
A Comparison of Architectures for Exact Inference
in Evidential Networks

Boutheina Ben Yaghlane
LARODEC - ISG

IHEC Carthage, Tunisia
boutheina.yaghlane@ihec.rnu.tn

Abstract

This paper presents a comparison of
two architectures for belief propaga-
tion in evidential networks, namely
the binary join tree using joint be-
lief functions [9] and the modified
binary join tree using conditional
belief functions [2]. This com-
parison is done from the perspec-
tive of graphical structure, message-
passing scheme, computational effi-
ciency, storage efficiency, and com-
plexity analysis. As a main result,
we show that the implication of the
conditional relations between vari-
ables in evidential networks reduces
the computational complexity of the
inference process.

Keywords: Belief functions, belief
propagation, evidential networks,
binary join tree.

1 Introduction

One of the most important problems when
using belief function theory [6] in practice is
its relatively high computational complexity.
The use of evidential networks (i.e. networks
using belief functions) seems to be a promis-
ing solution of this problem. These networks
are considered as a picture that provides an
intuitive description of the problem. They are
also considered as mathematical structures
that specify different connections between the
variables of a complex problem, transforming
it into a clear representation.

However, in evidential networks, the relations
among the variables are usually represented
by joint belief functions [7] rather than con-
ditional belief functions. Nevertheless, the
use of graphs to represent conditional inde-
pendence relations is useful since an expo-
nential number of conditional independence
statements can be represented by a graph
with a polynomial number of vertices [8].

In the belief reasoning literature, two archi-
tectures have been proposed for computing
marginals of belief functions. The first one
is the pioneering architecture for computing
marginals, called the binary join tree (BJT)
[9], which is an abstract framework for com-
puting marginals applied to any domain sat-
isfying some axioms. The second one is an
adaptation of the BJT, called the modified
binary join tree (MBJT) [2], showing how to
represent independencies from the original di-
rected evidential networks.

In this paper, we compare the BJT and MBJT
architectures based on reasonable criteria de-
termined during our experimentation. In par-
ticular, the graphical structure, the message-
passing scheme, the computational efficiency,
the storage efficiency, and the complexity
analysis are discussed.

It is commonly believed that the BJT archi-
tecture is the most efficient architecture for
computing marginals, but our experimental
results show that the MBJT architecture is
computationally more efficient than the BJT
architecture and confirm the relevance of the
use of conditional belief functions when infer-
ring through evidential networks.

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 883–890

Torremolinos (Málaga), June 22–27, 2008

The paper is structured as follows. In Sec-
tion 2, we first present the BJT architecture.
Then, we introduce in Section 3 the MBJT ar-
chitecture. Section 4 is devoted to a compar-
ison between these two architectures on the
basis of criteria specified progressively.

2 Binary Join Tree Architecture

The starting point is a directed evidential net-
work of a given problem and some evidence
(i.e. observations) for some variables. The
task consists on computing the posterior be-
lief for all variables in the network.

A join tree can be considered as a data struc-
ture that allows us to organize the compu-
tation. It consists in a set of nodes (corre-
sponding to variables or subsets of variables
of the problem) where each node is connected
to one or more neighbor nodes and where the
initially given potentials (or valuations) are
distributed on the nodes. Marginals are then
computed on the basis of a message-passing
scheme, where nodes receive and send mes-
sages to their neighbor nodes.

Nevertheless, the join tree is not very efficient
when multiple marginals have to be computed
due to the redundant combinations. To get
rid of this drawback, Shenoy introduces an-
other data structure, called the binary join
tree (BJT), which is a join tree according to
which no node has more than three neighbors
[9]. The basic idea behind a BJT is that all
combinations are done in a binary basis.

In general, for a join tree, a node with m
neighbor nodes would need m2 combinations.
However, each join tree can be transformed
into a binary join tree through addition of
other nodes involving the reduction of the
number of combinations. Then, for a node
with m neighbor nodes, 3(m − 1) combina-
tions are needed. Without the use of a bi-
nary join tree, a lot of unnecessary combi-
nations would be performed for nodes which
have many neighbor nodes.

