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Abstract

We define a fuzzy subspace skeleton of
data points and propose an algorithm
for finding it. Such a skeleton has di-
rect applications in statistical learning
theory. We propose a new type of clas-
sifiers: fuzzy skeleton classifiers, which
might be a better alternative to Support
Vector Machines in some cases. An-
other application is presented to the un-
supervised learning - Blind Signal Sep-
aration, based on mild sparsity assump-
tions. Our methods are illustrated by
examples. Potential application include
problems from bioinformatics as sepa-
ration of protein spectra, gene expres-
sions, etc., as well as any problems re-
quiring signal separation in which Inde-
pendent Component Analysis doesn’t
work, or gives unsatisfactory results.

1 Introduction

The notion of skeleton of data arises in a natu-
ral way when we want to approximate a data set
by a simple one which could be described easily.
The simplest example of skeleton is presented by
Principle Component Analysis, which finds a sub-
space with appropriate dimension, which fits the
data in the best way. In this paper we extend this
idea to the case when the data vectors are approx-
imated by elements in a union of finitely many
affine subspaces, called skeleton of the given data
set. More precisely, we call it fuzzy skeleton be-
cause of the specific algorithm which we use -

fuzzy subspace clustering on subspaces. In such a
way we extend the idea from [2], where the skele-
ton is a union of hyperplanes. Something more,
we extend this idea to nonlinear fuzzy skeletons
when we work in Reproducing Kernel Hilbert
Spaces. The idea of fuzzy skeletons gives a new
type of classifiers - we called them fuzzy skeleton
classifiers.

Another application of the fuzzy skeleton gives
a new approach to the Blind Signal Separation.
The goal of the Blind Signal Separation (BSS) is
to recover the underlying source signals of some
given set of observations X obtained by a linear
mixture of the sources:

X = AS, (1)

where the matrices A and S with dimensions
m× n and n×N respectively (often called mix-
ing matrix or dictionary and source matrix) are
unknown (m 6 n < N ).

BSS has potential applications in many differ-
ent fields such as medical and biological data
analysis, communications, audio and image pro-
cessing, etc. In order to decompose the data
set, different assumptions on the sources have to
be made. The most common assumption nowa-
days is statistical independence of the sources,
which leads to the field of Independent Compo-
nent Analysis (ICA), see for instance [5], [11]
and references therein. ICA is very successful in
the linear complete case, when as many signals
as underlying sources are observed, and the mix-
ing matrix is non-singular. In [7] it is shown that
the mixing matrix and the sources are identifiable
except for permutation and scaling. In the over-
complete or underdetermined case, less observa-
tions than sources are given. It can be seen that
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still the mixing matrix can be recovered [8], but
source identifiability does not hold. In order to
approximatively detect the sources, additional re-
quirements have to be made, usually sparsity of
the sources. We refer to [12, 17, 18, 19] and ref-
erence therein for some recent papers on sparsity
and underdetermined ICA (m < n).

In [9] only the case r = 1 was considered (each
column of the source matrix S contains at most
m − 1 non-zero elements). In this paper we con-
sider the case r > 2 (each column of S contains
at most m − r non-zero elements) and develop
a fuzzy algorithm for clustering over subspaces,
which is essential for identification of the mixing
matrix A.

2 Skeletons of data sets

The solution {(n0
i , b

0
i )}k

i=1 of the minimization
problem:

minimize
N∑

j=1

min
16i6k

|nT
i xj − bi|l

subject to ‖ni‖ = 1, bi ∈ R, i = 1, ..., k,

defines k(l)-skeleton of X, introduced for l = 1 in
[15], and for l = 2 in [2]. It consists of a union of
k hyper-planes

Hi = {x ∈ Rm : nT
i x = bi}, i = 1, ..., k, (2)

such that the sum of minimum distances raised to
power l, from every point xj to them is minimal.

The notion “subspace skeleton” [10] is defined by
the solution of the following minimization prob-
lem

minimize
N∑

j=1

min
16i6k

ri∑
s=1

|nT
i,sxj − bi,s|l

subject to ‖ni,s‖=1, i=1, ..., k, s=1, ..., ri,

nT
i,pni,q = 0, p 6= q, bi,s ∈ R.

It consists of a union of k affine subspaces Hi =
{x ∈ Rm : nT

i,sx = bi,s, s = 1, ..., ri}, i =
1, ..., k, with codimension ri such that the sum of
minimum distances raised to power l, from every
point xj to them is minimal.

