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Abstract

In this paper we suggest a proce-
dure to adjust an incoherent condi-
tional probability assessment given
on a partial domain. We look for a
solution that tries to attain two sep-
arate goals: on one hand the solu-
tion should be as close as possible to
the initial assessments, on the other
hand we do not want to insert more
information than we had at the be-
ginning. The first goal is achieved by
minimizing an appropriately defined
distance among assessments, while
for the second we look for a “maxi-
mum entropy” like solution.

Keywords: Conditional probabil-
ity coherence, Divergence, Scoring
rules.

1 Introduction

In practical applications it is natural to give
evaluations of probability only of relevant
events; moreover it can happen that these
evaluations do not fit well with each other, es-
pecially when coming from different sources.
Another common feature is that events are
judged under specific circumstances, implying
a conditional assessment. Often the assess-
ment is intended to be used for inference pur-
poses, i.e. to see how a further (conditional)
event can be evaluated consistently with the
initial assessment. Of course, the inferential
results are meaningful only if the prior infor-
mation encompassed in the initial assessment

is coherent by itself. If not, a modification
is required. Usually such a problem is solved
with a revision of the initial evaluations. We
propose a methodology for choosing an assess-
ment correction automatically. A similar pro-
posal can be found in Kriz [9].

Therefore our input consists of an incoherent
conditional probability assessment given on a
partial domain. We want to find a coherent
assessment on the same domain that will pre-
serve the opinion expressed by the initial as-
sessment as much as possible, without intro-
ducing exogenous information. This goal is
obtained by minimizing some kind of distance
among partial conditional assessments.

(Pseudo)distances among probability distri-
butions are usually measured through diver-
gencies (e.g. Euclidean distance, Kulback-
Leibler divergence, Csiszár f-divergences,
etc.). Some of them can be applied only
among unconditional full probability distri-
butions; others could be applied to our con-
text of partial conditional assessments (see
for example [9]), but do not have any prob-
abilistic justification, being purely geometri-
cal tools. Hence, for our purpose, in this pa-
per we introduce an index of “discrepancy”
among partial conditional probability assess-
ments which is derived by a particular scoring
rule. Such a scoring rule is inspired by the
one, introduced by Lad in [11] for uncondi-
tional probability distributions, and adapted
here to conditional-logical arguments.

Independently of the divergence used to ex-
trapolate the closest coherent assessment, for
inference purposes, among all the compatible
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models, we suggest selecting the one that in-
troduces least additional information. Hence
we look for a “maximum entropy” like solu-
tion, not far from the suggestion of [7].

Operationally our purpose reduces to a two
step optimization procedure. In the first step
the discrepancy index is minimized. Peculiar
to this part are the incompleteness of the as-
sessment, the non linearity of the objective
function and the non convexity of the set of
coherent conditional assessments. To avoid
the last aspect, we move to a search space
formed by unconditional probability distribu-
tions. On the other hand, the second step is a
canonical maximization of entropy, but with
constraints obtained by the first.

The paper is organized as follows: in Sec-
tion 2, after a brief formalization of the prob-
lem, a scoring rule suitable for our framework
is proposed. In Section 3, we introduce the
discrepancy index and prove its fundamental
properties. Then in Subsection 3.1, for com-
parison purposes, we illustrate other possible
divergencies. In Subsection 3.2 numerical ex-
amples of discrepancy minimization illustrate
the operational effectiveness of our proposal.
Finally, in Subsection 3.3 the second step of
entropy maximization is formalized and the
whole procedure is illustrated by one last nu-
merical example. A short conclusive section
closes the paper.

2 A short description of the
problem

2.1 Notation

We formalize the problem briefly.

A field expert, in the sequel named the “as-
sessor”, elicits a finite family of conditional
events E = [E1|H1, . . . , En|Hn] as domain of
his/her evaluations. The events Ei’s usually
represent the situations under consideration,
while the Hi’s usually represent the different
contexts, or scenarios, under which the Ei’s
are evaluated.

The basic events E1, . . . , En,H1, . . . ,Hn can
be endowed with logical constraints, that rep-

resent dependencies among particular config-
urations of them.