The binary join tree is constructed by a pro-
cess having as a main idea the fusion algo-
rithm: a successive variable elimination. So

when we delete a variable we combine all val-
uations that contain the variable in their do-
main, then we marginalize the variable out of
the combination.

The propagation scheme through the BJT in-
volves two-phase propagation: a propagation
up and a propagation down. The arrival node
for the propagation up is the departure node
of the propagation down which is a root node.
The formal procedure of the inference through
the BJT is available in [9].

In the following, we present the graphical rep-
resentation of the chest clinic problem [5] and
the corresponding BJT.

Figure 1: The directed evidential network
and the corresponding binary join tree for the
chest clinic problem.

3 Modified Binary Join Tree
Architecture

It is important to realize that binary join trees
represent a tradeoff between computing time
and memory space. By storing intermediate
results, less computing time is needed for the
sake of using more memory space.

Special care has to be taken for nodes having
a large number of neighbor nodes. For such
nodes it happens that the combination of in-
coming messages generates huge mass func-

884 Proceedings of IPMU’08

tions even if the incoming messages were rel-
atively small. Nevertheless, it is still possi-
ble that every outgoing message is relatively
small because marginalization was performed.
In a binary join tree, these huge mass func-
tions representing intermediate results would
have been stored and therefore much memory
space would have been lost.

Nevertheless, when we transform the original
directed evidential network into a binary join
tree, we lose some useful information about
the relationships between the variables.

In order to avoid this drawback, Ben Yagh-
lane et al. [2] proposed a computational data
structure based on the BJT and represent-
ing explicitly the (in)dependence relations of
the original directed evidential network with
conditional belief functions. This data struc-
ture is called the modified binary join tree
(MBJT). Figure 2 gives the MBJT graphical
structure of the chest clinic problem.

Figure 2: A MBJT tree for the chest clinic
problem.

The belief propagation is then performed
by applying two rules proposed by Smets
[10], namely the generalized Bayesian theorem
(GBT) and the disjunctive rule of combina-
tion (DRC). The full description of the prop-
agation algorithms in the MBJT is given in
[3].

4 Comparison Aspects

In this section, we discuss some aspects re-
lated to the algorithms used for BJT and
MBJT architectures. In particular, we focus
our attention to the graphical structure, the
message passing scheme, the computational
efficiencies, the storage efficiencies, and the
complexity analysis of each architecture.

4.1 Graphical Structure

The BJT and MBJT architectures are two
frameworks of nodes clustering. The first one
takes as parameters an hypergraph and a set
of valuations in order to construct the graph-
ical model, initializes it and performs belief
propagation. The result is a binary join tree
[9], i.e. an undirected graph showing only
undirected links between nodes. The second
framework needs, as parameters, a directed
evidential network weighted by conditional
belief functions added to an hypergraph and a
set of valuations. It also constructs the graph-
ical model, initializes it and performs belief
propagation so that to obtain a modified bi-
nary join tree, i.e. a mixed graph showing
directed and undirected links between nodes.

When transforming graphical model, both
frameworks adopt the idea of fusion algo-
rithm. At the end of the construction of
the first model, we obtain a BJT composed
of nodes linked by joint belief functions. It
doesn’t show any (in)dependence relationship
between the subsets of variables. Whereas,
during the construction process, the MBJT
profits from the structure of the original di-
rected evidential network and takes advantage
from its (in)dependence relations. As a result,
we obtain a BJT composed of nodes linked
by either conditional or joint belief functions.
The (in)dependence relations between nodes
in the MBJT are represented by the condi-
tional nodes which are going to be useful when
inferring through the MBJT.

In the BJT, nodes represent collections of
variables belonging to subsets entered as pa-
rameters and several subsets of these cliques.
In addition to these nodes, the MBJT is com-

Proceedings of IPMU’08 885

posed of conditional nodes which are cliques
of variables having conditional relations (chil-
dren and parents) in the directed evidential
network.

Since we include all singleton subsets during
the construction of the graphical model, the
graphical structure in both frameworks will
yield marginals for singletons at the end of
the message passing scheme.