The solution V = {vij} of the following mini-
mization problem:

minimize

f(U,V) =
k∑

i=1

N∑
j=1

ri∑
s=1

up
ij(v

T
i,sxj)2

subject to

‖vi,s‖=1, i=1, ..., k, s=1, ..., ri,

vT
i,pvi,q = 0, p 6= q,

k∑
i=1

uij = 1, j = 1, ..., N

uij > 0, i = 1, ..., k, j = 1, ..., N

defines a fuzzy subspace skeleton of the data
points X. It consists of a union of k subspaces
Hi = {x ∈ Rm : nT

i,sx = 0, s = 1, ..., ri}, i =
1, ..., k, with codimension ri. It is clear that affine
subspaces in Rm (like (2)) can be found by work-
ing in Rm+1 and finding the usual subspaces by
considering the data points (xj , 1), j = 1, ..., N ;
then the vectors ni are replaced by (ni,−bi).

Determining of {ri} can be performed as in PCA
– by the number of the significant eigenvalues of
corresponding matrices.

The both skeletons (subspace skeleton and fuzzy
subspace skeleton) coincide, if the data points be-
long to the union of small number of subspaces.
This fact is used below in the BSS examples.

It is clear that if the matrix S in (ref1) is sparse in
sense that each column of S has at most m − ri

nonzero elements for some i ∈ {1, ..., k}, then
the data vectors (columns of X) lie on an union
of

(
n
ri

)
ri-codimensional subspaces - this is the

main idea from [9], for the case ri = 1. So, find-
ing any of these skeletons will alow us to identify
these subspaces and subsequently, the mixing ma-
trix.

3 Fuzzy subspace clustering algorithm

In order to find the fuzzy subspace skeleton of the
data set X, we will apply iteratively the follow-
ing two steps, like in the classical fuzzy c-means
clustering algorithm [3], [4]:

Step 1): For given U = {uij}k,N
i=1,j=1, mini-

mize f(U, .). This problem can be converted to
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k eigen-value problems as follows. Denote by
Y(i) the matrix with elements Y(i)

rj = u
p/2
ij xrj .

Then the minimum of f(U, .) is attained at the
union of the first ri eigen-vectors of the matrices
Y(i)(Y(i))T , i = 1, ..., k. Justification of this as-
sertion is as follows: the function f(U,V) trans-
forms in

f(U,V) =
k∑

i=1

traceVT
i Y(i)(Y(i))TVi, (3)

where Vi, i = 1, ..., k is the matrix with columns
vi,s, s = 1, ..., ri. We minimize (1) under or-
thogonality constrains VT

i Vi = Iri (Iri is the
ri × ri identity matrix). For such problems we
apply Theorem 11.12.13 of [13] (which is a con-
sequence Theorem 11.11.10 in [13] (the Poincare
separation theorem)) stating that the minimum
of traceVT

i Y(i)(Y(i))TVi under orthogonality
constraints is achieved when the columns of Vi

consist of the first ri eigenvectors corresponding
to the first ri minimal eigenvalues of Y(i).

Step 2): For given V = {vij}, minimize f(.,V).
Applying Kuhn-Taker optimality conditions, we
find that U must satisfy the following conditions
(similar to those in the classical fuzzy clustering
algorithm):

uij =
d

1
1−p

ij∑k
r=1 d

1
1−p

rj

, (4)

where dij =
∑ri

s=1(v
T
i,sxj)2.

We will not consider the convergence properties
of this fuzzy subspace clustering algorithm. For
the classical fuzzy c-means clustering algorithm
such properties are considered in [3], [4], for in-
stance. In the examples considered below, the
convergence occurs quite fast, after few random
initializations.

4 Reproducing Kernel Hilbert Spaces

Recall one of the possible constructions of Re-
producing Kernel Hilbert Spaces (RKHS) (see
[1], [6] for more details). Let X ⊂ Rm and
K : X × X → R be a continuous and symmet-
ric function such that {K(xi,xj)}n

i,j=1 is positive
definite for every {xi}n

i=1 ⊂ X and every n, i.e.

∑n
i,j=1 cicjK(xi, xj) > 0 for any n ∈ N and any

choice of xi ∈ X and ci ∈ R (i = 1, ..., n). Note
K(x, x) > 0 for all x. The mapping K is called
positive definite kernel.