In the following EiHi will denote the logical
connection “Ei and Hi”, Ec

i will indicate “not
Ei” and the event H0 =

∨n
i=1 Hi will repre-

sent the whole set of contexts.

Starting with the basic events
E1, . . . , En,H1, . . . , Hn it is possible, to
span a sample space Ω = {ω1, . . . , ωk}, where
ωj represents a generic atom, in some context
named “possible world ”. Note that the
sample space Ω, together with H0, are not
part of the assessment but only auxiliary
tools.

As is well known, a conditional event Ei|Hi

is a three-valued logical entity, partitioning Ω
in three parts: the atoms satisfying EiHi and
thus verifying the conditional, those satisfy-
ing Ec

i Hi, thus falsifying the conditional, and
those not fulfilling the context Hi, to which
the conditional may not be applied at all.
This is usually synthesized with the indicator
function

|Ei|Hi| =


1 if EiHi occurs
0 if Ec

i Hi occurs
undetermined if Hc

i occurs
.

We will denote with A the set of probabil-
ity distributions α = [α1, . . . , αk] over Ω,
with the restriction α(Hi) =

∑
ωj∈Hi

αj > 0,
i = 1, . . . , n. In particular, we will mainly use
the subset of probability distributions A0 =
{α ∈ A such that α(H0) = α(

∨
Hi) = 1}.

Any α ∈ A induces a coherent conditional
assessment on E

qα = [qαi =

∑
ωj⊆EiHi

αj∑
ωj⊆Hi

αj

, i = 1, . . . , n].

By QE we will denote the set of coherent as-
sessments attainable by some distribution in
A0, i.e. QE = {q ∈ [0, 1]n : ∃α ∈ A0 s.t. q =
qα}.
On the other hand, for any q ∈ QE it is pos-
sible to identify the convex set of probability
distributions “compatible” with q

Aq := {α ∈ A|qα ≡ q};
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and its nonempty convex subset

A0
q := Aq ∩ A0.

Aq can be interpreted as the set of probabilis-
tic models implicitly accepted by an assessor
of q.

The input of our problem will consist of an
incoherent assessment p = [p1, . . . , pn] ∈
(0, 1)n, with p 6∈ QE , and we want to “adjust”
it. Note that, at the moment, we exclude “ex-
treme” evaluations pi = 0 or pi = 1.

In Bayesian statistic, to challenge the sound-
ness of any probability assessment, it is usual
to introduce a “scoring” rule. Scoring rules
can be interpreted in different ways. The sim-
plest one is to think of them as hypothetical
penalties suffered by the assessor. The actual
loss must depend on which events occur and
on what probabilities have been assessed for
them. In this way, to minimize the expected
loss, an assessor is induced to elicit probability
values honestly by following his/her informa-
tion.

For partial (coherent or not) conditional as-
sessments v = [v1, . . . , vn] ∈ (0, 1)n over
E = [E1|H1, . . . , En|Hn], we propose as scor-
ing rule the random variable

S(v) :=
n∑

i=1

|EiHi| ln vi +
n∑

i=1

|Ec
i Hi| ln(1− vi)

with | · | indicator function of unconditional
events.

The motivation of such a score is that the as-
sessor “loses less” the higher are the probabil-
ities assessed for events that are verified, and
at the same time, the lower are the probabil-
ities assessed for those that are not verified.
The values assessed on events that turn out to
be undetermined do not influence the score.

Such score S(v) is an “adaptation” of the
“proper scoring rule” for probability distribu-
tions proposed by Lad in [11](pag. 355). We
have extended it to partial and conditional
probability assessments.

Finally we need to express the expected value
of a score S(v) with respect to a probability

distribution α ∈ A:

Eα(S(v)) :=
k∑

j=1

αj

 ∑
i:EiHi⊇{ωj}

ln vi +
∑

i:Ec
i Hi⊇{ωj}

ln(1−vi)

.

3 Our correction procedure

The aim of our proposal is to “adjust” p by
a coherent assessment qp ∈ QE in such a way
that the difference between the corresponding
expected scores is minimal.

