in-
dependent events, and let I be a coherent con-
ditional information assessment defined on G
containing D = {A∗|B∗, B∗|A∗}, such that

I(A|B) = I(A|Bc) and I(Ac|B) = I(Ac|Bc).

If there exists an agreeing class for I|D such
that

◦(A|B) = ◦(A|Bc), ◦(Ac|B) = ◦(Ac|Bc) (4)

then condition (4) holds for any other agree-
ing class for I|D.

Proof: Let C1 = (A ∧ B), C2 = (A ∧ Bc),
C3 = (Ac ∧ B) and C4 = (Ac ∧ Bc) be the
atoms generated by the events A and B, we
put xi

j = Ii(Cj) with Ii ∈ I. One has the
following situations:

a. If I(A|B) = I(Ac|B) < +∞, then, as
discussed above condition (4), ◦(A|B) =
◦(A|Bc) = ◦(Ac|B) = ◦(Ac|Bc) = 0, for
any agreeing class for I|D .

b. Suppose that I(Ac|B) = I(Ac|Bc) = +∞
(so I(A|B) = I(A|Bc) = 0), then

S0 =



x0
1 = 0⊕ (x0

1 ¯ x0
2)

x0
1 = I(B|A)⊕ (x0

1 ¯ x0
2)

x0
2 = 0⊕ (x0

2 ¯ x0
4)

x0
2 = I(Bc|A)⊕ (x0

1 ¯ x0
2)

x0
3 = +∞⊕ (x0

1 ¯ x0
3)

x0
3 = I(B|Ac)⊕ (x0

3 ¯ x0
4)

x0
4 = +∞⊕ (x0

2 ¯ x0
4)

x0
4 = I(Bc|Ac)⊕ (x0

3 ¯ x0
4)

x0
1 ¯ x0

2 ¯ x0
3 ¯ x0

4 = 0

Therefore, x0
1 ¯ x0

2 = 0 and x0
3 = x0

4 =
+∞. Then, ◦(A|B) = ◦(A|Bc) = 0

1. If x0
1 < +∞, x0

2 < +∞, then

S1 =

 x1
3 = I(B|Ac)⊕ (x1

3 ¯ x1
4)

x1
4 = I(Bc|Ac)⊕ (x1

3 ¯ x1
4)

x1
3 ¯ x1

4 = 0

Therefore, x1
3 = I(B|Ac) and x1

4 =
I(Bc|Ac).

– If x1
3 = I(B|Ac) = +∞,

then x1
4 = I(Bc|Ac) = 0 and

◦(Ac|B) ≥ 2 6= ◦(Ac|Bc) = 1.
Hence, for I(B|Ac) = +∞ (so
I(Bc|Ac) = 0) there is no agree-
ing class for I|D satisfying (4).

– If x1
4 = I(Bc|Ac) = +∞, then

◦(Ac|Bc) ≥ 2 6= ◦(Ac|B) = 1;
and for I(Bc|Ac) = +∞ there is
no agreeing class for I|D satisfy-
ing (4).

– If x1
3 = I(B|Ac) < +∞ and

x1
4 = I(Bc|Ac) < +∞, then
◦(Ac|B) = ◦(Ac|Bc) = 1, so any
agreeing class for I|D satisfies (4).

2. If x0
1 = +∞ then x0

2 = 0, I(B|A) =
+∞ (so I(Bc|A) = 0) and then

S1 =


x1

3 = +∞⊕ (x1
1 ¯ x1

3)
x1

3 = I(B|Ac)⊕ (x1
3 ¯ x1

4)
x1

4 = I(Bc|Ac)⊕ (x1
3 ¯ x1

4)
x1

1 ¯ x1
3 ¯ x1

4 = 0

Then x1
1 ¯ x1

4 = 0 and x1
3 = +∞.

– If x1
1 < +∞ and x1

4 <
+∞ then I(B|Ac) = +∞ and
I(Bc|Ac) < +∞. Hence,
◦(Ac|B) = ◦(Ac|Bc) = 1.

– If x1
1 = 0 and x1

4 = +∞ then

S2 =

 x2
3 = I(B|Ac)⊕ (x2

3 ¯ x2
4)

x2
4 = I(Bc|Ac)⊕ (x2

3 ¯ x2
4)

x2
3 ¯ x2

4 = 0

Therefore, x2
3 = I(B|Ac) and

x2
4 = I(Bc|Ac).
∗ If x2

3 = I(B|Ac) = +∞,
then x2

4 = I(Bc|Ac) = 0 and
◦(Ac|B) = ◦(Ac|Bc) = 2.
Hence, for I(B|Ac) = +∞ un-
der all the agreeing class for
I|D the condition (4) holds.

∗ If x2
4 = I(Bc|Ac) = +∞,

then x2
3 = I(B|Ac) = 0 and

◦(Ac|Bc) ≥ 3 6= ◦(Ac|B) = 1.
Hence, for I(Bc|Ac) = +∞
there is no agreeing class for
I|D satisfying (4).