Let H0 be the linear span of the functions
{K(x, .),x ∈ X}:

H0 =
{

f : X → R : f(.) =
n∑

i=1

αiK(xi, .),

xi ∈ X, αi ∈ R, n ∈ N
}

. (5)

Define an inner product in H0 by

〈f, g〉 =
n∑

i=1

n′∑
j=1

αiβjK(xi,x′j) (6)

where f, g ∈ H0, f(.) =∑n
i=1 αiK(xi, .), g(.) =

∑n′
i=1 βiK(x′i, .).

The reproducing property

f(x) = 〈f, K(x, .)〉 ∀x ∈ X

follows from (6).

The induced norm ‖.‖K in H0 is ‖f‖K =√〈f, f〉. It is indeed a norm, since if ‖f‖ = 0,
then

f(x) = 〈f, K(x, .)〉 6 ‖f‖‖K(x, .)‖ = 0 ∀x.

The completion of (H0, ‖.‖K) is called Repro-
ducing Kernel Hilbert Space.

The so called kernel trick

K(x,y) = 〈Φ(x),Φ(y)〉 for every x,y ∈ X

where Φ(x) = K(x, .) is called feature map, fol-
lows again from (6).

We give two typical examples of positive def-
inite kernels. The first is the Gaussian kernel
K : Rn × Rn → R defined by K(x,x′) =
exp(−‖x− x′‖2/c2) (c > 0).

The second is the polynomial kernel of degree p,
K : Rn × Rn → R defined by Kp(x,x′) =
(〈x,x′〉+1)p. In the case when for m = 2, p = 3,
we have (for x = (x, y),x′ = (x′, y′)),

Φ(x) =
(
x3, y3,

√
3x2y,

√
3xy2,

√
3x2,

√
3y2,

√
3xy,

√
3x,

√
3y, 1

)
(7)

〈Φ(x), Φ(x′)〉 = K
(
(x, y), (x′, y′)

)
.
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5 Nonlinear fuzzy skeletons

The notion of fuzzy skeleton developed in previ-
ous sections can be extended easily to the notion
”nonlinear fuzzy skeleton” as follows: in previ-
ous definitions we change x with Φ(x) and work
in a Reproducing Kernel Hilbert space H defined
by a kernel K such that Φ(x) = K(x, .). For in-
stance, the notion of hyperplane skeleton of a data
set {xj}N

j=1 is extended to nonlinear hyperplane
skeleton by the following definition:

NS(X) =
{
x ∈ Rm : 〈Φ(x),hi〉 = 0

for some i ∈ {1, ..., k}
}

, (8)

where {hi}k
i=1 ⊂ H the is solution of the follow-

ing minimization problem:

minimize
N∑

j=1

min
16i6k

〈Φ(xj),hi〉2 (9)

subject to ‖hi‖ = 1, i = 1, ..., k. (10)

Clustering on subspaces in RKHS. We have two
algorithms for clustering on subspaces in RKHS:

– a Primal Kernel Subspace Fuzzy Clustering Al-
gorithm, when the feature map Φ is known and
the feature space (RKHS) is finite dimensional;
The algorithm is performed with changing x with
Φ(x).

– a Dual Kernel Fuzzy Subspace Clustering Al-
gorithm - when the kernel K is known only. It
is similar to the Kernel PCA [16] (not considered
here).

The primal algorithm terminates in finitely many
steps to a solution which is locally optimal, i.e.
it finds k clusters Xi, i = 1, ..., k such that
min16l6k〈Φ(xj),hl〉 = 〈Φ(xj),hi〉 if xj ∈ Xi,
where {hi}k

i=1 is a local solution of (9), (10). For
small values of k (less than 7), this algorithm ter-
minates usually in clusters which are globally op-
timal. A big challenge is to design a global opti-
mization algorithm for subspace (and kernel sub-
space) clustering.

Examples. Fig. 1 shows artificially created
data which are fitted by two ellipses. We used
the primal kernel subspace clustering algorithm
with polynomial kernel of degree 2. Fig. 2 shows

another set of artificially created data which are
fitted by three level sets of polynomials of de-
gree three. We used again the primal kernel sub-
space clustering algorithm with polynomial ker-
nel of degree 3.