Hence, we can introduce the “discrepancy”
between an assessment p over E and a distri-
bution α ∈ A, with respect to its conditional
coherent assessment qα, as

∆(p, α) := Eα(S(qα)− S(p)). (1)

This discrepancy ∆(p,α) behaves like other
common divergences. In fact the following
theorem holds.

Theorem 1 Let ∆(p, α) be defined as in (1).
Then

i) ∆(p, α) ≥ 0 ∀α ∈ A;
ii) ∆(p, α) = 0 iff p ≡ qα;
iii) ∆(p, α) is convex on α.

Proof: Recall that, by definition,

qαi = α(Ei|Hi) =
α(EiHi)
α(Hi)

; (2)

(1− qαi) = (1− α(Ei|Hi)) =

=
α(Hi)− α(EiHi)

α(Hi)
=

=
α(Ec

i Hi)
α(Hi)

. (3)

Hence we have

∆(p, α) =

=
k∑

j=1

αj

 ∑
i:EiHi⊇{ωj}

ln
qαi

pi
+

∑
i:Ec

i Hi⊇{ωj}
ln

1− qαi

1− pi

 =

=
k∑

j=1

∑
i:EiHi⊇{ωj}

αj ln
qαi

pi
+

k∑
j=1

∑
i:Ec

i Hi⊇{ωj}
αj ln

1− qαi

1− pi
=
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(by distributivity)

=
∑n

i=1 ln qαi
pi

∑
j:{ωj}⊆EiHi

αj +

+
∑n

i=1 ln 1−qαi
1−pi

∑
j:{ωj}⊆Ec

i Hi
αj =

=
∑n

i=1 ln qαi

pi
α(EiHi) +

+
∑n

i=1 ln 1−qαi

1−pi
α(Ec

i Hi) =

=
∑n

i=1 ln qαi

pi
qαiα(Hi) +

+
∑n

i=1 ln 1−qαi

1−pi
(1− qαi)α(Hi) = (4)

(by (2) and (3))

=
n∑

i=1

α(Hi)[qαi ln
qαi

pi
− qαi + pi +

+ (1− qαi) ln
1− qαi

1− pi
− (1− qαi) + (1− pi)]

=
n∑

i=1

α(Hi)[β1
i + β2

i ] (5)

where each βε
i is of the form xi ln xi

yi
− xi + yi,

xi, yi ∈ (0, 1), ε = 1, 2, and therefore it is easy
to verify that βε

i ≥ 0, i = 1, . . . , n, with βε
i = 0

if and only if xi = yi. This proves i) and ii).

On the other hand, by applying (2) and (3)
to (4) it follows that

∆(p,α) =
n∑

i=1

(α(EiHi) ln
α(EiHi)
α(Hi)

+ α(Ec
i Hi) ln

α(Ec
i Hi)

α(Hi)
− α(EiHi) ln pi − α(Ec

i Hi) ln(1− pi))

that is ∆ is of the form
∑

γi ln γi

ςi
+γiψi which

is convex on the pairs (γi, ςi). Therefore ∆ is
convex on α, being γi and ςi sums of αj ’s. ¤
The remark about expression (5) reveals that
the discrepancy ∆(p, α) turns out to be a gen-
eralization of the sum of two different “Breg-
man divergences” [2]

D(x,y) := φ(x)− φ(y)− < x− y,∇φ(y) >

x,y ∈ Rn.

In fact if D1(x,y) is obtained by φ1(x) =∑n
i=1 xi lnxi and D2(x,y) by φ2(x) =∑n
i=1(1 − xi) ln(1 − xi) we would have

D1(x,y) + D2(x,y) =
∑n

i=1[β
1
i + β2

i ]. In
∆(p,α) each term is weighted by α(Hi),

which reflects the “relevance” of each context
Hi with respect to all the assessments.

Now we suggest using as coherent correction
of p the assessment qp generated by the dis-
tribution α̃ solution of the nonlinear opti-
mization program

min
α∈A0

∆(p, α). (6)

The motivation for this choice is that (intu-
itively) the assessor of p would expect to suf-
fer the penalty S(p), hence we select the co-
herent assessment qp that has a (probabilis-
tic) expected score as close as possible.

