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Abstract

This paper proposes a novel valid-
ity index for fuzzy-possibilistic c-
means(FPCM) algorithm, it com-
bines extended partition entropy and
inter class similarity which is cal-
culated from the fuzzy set point of
view. The proposed index only re-
quires the membership matrix and
possibilistic(typicality) matrix, and
is free from heavy distance comput-
ing. We also extend Xie-Beni index
and Kwon index to evaluate FPCM.
Experiments are done to compare
the three indices and the results
show its effectiveness.
Keywords: Fuzzy clustering, Va-
lidity index

1 Introduction

Clustering algorithms are unsupervised learn-
ing methods. Their outputs are sensitive to
predefined parameters. The same algorithm
can produce different outcomes with different
parameters. In the literature there are many
studies on how to choose optimal parameters
in clustering algorithms[8][9]. Such problems
are called cluster validity problems.
In this paper, we investigate validity indices
suitable for fuzzy-possibilistic c-means and
use them to find the optimal number of clus-
ters for a data set.
In general, there are three kinds of valid-
ity indices for fuzzy clustering. The first

kind of indices involve only the member-
ship values and are based on the assump-
tion that the outputs are better if they
are closer to a crisp partition. These
indices include PC(partition coefficient)[4]
, PE(partition entropy)[3], uniform data
functional[14], proportion exponent[13], non-
fuzziness index [2],etc. The second class
of methods take into account geometri-
cal properties of the data set, for in-
stance, Xie-Beni(XB) index[15],Fukuyama-
Sugeno index[6], and Kwon index[12]. They
involve both the membership matrix and the
data set itself. Jian Yu and Cui-Xia Li de-
veloped a cluster validity index for the Fuzzy
C-Means algorithm, based on the optimality
test, called stability index for FCM(Fuzzy c-
means) [7]. It is different from the above two
kinds of indices because it pays more atten-
tion to the clustering algorithm and relates
cluster validity to stability of clustering algo-
rithms.
In this paper, we first extend XB(Xie-Beni)
index and Kwon index to determine the opti-
mal cluster number for FPCM [10]. Then we
propose a novel and simple validity index for
FPCM, which uses only the calculated mem-
bership matrix and possibilistic matrix based
mainly on fuzzy set theory.
The remainder of this paper is arranged as
follows. Section 2 gives a brief introduction
to the FPCM algorithm; Section 3 presents
the extended XB and Kwon index; Section
4 gives a detailed description of the proposed
EPESIM validity index; Section 5 includes all
the experiments done to compare and analyze
the three indices; Section 6 gives conclusions
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and discusses future work.

2 FPCM Algorithm

FPCM [10] algorithm was proposed by
N.R.Pal, K.Pal, and J.C.Bezdek, it includes
both possibility(typicality) and membership
values.FPCM model can be seen as the
following optimization problem:

min︸︷︷︸
(U,T,V )

{Jm,η(U, T, V ;X)} =
c∑

i=1

n∑
k=1

(um
ik+tηik)D

2
ikA

(1)
subject to the constraints m > 1,η > 1,0 ≤
uik,tik ≤ 1, DikA = ‖xk − vi‖A, and

c∑
i=1

uik = 1∀k, i.e., U ∈ Mfcn (2)

and
n∑

k=1

tik = 1∀i, i.e., T t ∈ Mfnc. (3)

Where U is membership matrix, T is possi-
bilistic matrix, and V is the resultant cluster
centers, c and n are cluster number and data
point number respectively. The first order
necessary conditions for extreme of Jm,η are:
If DikA = ‖xk − vi‖A > 0 for all
i and k,m, η > 1, and X contains
at least c distinct data points,then
(U, T t, V ) ∈ Mfcn × Mfcn × Rp may
minimize Jm,η only if

uik = (
c∑

j=1

(
DikA

DjkA
)2/(m−1))−1

1 ≤ i ≤ c; 1 ≤ k ≤ n (4)

tik = (
n∑

j=1

(
DikA

DijA
)2/(η−1))−1

1 ≤ i ≤ c; 1 ≤ k ≤ n (5)
and

vi =
∑n

k=1(u
m
ik + tηik)xk∑n

k=1(u
m
ik + tηik)

, 1 ≤ i ≤ c. (6)

The above equations show that membership
uik is affected by all c cluster centers, while
possibility tik is affected only by the i-th clus-
ter center ci. The possibilistic term dis-
tributes the tik with respect to all n data

points, but not with respect to all c clusters.
So, membership can be called relative typical-
ity,it measures the degree to which a point
belongs to one cluster relative to other clus-
ters and is used to crisply label a data point.
And possibility can be viewed as absolute typi-
cality, it measures the degree to which a point
belongs to one cluster relative to all other data
points, it can reduce the effect of outliers.
Combining both membership and possibility
can lead to better clustering result.