∗ If x2
3 = I(B|Ac) < +∞ and

x2
4 = I(Bc|Ac) < +∞ then
◦(Ac|B) = 1 6= ◦(Ac|Bc) = 2.
Hence, for I(B|Ac) < +∞ and
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I(Bc|Ac) < +∞ there is no
agreeing class for I|D satisfying
(4).

– If x1
1 = +∞, then x1

4 = 0,
I(B|Ac) = +∞, I(Bc|Ac) = 0.

S2 =

 x2
1 = 0⊕ (x2

1 ¯ x2
3)

x2
3 = +∞⊕ (x2

1 ¯ x2
3)

x2
1 ¯ x2

3 = 0

Therefore, x2
1 = 0 and x2

3 = +∞.
So, ◦(Ac|B) = ◦(Ac|Bc) = 1.
Thus when I(B|A) = I(B|Ac) all
the agreeing classes for I|D satisfy
the condition (4).

3. If x0
2 = +∞, then x0

1 = 0.

S1 =


x1

2 = 0⊕ (x1
2 ¯ x1

4)
x1

3 = I(B|Ac)⊕ (x1
3 ¯ x1

4)
x1

4 = +∞⊕ (x1
2 ¯ x1

4)
x1

4 = I(Bc|Ac)⊕ (x1
3 ¯ x1

4)
x1

2 ¯ x1
3 ¯ x1

4 = 0

Therefore, x1
2 ¯ x1

3 = 0 and x1
4 =

+∞.
– If x1

2 = +∞, then x1
3 = 0,

I(Bc|Ac) = +∞, I(B|Ac) = 0.

S2 =

 x2
2 = 0⊕ (x2

2 ¯ x2
4)

x2
4 = +∞⊕ (x2

2 ¯ x2
4)

x2
2 ¯ x2

4 = 0

Then, x2
2 = 0, x2

4 = +∞ and
◦(Ac|B) = ◦(Ac|Bc) = 1.

– If x1
3 = +∞ then x1

2 = 0.

S2 =

 x2
3 = I(B|Ac)⊕ (x2

3 ¯ x2
4)

x2
4 = I(Bc|Ac)⊕ (x2

3 ¯ x2
4)

x2
3 ¯ x2

4 = 0

Therefore x2
3 = I(B|Ac) and

x2
4 = I(Bc|Ac).
∗ If x2

3 = +∞ then x2
4 = 0 and

◦(Ac|B) = 3 6= ◦(Ac|Bc) =
1. Hence, for I(B|Ac) = +∞
there is no agreeing class for
I|D satisfying (4).

∗ If x2
4 = +∞ then x2

3 = 0 and
◦(Ac|B) = ◦(Ac|Bc) = 2.

∗ If x2
3 < +∞ and x2

4 <
+∞ then ◦(Ac|B) = 2 6=
◦(Ac|Bc) = 1. Hence,
for I(B|Ac) < +∞ and
I(Bc|Ac) < +∞ there is no
agreeing class for I|D satisfying
the condition (4).

– If x1
2 < +∞ and x1

3 < +∞ then
I(Bc|Ac) = +∞ and ◦(Ac|B) =
◦(Ac|Bc) = 1.

Hence, when I(Bc|Ac) = I(Bc|A) =
+∞ under any agreeing class the
condition (4) holds.

c. In the case I(A|B) = I(A|Bc) = +∞ and
I(Ac|B) = I(Ac|Bc) = 0 the proof goes
in the same line of case b. by changing
the role of the event A with that of Ac.

Theorem 2 proves the invariance of indepen-
dence with respect to the choice of the agree-
ing class under the hypothesis that A and B
are logically independent. The case of A = ∅
(or A = Ω) have been discussed in Remark 2.
Theorem 3 proves that events not logically
independent cannot be independent for any
choice of I. This result is important per se
and represents the main goal of the reinforce-
ment of independence by condition (ii) of De-
finition 7.

Theorem 3 Let A and B be two possible
events, if A and B are not logically indepen-
dent, then under any given conditional infor-
mation measure I the event A is not indepen-
dent of B.

Proof: Since A and B are not logically inde-
pendent, at least one of the following events
A ∧ B, A ∧ Bc, Ac ∧ B and Ac ∧ Bc is im-
possible. Suppose without loss of generality
A ∧B = ∅ (A ⊆ Bc), then for every coherent
conditional information assessment on G and
for every agreeing class I, it follows

◦(A|B) = ◦(A ∧B)− ◦(B) = ∞
while ◦(A|Bc) = ◦(Bc) − ◦(Bc) = 0. Then
condition (ii) of Definition 7 does not hold.

Remark 3 As a particular case of Theorem
3 we have that, for every I, the statement
A⊥⊥A [I] does not hold. This irreflexivity is
a goal, in fact any event must be dependent
on itself. Nevertheless, the classical indepen-
dence, i.e.