4.2 Message Passing Scheme

Once the graphical model is constructed, the
initialization process starts. During the BJT
initialization, we only make use of joint belief
functions, whereas the MBJT is initialized by
means of joint belief functions for not condi-
tional nodes (i.e. joint nodes) and conditional
belief functions for conditional nodes.

In both frameworks, the propagation of
messages weighted by beliefs is done in
two phases: the propagation-up and the
propagation-down. The root is determined ac-
cording to the propagation-up scheme where
messages are passing from leaves to the center
of the tree.

On one hand, the inference in the BJT in-
volves the totality of nodes created during the
construction process. Every node in the BJT
stores a potential and messages received from
neighbors. So, every node is able to do com-
putations.

On other hand, during the inference through
the MBJT, only joint nodes are able to send
and receive messages. For example, in the
chest clinic problem, the MBJT (see figure
2) shows 20 nodes. Among these 20 nodes,
we can find 5 conditional nodes, so only 15
remaining nodes will be involved in the in-
ference process. This can reduce the amount
of computations needed to propagate beliefs
through the MBJT.

The other nodes which are conditional are not
asked to receive, to send messages or to do
computations because they are regarded as
”bridges” between joint nodes. They deter-
mine whether the message sent from a joint
node to another joint node is ”parent” mes-

sage or a ”child” message. Therefore, they
hold a decisive position allowing us to reveal
who is the parent and who is the child before
transferring messages between joint nodes.

In addition to the role of ”bridges”, these
conditional nodes have another main role.
They contribute to represent conditional
(in)dependence between involved nodes. This
confirms the capacity of the MBJT of repre-
senting conditional (in)dependence relation-
ships between variable collections which of-
fer more clearness to the graphical model and
reveal explicitly the causal relations between
subsets of variables.

For the MBJT, at the beginning we have po-
tential representations of entered valuations,
evidence representation and conditional be-
lief functions representations which are de-
duced from the original directed evidential
network. For the BJT, we have not condi-
tional belief functions to represent at the be-
ginning. At the end of belief propagation, we
have marginals for all nodes in the BJT and
marginals for only joint nodes in the MBJT.

4.3 Computational Efficiencies

As in the MBJT only joint nodes perform
computations, there will be less computa-
tions in the MBJT than those in the BJT
where all nodes must perform computations.
In each node, computations are needed two
times: first, when preparing messages to send
to its neighbors, and second when computing
marginals.

For transferring messages to its neighbors,
each node has to perform m2 combinations if
it has m neighbors. In the worst case, the in-
ference process involves n nodes and there will
be n∗m2 combinations and n∗m marginaliza-
tions. In this case, the number of nodes de-
termines the amount of computations when
inferring through the graphical model. The
MBJT involves less nodes than the BJT dur-
ing the inference process because only joint
nodes exchange messages between each other.
We conclude then that the amount of compu-
tations in the MBJT is less extensive than the
one in the BJT.

886 Proceedings of IPMU’08

An execution of both algorithms (BJT and
MBJT) under similar conditions and with the
same parameters (entered subset, entered val-
uations, number of variables, heuristic, etc)
confirms this conclusion. Notice that find-
ing an optimal elimination sequence is very
difficult. However, heuristics can be defined
which produce nearly optimal elimination se-
quences. The basic idea is to look at each
step only one step ahead (OSLA). Two such
heuristics are known as

• OSLA Smallest Clique,

• OSLA Fewest Fill-ins,

respectively [1]. In order to perform pro-
grams, we fixed the parameters as follows:

• Heuristic: ”OSLA, SmallestClique”

• Elim. sequence1: ADTXBESL

• Observations : No.

The program execution shows the following
results (see Table 1) in which we use the fol-
lowing notations:

• N: the number of nodes

• Comb: the number of operations of com-
bination

• Marg: the number of operations of
marginalization

• Msg: the number of messages exchanged
between nodes. For the MBJT architec-
ture, Msg is represented as ”total num-
ber of messages \ number of conditional
messages”

• Cond. nodes: the number of condi-
tional nodes in the MBJT

When analyzing briefly these results we de-
duce that the MBJT algorithm performs less
operations than the BJT algorithm.