3 Extended Xie-Beni and Kwon
Index

Present fuzzy validity indices are all for fuzzy
c-means algorithm and alike. The original
indices for FCM can not be used directly to
evaluate FPCM,because the FPCM algorithm
generates both membership and possibility
for all points to all clusters, while the original
indices only consider the membership matrix,
which is not sufficient. So it’s necessary to
find new validity indices for it.

3.1 Original indices for FCM

Xie-Beni index is defined as

S =

∑c
i=1

∑n
k=1 u2

i,k‖Vi −Xk‖2

n mini6=j ‖Vi − Vj‖2
(7)

A smaller S means all the clusters are overall
compact and separate in a partition.
The Kwon index is based on Xie-Beni index,
and can be used to eliminate the monotoni-
cally decreasing tendency when the number
of clusters becomes very large and close to
the number of data points. It is defined as

vK(U, V ;X) = (
n∑

k=1

c∑
i=1

u2
ik‖xk − vi‖2

+
1
c

c∑
i=1

‖vi −X‖2)/min
i6=j

(‖vi − vj‖2) (8)

where X = 1
n

∑n
j=1 xj. The second item of

the numerator approaches a positive constant
1
n

∑n
i=1 ‖vi −X‖2 when c approaches n.
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3.2 Extended Indices for FPCM

We extend XB index to

S′ =

∑c
i=1

∑n
k=1(u

2
i,k + t2i,k)‖Vi −Xk‖2

n mini6=j ‖Vi − Vj‖2
(9)

which takes into account both membership
and possibility(typicality), and can be used
to validate the partition got by FPCM algo-
rithm. We call it EXB(Extended XB Index).
Similarly, the Kwon index can also be ex-
tended to

V ′(U, T, V ;X) =

(
c∑

i=1

n∑
k=1

(um
ik + tnik)‖xk − vi‖2 +

1
c

c∑
i=1

‖vi −X‖2)/min
i6=j

(‖vi − vj‖2) (10)

Which we call EKwon.

4 A Novel Cluster Validity Index
from Fuzzy Set Point of View

Many validity indices take into account two
aspects of a partition, cluster compactness
and separation. For XB index and Kwon In-
dex, cluster compactness is modeled by the
overall distance from all the data points to
each cluster center. And cluster separation is
calculated by the minimum distance between
cluster centers. In this paper, we try to find
a easier way to model the two aspects of a
fuzzy partition. We assume that for a given
data set, the compactness and separation of
a partition can be obtained from the resulted
membership matrix U and possibility matrix
T. It’s the starting point which motivates our
index.

4.1 Inter-class Similarity

Each fuzzy cluster of a partition can be seen
as a fuzzy set, and the whole data set is the
universe for them. Then the separation be-
tween clusters can be modeled by the similar-
ity between all these fuzzy sets. Less similar-
ity means better separation.
We use the following equation to calculate the

similarity of two fuzzy sets[1]

S(A,B) =
‖A ∩B‖
‖A ∪B‖ (11)

where ‖.‖ is the cardinality of fuzzy set, A and
B are fuzzy sets. In this paper, we use sigma
count to compute the cardinality of a fuzzy
set. There are many other methods to calcu-
late the similarity between fuzzy sets besides
equation11. We will try to investigate on al-
ternative similarity measures in the future.
The similarity of two fuzzy clusters depends
on both their membership vector and possi-
bility(typicality) vector. So for each pair of
clusters, we need to calculate two aspects of
similarity.
The mean inter-class similarity of member-
ship matrix is

S(U) =
1

c× (c− 1)/2

∑
i6=j

S(U(i), U(j))

=
1

c× (c− 1)/2

∑
i6=j

∑n
k=1 min(uik, ujk)∑n
k=1 max(uik, ujk)

(12)

U(i) and U(j) are different rows of U. The
value for S(U) is between zero and one.
And the mean inter-cluster similarity of pos-
sibility matrix is

S(T ) =
1

c× (c− 1)/2

∑
i6=j

S(T (i), T (j))

=
1

c× (c− 1)/2

∑
i6=j

∑n
k=1 min(tik, tjk)∑n
k=1 max(tik, tjk)

(13)

Then the overall inter-class similarity is to
combine them together

SIM(U, T ) = α1 × S(U) + β1 × S(T ) (14)

where α1 and β1 are predefined constants and
should satisfy α1 + β1 = 1.