Note that we restrict ourself to evaluate the
discrepancy only over A0 because it is easy
to see that, by making α(H0) smaller and
smaller, we get

inf
α∈A

{∆(p, α)} = 0.

Hence we would be induced to look for the
closest adjustment of p among those gener-
ated by distributions α that weakly support
the whole set of scenarios H0. This would be
meaningless because, relatively to E , the only
relevant atoms of Ω are those in H0.

The optimal solution α̃ of the optimization
problem (6) is just an auxiliary component,
while our attention is focused on its extension
qp. In fact, adopting qp as “best” approx-
imation of p implicitly admits as reasonable
models not only α̃ but also all others agreeing
distributions in A0

qp
.

3.1 Other divergencies

For the purpose of comparison, we also con-
sidered other divergencies among assessments:

1. L1(p,q) =
n∑

i=1

|qi − pi|;

2. L2(p,q) =
n∑

i=1

(qi − pi)2;

3. CD(p,q, α) =
n∑

i=1

(
∑

ωj⊆Hi

αj)(qi ln(qi/pi) − qi + pi)

with α ∈ Aq;
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4. R(p,q) =
∑
i6=j

| ln(pi/pj)− ln(qi/qj)|;

5. O(p,q) =
∑
i6=j

| ln(pi/pj) − ln(qi/qj)| +∑
i

| ln(pi/(1− pi))− ln(qi/(1− qi))|.

L1 and L2 are usual metric distances, en-
dowed with all their geometric properties, but
without either an intuitive or a probabilis-
tic interpretation to be used as distances be-
tween conditional assessments. CD is a direct
adaptation of the logarithmic Bregman diver-
gence to conditional probabilities. On a non
conditional framework, such divergence is the
most frequently adopted, because of its infor-
mation theoretic properties. In fact it gener-
alizes the well known Kulback-Leibler diver-
gence [10] to partial assessments. Anyhow,
it is known that this Bregman divergence is
generated by a logarithmic scoring rule (see
e.g. [12]). This logarithmic scoring rule eval-
uates only the events that occur, without con-
sidering those that turn out to be false. On
the contrary, our score S(p) evaluates all the
events, both those that occur and those that
do not, since it encompasses the implicit as-
sessments (1− pi)’s.

We have considered the last two divergences
R and O just to see if it was possible to find
a correction q that could maintain the rela-
tive proportions among the components pi’s,
and among components pi’s and their com-
plements 1 − pi, respectively. However, we
have not studied their theoretical properties
because, as we will see in the following nu-
merical examples, both R and O present com-
putational drawbacks due to the presence of
local minima.

3.2 Numerical results

We describe now some examples that will
show the effectiveness of our procedure.
The numerical results have been obtained
trough the nonlinear optimization software
CONOPT of the package General Algebraic
Modeling System (GAMS) [3].

Example 1

By borrowing the framework from [1], we take
E = [A|H, B|AH, AB|H] without any logical
relation among A,B,H. Hence the sample
space is composed by 8 atoms, 4 of them in-
side H0 ≡ H. The set of coherent assessments
QE is made by the triples [q1, q2, q3] ∈ [0, 1]3

with q3 = q1 q2 (Fig.1). Note that the set QE
is evidently non-convex.

Figure 1: The set of coherent assessments QE

Starting from different initial incoherent as-
sessments p = [p(A|H), p(B|AH), p(AB|H)]
we got the coherent corrections qp indicated
in Table 1. Note that when the initial assess-
ment is “weakly” inconsistent (first and third
case) all the corrections are similar and mean-
ingful. On the contrary, when p is “heavily”
inconsistent (second case) only those based on
∆ and L2 are reasonable adjustments. The
others are less meaningful or absolutely biased
by the presence of local minima in the asso-
ciated divergence. In particular those marked
with ∗ are affected by the choice of optimiza-
tion starting points

Example 2

By borrowing a different framework from
[6], we take three conditional events E1 =
[C|A,C|B,C|A ∨ B] built by the three ba-
sic unconditional logically independent events
A, B,C. Hence the whole sample space would
again consist of 8 atoms, with 6 of them inside
H0 ≡ A∨B. The set of coherent assessments
QE1 is made now by the triples [q1, q2, q3] ∈
(0, 1)3 with the last component q3 necessar-
ily in the range [ q1 q2

q1+q2−q1 q2
, q1+q2−2q1 q2

1−q1 q2
] (the
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Table 1: Coherent corrections qp for different
p.