1Elimination sequence.

Table 1: Statistics after inference in BJT and
MBJT architectures for the chest clinic prob-
lem

Archi- Elim. N Comb Marg Msg Cond.
tecture sequence nodes
BJT ADTXBESL 20 92 58 38

MBJT ADTXBESL 20 72 31 16\12 5

4.4 Storage Efficiencies

In the BJT architecture, all nodes are storing
joint belief functions, whereas in the MBJT
architecture, there are two types of nodes: the
joint nodes storing joint belief functions and
the conditional nodes storing conditional be-
lief functions.

In general storing a joint belief function allo-
cates more memory space than storing a con-
ditional belief function as shown in the follow-
ing example.

Example 1. Storing conditional belief func-
tion vs joint belief functions.

Suppose that we have two variables X and Y
defined on ΘX and ΘY , respectively. To store
a conditional potential X|Y we need |ΘY | ∗
2|ΘX |. However to store a joint potential X∗Y
we need 2|ΘY | ∗ 2|ΘX |.

If |ΘX | = 4 and |ΘY | = 6 then X|Y needs
6 ∗ 24 = 96 memory units and X ∗ Y needs
26 ∗ 24 = 210 = 1024 memory units.

Thus, we can appreciate the memory space
gain when we store conditional belief func-
tions instead of storing joint belief functions.

The potential storage memory space depends
on the domain or the set of variables on which
the potential is defined. For the case of the
join tree, the domain is the set of variables
composing the node because the potential is
always defined on the domain of a node. In
the following, the storage needed is described
in terms of memory units.

The BJT is always storing joint belief func-
tions, whereas the MBJT stores conditional
belief functions and joint belief functions since
it is composed of both conditional and joint
nodes. This offers an important gain of mem-
ory space as shown in the following example:

Proceedings of IPMU’08 887

Example 2. Chest clinic problem storage.

As mentioned in section 4.1, the BJT is com-
posed of 20 nodes (only joint nodes) (see fig-
ure 1). Although, the MBJT is also composed
of 20 nodes : 15 joint nodes and 5 conditional
nodes (see figure 2). Suppose that every node
is composed of 2 variables as an average node
size. Suppose also that all variables have three
states. To store all information about these 20
nodes,

• the BJT needs 20 ∗ (23 ∗ 23) = 20 ∗ 64 =
1280 memory units

• the MBJT needs (15∗ (23 ∗23))+(5∗ (3∗
23)) = 960 + 120 = 1080 memory units

Notice that the above example is simple. The
memory space gain is as important as the
number of states of nodes is important.

In both architectures, the messages exchanged
between nodes are stored in mailboxes. In-
deed, every node has a mailbox in which it
stores all messages exchanged by this node:
the node receives messages from its neighbors
in its mailbox and puts the messages to send
in the mailboxes of the corresponding nodes.
For the MBJT, only joint nodes have mail-
boxes for receiving messages from their neigh-
bors. The conditional nodes store only con-
ditional belief functions which will be useful
when computing messages exchanged between
two nodes on sides of the conditional nodes.
Necessarily, this will reduce the complexity
computational of the inference process.

4.5 Complexity Analysis

In practice, execution time of a program de-
pends on the amount of data to deal with.
There are programs or algorithms which be-
have better than other when the data set in-
creases. For example, the execution time of
an algorithm can increase exponentially rel-
atively to the data set treated while another
algorithm runs during a period increasing lin-
early to the data set dealt with.

Time is not always the best criterion to eval-
uate the performance of an algorithm. In-

deed, the execution time does not prize ex-
actly and faithfully the energy invested by the
algorithm in performing a task because the
time cost depends on the context of use (pro-
cessor speed, available memory, process run
in memory, etc). However the number of ele-
mentary operations does not depend on con-
text of use and can be regarded as a criterion
of performance evaluation. The number of el-
ementary operations is relative to the data set
to treat. Thus, we will speak about execution
cost and not execution time.