4.2 Extended Partition Entropy

From intuitive point of view, for each compact
cluster, data points distribute densely near
the center of the cluster. While for less com-
pact cluster, data points belonging to it dis-
tribute sparsely. For fuzzy clustering, a com-
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pact cluster means there are some points be-
longing to it with high membership and typi-
cality. This implies the membership and typ-
icality vary a lot among all the data points to
the cluster. Compact clusters can give more
information than less compact clusters. We
use the idea of partition entropy to model the
compactness of fuzzy partition.
The original PE [3] proposed by Bezdek is de-
fined as

PE = − 1
n

c∑
i=1

n∑
k=1

uik log(uik) (15)

We apply it to both membership matrix and
possibilistic matrix.
Partition entropy for U is

PE(U) = − 1
n× log(c)

c∑
i=1

n∑
k=1

uik log(uik)

(16)
The added log(c) is used to normalize it,
which can eliminate the original PE’s prefer-
ence to smaller cluster number. The Partition
Entropy for T is similar to U’s, it is defined
as

PE(T ) = − 1
c× log(n)

c∑
i=1

n∑
k=1

tik log tik (17)

We combine them with weights, the resulted
equation is called EPE(Extended Partition
Entropy)

EPE(U, T ) = α2×PE(U)+β2×PE(T ) (18)

where α2 and β2 are similar to those in
formula(14).

At last, we integrate EPE and SIM into one
equation, then the whole validity index we
proposed is:

PESIM = α3×EPE(U, T )+β3×SIM(U, T )
(19)

where α3 and β3 are also weighting parame-
ters for EPE and SIM.

5 Experiments

This section shows the experiments compar-
ing EXB,EKwon, and our proposed EPESIM.

All the tests are done on DELL INSPIRON
640m laptop, with a duo-core CPU,1.6GHz
for each core and RAM of 1G. The operating
system is Ubuntu 7.04, and Matlab R2007a is
the programming software. In EPESIM,EPE
and mean inter-class similarity are weighted
by 0.7(α3) and 0.3(β3) respectively, and other
parameters,α1,β1,α2,β2 are all chosen to be
0.5. For FPCM model, m and η are set to be
2.
There are four testing data sets, they are
IRIS,X1,X2,X3. The last three data sets are
generated according to different goals. All in-
dex values are the mean values of ten obser-
vations. For each index, the cluster number
corresponding to the minimum index value is
the optimal cluster number that index gets.
X1 includes three well separated clusters.
And all the validity indices get correct cluster
number 3 for it.
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Figure 1: Dataset X1
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Figure 2: Result for X1
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Then we use IRIS data set in the UCI
database to compare the three indices. IRIS
contains 150 4-dimensional data points be-
longing to three different clusters. And two
of the clusters overlap. In Table1, the val-
ues marked by asterisks are the lowest val-
ues for the three indices and the correspond-
ing cluster numbers are the optimal cluster
numbers those indices choose. Table1 shows
that,EPESIM get correct cluster number 3 for
IRIS. And the other two indices both choose
2 as its optimal cluster number.

X2 includes four clusters, two of them are

Table 1: Result for IRIS
C EXB EKwon EPESIM
2 0.0557* 0.0575* 0.4006
3 0.1133 0.1216 0.3986*
4 0.3553 0.3916 0.4397
5 0.3506 0.3992 0.4527
6 0.3580 0.4083 0.4618
7 0.4138 0.4908 0.4657
8 0.3690 0.4532 0.4711
9 0.5050 0.6431 0.4688

quite close and the other two are relative de-
tached, this data set is used to compare the in-
dices’ behavior under situations of non evenly
distributed clusters.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1

0

1

2

3

4

5

6

Figure 3: Dataset X2

Table2 gives the exact result for X2, EPESIM
gets 4, while EXB and EKwon get 2.
X3 is the most complicated data set, it com-
prises five normal distributed clusters with
different cluster center and deviation. The

Table 2: Result for X2
C EXB EKwon EPESIM
2 0.0620* 0.0633* 0.4444
3 0.1280 0.1339 0.2687
4 0.7707 0.9424 0.2572*
5 1.2895 1.6898 0.2966
6 0.6951 1.0797 0.2971
7 0.4849 0.8761 0.3042
8 0.4467 0.8810 0.3186
9 0.4183 0.8667 0.3051

two bottom clusters are adjacent, the top
three clusters are more complex, two of them
overlap a little, and the other one is a little
sparse.

−1 −0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 4: Dataset X3

EPESIM also gets the right answer for X3.
The experiments show that for well separated
clusters, all the indices can get right answer.
And for non evenly distributed and more com-
plicated situations, EPESIM is better. EXB
and EKwon both prefer smaller cluster num-
ber than the correct one.

6 Conclusion and Future Work

This paper proposes a cluster validity index
based on the combination of extended parti-
tion entropy and inter-class similarity which
is calculated from the point of fuzzy logic. Ex-
periments show that the proposed index gets
prominent results under various kind of situ-
ations. And the most important advantage of
the proposed EPESIM is that, it only uses the
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Figure 5: Result for X3

resultant membership matrix and possibilis-
tic matrix, and doesn’t involve the time con-
suming distance computing among the cluster
centers and between all the data points and
the cluster centers. Experiments show that
this simple method doesn’t lead to worse re-
sult.
In the future, we will investigate on alterna-
tive methods to calculate similarity between
two fuzzy sets, and the behavior of the pro-
posed index under more situations. We will
also try to find theoretical instructions for se-
lecting weighting parameters.
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