I(A ∧B) = I(A)⊕ I(B) (5)

implies that any event A with I(A) = 0 is
independent of itself under I.
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Theorem 3 proves that our independence def-
inition (Definition 7) implies logical indepen-
dence, while classical independence (5) does
not imply logical independence. Actually this
implication is guaranteed by the requirement
of (ii) in Definition 7.

In the sequel we study some relevant proper-
ties of our independence definition: in partic-
ular, the following result characterizes inde-
pendence of two events in terms of the val-
ues of I(B|A), I(Bc|A), I(B|Ac), I(Bc|Ac),
giving up any direct reference to significant-
layers.

Theorem 4 Let A and B be two logically in-
dependent events. If a coherent conditional
information assessment I is such that

I(A|B) = I(A|Bc) = α

I(Ac|B) = I(Ac|Bc) = β,

then A⊥⊥B [I] if and only if one (and only
one) of the following conditions holds:

(a) α < +∞, β < +∞;

(b) α = 0, β = +∞ and the extension of I
to I(B|A), I(Bc|A), I(B|Ac), I(Bc|Ac)
satisfies one of the following conditions:

(1) I(B|Ac) ⊕ I(Bc|Ac) ⊕ I(B|A) ⊕
I(Bc|A) < +∞.

(2) I(B|A) = I(B|Ac) = +∞.
(3) I(Bc|A) = I(Bc|Ac) = +∞.

(c) α = +∞, β = 0 and the extension of I
to I(B|A), I(Bc|A), I(B|Ac), I(Bc|Ac)
satisfies one of the following conditions:

(1) I(B|Ac) ⊕ I(Bc|Ac) ⊕ I(B|A) ⊕
I(Bc|A) < +∞.

(2) I(B|Ac) = I(B|A) = +∞.
(3) I(Bc|A) = I(Bc|Ac) = +∞.

Proof: The proof is essentially contained in
that of Theorem 2.

By the following result we show the connec-
tions with the independence given in [1].

Proposition 1 A⊥⊥B [I] ⇒ I(A|B) = I(A).

Proof: Let I(A|B) = I(A|Bc) = α and by
distributivity I(A) = I(A∧B)¯ I(A∧Bc) =
(I(A|B) ⊕ I(B)) ¯ (I(A|Bc) ⊕ I(Bc)) = α ⊕
(I(B)¯ I(Bc)) = α.

The validity of the independence statement
A⊥⊥B [I], under a given conditional informa-
tion measure I, does not guarantee the sym-
metric independence relation B⊥⊥A [I]. How-
ever, concerning the symmetry of the inde-
pendence we have the following result:

Theorem 5 Let A and B be two possible
events. Given a coherent conditional infor-
mation assessment I such that A⊥⊥B [I], we
have:

1. if I(A) = I(Ac) < +∞, then B⊥⊥A [I];

2. if I(A) ⊕ I(Ac) = +∞ and either
I(B|A) = +∞ or I(Bc|A) = +∞, then
B⊥⊥A [I].

Proof: If I(A|B) < +∞ then

I(A ∧B) = I(A|B)⊕ I(B) = I(B|A)⊕ I(A).

Since ⊕ is strictly increasing the cancella-
tion law also, so from the previous equation
I(B|A) = I(B) and I(B|Ac) = I(B), then
B⊥⊥A by Theorem 4.

If A⊥⊥B and I(A|B) = +∞ = I(B|A), then
by Theorem 4 it follows that I(B|Ac) = +∞,
so I(Bc|A) = I(Bc|Ac) = 0. Again, by Theo-
rem 4 (condition (c)) it follows B⊥⊥A.

The case I(A|B) = +∞ = I(Bc|A) follows
analogously.

The proof of the case I(Ac|B) = +∞ is simi-
lar to the previous one.

From Theorem 4 and Proposition 1 it follows
that A⊥⊥B with I(A) = +∞ cannot nec-
essary imply B⊥⊥A if I(B|A) ⊕ I(Bc|A) <
+∞. For instance, if we have A⊥⊥B with
I(A|B) = +∞, I(B|A)⊕ I(Bc|A) < +∞ and
I(B) 6= I(B|A) then by Proposition 1 B⊥⊥A
does not hold. In fact, I(Ac|B) = 0 = I(Ac)
and I(Ac∧B) = I(Ac|B)⊕I(B) = I(B|Ac)⊕
I(Ac), therefore I(B|Ac) = I(B) 6= I(B|A).

By the following result we show the connec-
tion with the classical independence defini-
tion.
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Proposition 2 If A⊥⊥B under I, then
I(A ∧B) = I(A)⊕ I(B).

Proof: From Proposition 1 one has that
A⊥⊥B [I] implies that I(A ∧ B) = I(A|B) ⊕
I(B) = I(A)⊕ I(B).
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