A|H B|AH AB|H
p .2 .3 .05
∆ .196 .28 .0549
L1 .2 .3 .06

qp L2 .197 .298 .059
CD .195 .277 .054
R∗ .167 .25 .042
O∗ .183 .274 .05
p .8 .9 .02
∆ .419 .445 .186
L1 .799 .9 .719

qp L2 .545 .702 .383
CD .402 .212 .085
R∗ .046 .028 .001
O∗ .133 .15 .02
p .8 .9 .7
∆ .793 .896 .711
L1 .794 .9 .714

qp L2 .793 .893 .708
CD .793 .891 .707
R∗ .778 .875 .681
O∗ .798 .9 .718

lower and upper bounds of QE1 are shown in
Fig.2 ). Note also in this case the evident
non-convexity of such coherent set. This ex-
ample focuses on the iterative behavior of the
procedure by adding events and assessments.
More precisely, by considering two more con-
ditional events D|B and E|B, endowed with
logical constraints D ⊂ (A∧B)∨ (A∨B∨C)c

and E ⊂ Ac ∧ B ∧ C, the sample space Ω re-
fines to 12 atoms. We can now see the differ-
ence between adding to the assessments one
further evaluation per time, and making at
once a full correction. Results are reported
in Table 2 where p2 is obtained by extending
qp1 with a new assessment over D|B, while
p′2 is obtained by extending p1 with the same
assessment. Analogously, p3 is obtained by
extending qp2 with an assessment over E|B,
while p′3 is the full assessment over the entire
domain E3 = [C|A,C|B, C|A ∨ B,D|B,E|B]
obtained by joining the various partial as-
sessments. The coherent corrections qp(·) of
the corresponding incoherent assessments p(·)

Figure 2: Lower and upper bounds of QE1

Table 2: Non-associativity of the procedure
E C|A C|B C|A ∨B D|B E|B
p1 .2 .3 .5
qp1 .226 .339 .446
p2 .226 .339 .446 .7
qp2 .231 .323 .437 .677
p′2 .2 .3 .5 .7
qp′2 .231 .323 .437 .677
p3 .231 .321 .437 .677 .4
qp3 .237 .350 .429 .650 .350
p′3 .2 .3 .5 .7 .4
qp′3 .227 .344 .450 .656 .344

are reported under each input. While, at a
first glance, equivalence between qp2 and qp′2
would suggest that the procedure is indepen-
dent of the order, the differences between qp3
and qp′3 indicate the non-associativity of our
correction process. This agrees with the simi-
lar behavior of the maximum entropy “fusion”
operator (for further details refer to Kern-
Isberner& Rodder[8]).

3.3 Selecting a specific coherent
distribution

In each correction step of the previous exam-
ples the probability distribution α compatible
with the coherent corrections is unique, i.e.
A0

qp
≡ {α}. Hence in these cases, once the

initial assessment p has been corrected to qp,
one can directly use α for inference purposes,
e.g. to extend the assessment to other rele-
vant conditional events. But this is not the
general situation. In fact it can happen that
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the set A0
qp

contains several distributions. In
this case one can either continue to use the
whole set A0

qp
by adopting imprecise proba-

bility techniques, or make a choice by “cap-
turing” a specific distribution α, e.g. the one
with maximum entropy αME as prescribed by
Kern-Isberner in [7] or by Kriz in [9]. In the
latter case, our whole procedure would consist
of two main steps: derive the coherent correc-
tion qp by solving the nonlinear optimization
problem (6), and then select inside the agree-
ing set of models A0

qp
the maximum entropy

distribution αME , solving the nonlinear opti-
mization program

maximize −
∑
ωj∈Ω

αj ln αj (7)

s.t. α ∈ A0
qp

.