Let S be the number of subsets of the initial
Sets2 entered as parameter when construct-
ing the graphical model (MBJT or BJT), M
be the maximum size of a subset, and p be the
total number of nodes composing the graph-
ical model (MBJT or BJT) obtained after
performing the construction process. Only
for the case where the graphical model is a
MBJT, we consider n as the number of joint
nodes and c the number of conditional nodes.
Obviously p = n + c since both algorithms
generate frequently the same total number of
nodes. We also need d as the size of the orig-
inal directed evidential network.

4.5.1 Construction Algorithm

For the construction process, both algorithms
have almost the same computational complex-
ity, in other words the same amount of ele-
mentary operations. The construction step is
relative to S and M , and more precisely to
the product M ∗ S.

When we observe the algorithms of construc-
tion for both architectures [4], we notice that
they are considered as two imbricated loops
and we can deduce that, in the worst case:

• For the second loop which is imbri-
cated into the first loop, the algorithm
iterates s times (s is the number of sub-
sets truncated from the set Sets) because
during every iteration the algorithm adds
two selected subsets to the output set,
performs the union of two subsets which
is costing (M + M) in the worst case,

2The set of subsets of variables for which we need
marginals.

888 Proceedings of IPMU’08

adds the subset resulted from the previ-
ous union and deletes both subsets; so
adding one element and deleting two el-
ements from varsets3 until |varsets| = 1
will cost 2 ∗M ∗ s.

• For the first loop, in the worst case, the
algorithm iterates S times, because dur-
ing every iteration, the algorithm trans-
fers two elements to varsets, deletes
these two elements from Sets and adds
one element to Sets until |Sets| = 1.
Thus, the effort in first loop is relative
to S.

Therefore, the computational complexity of
the construction algorithm is relative to S ∗
(2 ∗ M ∗ s), in other words O(S ∗ M). This
complexity analysis is valid for the algorithms
of construction of both architectures. We no-
tice that the MBJT construction algorithm
undergoes, in addition to the cost of the clas-
sic construction algorithm, the effort of the al-
gorithm for recognizing the conditional nodes
having a computational complexity relative to
O(p ∗ d).

4.5.2 Inference Algorithm

After constructing the graphical model, we
obtain a set of nodes linked by edges. We will
consider r as the maximum number of states
for a variable and m the maximum number of
variables in a node.

The inference algorithm in both architectures
increases exponentially with the largest node
size, so relative to O(e2rm

). This computa-
tional complexity explains and justifies the
use of heuristics, during the construction pro-
cess, for minimizing the size of created nodes
by determining the convenient variables elim-
ination sequence in order to provoke the form-
ing of nodes having the minimum possible
node size.

Here, we can notice that the objective of these
heuristics is compatible with the MBJT ap-
proach. Indeed, obtaining nodes with small
size is leading to minimize the number of vari-
ables belonging to the node. This last aspect

3The set of subsets containing the current variable.

will allow the forming of the maximum of con-
ditional nodes since a conditional node should
have a small size because in the original di-
rected evidential network the conditional re-
lations connect in general a small (not large)
number of variables. This provides more com-
putational performance. We recall that a
conditional node should contain, as variables,
only those involved in conditional relations in
the original directed evidential network.

The belief propagation through the BJT is rel-
ative to p, r and m whereas the belief propa-
gation through the MBJT is relative to n, c,
r and m.

• For the BJT: O(p ∗ 2rm) with p = n + c.
Thus, O((n ∗ 2rm) + (c ∗ 2rm))

• For the MBJT: O((n ∗ 2rm) + (c ∗ rm/2 ∗
2rm/2))

To compare the complexity of both algo-
rithms, we have to compare the second term
{c ∗ rm/2 ∗ 2rm/2} and {c ∗ 2rm}. To show the
difference between both architectures, let us
take the following example:

Example 3. Chest clinic problem computa-
tional complexity.

The following values are assigned to the pa-
rameters: r = 3, m = 4, p = 20, n = 16, and
c = 4.

So, the expression (for BJT): {c ∗ 2rm} is
equivalent to 4∗23∗4 = 4∗64∗64 = 4∗4096 =
16384, and the expression (for MBJT): {c ∗
rm/2 ∗ 2rm/2} is equivalent to 4 ∗ 32 ∗ 23∗2 =
4 ∗ 9 ∗ 64 = 2304.