Example 3

To describe the potential of our procedure in
its two basic steps we have borrowed a medical
application example from [4] and adapted it
to our needs. There are 12 events involved,
4 unconditional and 8 conditional. We start
with five basic events H1,H2,H3, E, F , that
have the following interpretations

• H1 = cardiac insufficiency;

• H2 = asthma attack;

• H3 = asthma attack and a cardiac lesion;

• E = taking the medicine M for asthma
does not reduce choking symptoms;

• F = taking the medicine M for asthma
increases tachycardia,

and have the logical constraints

H3 ⊆ H1H2;
EHc

1H2 ≡ φ;
FHc

1H2 ≡ φ.

We have given an incoherent assessment p
over the events E listed in the first column of
Table 3. The coherent corrections produced
through the discrepancy index ∆ and through
the quadratic divergence L2 are compared in

Table 3: The incoherent assessment p and its
coherent corrections

qp

E p ∆ L2

H1 0.5 0.476 0.474
H2 0.333 0.319 0.309
H3 0.2 0.2 0.190

H1 ∨H2 0.6 0.595 0.593
E|H1 0.9 0.840 0.814
E|Hc

1 0.7 0.571 0.601
E|H2 0.45 0.502 0.472
E|Hc

2 0.75 0.791 0.805
E|H3 0.75 0.8 0.768
E|Hc

3 0.6 0.674 0.686
F |EH1 0.875 0.855 0.852
F |EH2 0.6 0.637 0.610

the same Table 3. One can see some signif-
icant discrepancy. The correction obtained
through ∆, apart from numerical considera-
tions, has the advantage of having a proba-
bilistic interpretation.

We can describe now the second step of our
procedure for the correction ∆. In fact the
five basic events H1,H2, H3, E, F span a sam-
ple space Ω with 17 atoms, as detailed in Ta-
ble 4. By coherent extension of ∆ to the sam-
ple space Ω we obtain a set A of probability
distributions. Among all the admissible dis-
tributions α ∈ A we can select the one with
maximum entropy by solving the optimization
program (7). The solution αME is reported
in the last column of Table 4 and one can see
that its components coincide with mid points
of the coherent lower and upper bounds1 α
and α.

4 Conclusions

We conclude by saying that this is a prelimi-
nary study about the adoption of the discrep-
ancy ∆ in revision problems. The numerical
examples and the theoretical properties re-

1Computed by “Check Coherence Inter-
face” software of the PAID (PArtial In-
formation and Decision) Research Group
http://www.dipmat.unipg.it/~upkd/paid/software.html
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Table 4: The sample space, the optimal so-
lution αI , the lower α and upper α bounds
and the maximum entropy solution αME of
Example 3

H1H2H3EF αI α α αME

ω1 1 1 1 0 0 .032 .000 .040 .020
ω2 1 1 0 0 0 .000 .000 .000 .000
ω3 0 1 0 0 0 .119 .119 .119 .119
ω4 1 0 0 0 0 .018 .000 .036 .018
ω5 0 0 0 0 0 .053 .000 .106 .053
ω6 1 1 1 1 0 .058 .058 .058 .058
ω7 1 1 0 1 0 .000 .000 .000 .000
ω8 1 0 0 1 0 .000 .000 .000 .000
ω9 0 0 0 1 0 .059 .000 .299 .150
ω10 1 1 1 0 1 .008 .000 .040 .020
ω11 1 1 0 0 1 .000 .000 .000 .000
ω12 1 0 0 0 1 .018 .000 .036 .018
ω13 0 0 0 0 1 .053 .000 .106 .053
ω14 1 1 1 1 1 .102 .102 .102 .102
ω15 1 1 0 1 1 .000 .000 .000 .000
ω16 1 0 0 1 1 .240 .240 .240 .240
ω17 0 0 0 1 1 .240 .000 .299 .150

entropy 2.108 2.174

ported in this paper encourage us to complete
the study.

In particular, at the moment we have re-
stricted the conditional events Hi to have
probabilities bounded away from zero. To re-
move this limitation we should profit from the
cornerstone representation of coherent condi-
tional partial assessments through different
zero “layers” (see e.g. [5]). This method could
also allow us to split the problem on different
subproblems and to localize the optimization
goals.
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