With numeric values given in the above exam-
ple, we notice the difference of order of mag-
nitude between the complexity of both archi-
tectures (BJT and MBJT). With these small
values, the order of magnitude is near to 1/5
which shows clearly that the complexity de-
creases significantly when adopting the MBJT
architecture.

This is a very interesting aspect since the
computational complexity is one of the most
important difficulties in considering the be-
lief function theory, especially when solving

Proceedings of IPMU’08 889

real-life problems. The gain on computational
complexity is increasing when the parameters
have values which are more and more exten-
sive. This is the case of real-life problems
which contain so many variables, so many
nodes and also numerous conditional relations
between variables. The conditional nodes in
the MBJT are as numerous as the conditional
relations in the original directed evidential
network are available.

5 Conclusion and future works

In this paper, we have compared two exact in-
ference algorithms, the BJT and the MBJT.
This comparison was based on reasonable cri-
teria.

The experimental results showed that the
MBJT approach is more convenient than the
BJT when using conditional belief functions
in evidential networks. This reduces the com-
putational complexity of the belief function
theory which is the main difficulty faced when
applying the theory to real-life problems.

When experimenting the inference algorithms
on some complex problems, we noticed that
the exact inference algorithm always inflicts
a non negligible execution cost to perform
corresponding tasks. This reveals that it is
important to look at approximation methods
[11]. In any case, an approximated numerical
result which is close to the exact value may
often be sufficient for a user.

Acknowledgements

I thank the referees for their helpful comments
and suggestions.

References

[1] R.G. Almond, Graphical Belief Modeling,
Chapman and Hall, 1995.

[2] B. Ben Yaghlane, P. Smets, and K. Mel-
louli, “Directed evidential networks with
conditional belief functions”, In Proc.
of ECSQARU-2003, T.D. Nielsen, and
N.L. Zhang (Eds), LNAI 2711, Springer-
Verlag. pp.291–305, 2003.

[3] B. Ben Yaghlane, and K. Mellouli,
“Belief functions propagation in di-
rected evidential networks”, In Proc.
of IPMU’2006, Paris, France, pp.1451–
1458, 2006.

[4] B. Ben Yaghlane, and K. Mellouli, “In-
ference in directed evidential networks
based on the transferable belief model”,
Int. J. of Approximate Reasoning (to ap-
pear), 2008.

[5] S.L. Lauritzen, and D.J. Spiegelhalter,
“Local computation with probabilities
and graphical structures and their appli-
cation to expert systems”, J. R. Statisti-
cal Society B, vol. 50, pp.157–224, 1988.

[6] G. Shafer, A Mathematical Theory of
Evidence. Princeton University Press,
Princeton, NJ, 1976.

[7] G. Shafer, P.P. Shenoy, and K. Mellouli,
“Propagating belief functions in qualita-
tive Markov trees”, Int. J. of Approxi-
mate Reasoning, vol.1, pp.349–400, 1987.

[8] P. P. Shenoy, “Valuation networks and
conditional independence”, In Uncer-
tainty in Artificial Intelligence, D. Heck-
erman, and A. Mamdani (eds), Mor-
gan Kaufmann, San Mateo, Ca, USA,
UAI’93, pp.191-199, 1993.

[9] P. P. Shenoy, “Binary join trees for com-
puting marginals in the Shenoy-Shafer
architecture”, Int. J. of Approximate
Reasoning, vol.17, pp.239–263, 1997.

[10] P. Smets, “Belief functions: the disjunc-
tive rule of combination and the gen-
eralized Bayesian theorem”, Int. J. of
Approximate Reasoning, vol.8, pp.1–35,
1993.

[11] N. Wilson, “Algorithms for Dempster-
Shafer theory”, In Handbook of Defeasi-
ble Reasoning and Uncertainty Manage-
ment, Vol.5: Algorithms, D.M. Gabbay
and P. Smets, Kluwer Academic Publish-
ers, pp.421–475, 2000.

890 Proceedings of IPMU’08