−1.5 −1 −0.5 0 0.5 1 1.5
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0.5
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Figure 1: Nonlinear skeleton of degree 2
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Figure 2: Nonlinear skeleton of degree 3

6 Skeleton classifiers.

Here we present the idea that binary classifica-
tion tasks can be performed by finding nonlinear
skeletons of the training points in the both classes.
Fig. 3 shows a possible separation of the two
classes belonging to two lines (forming a cross)
by standard support vector machine (SVM) clas-
sifier. It is clear that this classifier cannot classify
correctly new points belonging to these lines and
converging to their intersecting point (not shown).
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Now we propose that the skeletons of the two
classes can serve as a classifier (called skeleton
classifier) in sense that a new point belongs to a
class A if it is at a nearest distance to the skeleton
of the class A. Then it is clear that the new points
from the above example that cannot be classified
correctly by SVM (converging to the intersection
of the two skeletons, which are two lines) can be
classified perfectly by the proposed skeleton clas-
sifier. In this example the skeleton is affine hyper-
plane skeleton (union of hyperplanes). We have
to note that a similar (but more complicated) idea
was proposed in [14].

Fig. 4 shows a nonlinear perturbation of the pre-
vious data set (nonlinear cross, two level sets of
polynomials of degree 2). After mapping of the
points in both classes by the feature map Φ :
(x, y) 7→ (x2, y2,

√
2xy,

√
2x,

√
2y, 1), the data

set belong to two hyperplanes in R6 (which are
also the image of the skeletons of the two classes
after applying the feature map Φ). The same rea-
soning like in previous example shoes that next
points from both classes (belonging near to the
corresponding skeletons and converging to the in-
tersection of nonlinear skeletons) cannot be clas-
sified by SVM classifier, while can be classified
perfectly by the proposed skeleton classifier.

Figure 3: Binary classification by classical SVM
classifier. New data points from both classes,
converging to the intersection of their skeletons
(which in this case are lines) cannot be classified
correctly, while the proposed skeleton classifier
classifies them perfectly.

Several issues concerning skeleton classifiers re-
main to be investigated in future research: statis-
tical properties, stability, applications to real data,
etc.
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Figure 4: Nonlinear cross. The skeletons of the
two classes are level sets of polynomials of two
variables of degree 2. They are hyperplanes in
R6 after applying the feature map Φ : (x, y) 7→
(x2, y2,

√
2xy,

√
2x,

√
2y, 1). The same reason-

ing like in previous example shows the advantage
of the proposed skeleton classifier.

7 Applications to Blind Signal
Separation

Estimating the mixing matrix - extension of the
algorithm in [9]

1) Cluster the columns {X(:, j) : j ∈ N1}
in k groups Hi, i = 1, ..., k such that the
span of the elements of each group Hi pro-
duces ri-codimensional subspace and these ri-
codimensional subspaces are different.

2) Calculate any basis of the orthogonal com-
plement of each of these ri-codimensional sub-
spaces.

3) Find all possible groups such that each of them
is composed of the elements of at least m bases in
2), and the vectors in each group lie on a hyper-
plane. The number of these hyperplanes gives the
number of sources n. The normal vectors to these
hyperplanes are estimations of the columns of the
mixing matrix A (up to permutation and scaling).

In practical realization all operations in the above
algorithm are performed up to some precision ε >
0.

The estimation of the mixing matrix by the above
algorithm is unique up to permutation and scaling.
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Sufficient condition for this uniqueness is the as-
sumption that each column of S contains at most
m − ri non-zero elements for some i, plus some
algebraic conditions on S assuring that there are
enough samples (from the columns of X) in each
possible subspaces formed by all subsets of the
columns of A containing n−m + ri elements.

8 Identification of sources

The sources are uniquely identifiable generically,
i.e. up to a set with a measure zero, if they com-
pose a matrix which is sparse in the above men-
tioned sense, and the mixing matrix is known.
This statement, as well as the algorithm below
for such identification, can be justified similarly
to those in [9] for the case ri = 1.

Source recovery algorithm

1. Repeat for j = 1 to N :

2.1. Identify the subspace Hi containing xj :=
X(:, j), or, in practical situation with presence of
noise, identify Hi to which the distance from xj

is minimal and project xj onto Hi to x̃j ;

2.2. ifHi is produced by the linear hull of column
vectors ap1 , ...,apm−ri

, then find coefficients Lj,l

such that x̃j =
m−ri∑
l=1

Lj,lapl
. These coefficients

are uniquely determined generically (i.e. up to
measure zero) for x̃j (see [9], Theorem 3).

2.3. Construct the solution sj = S(:, j): it con-
tains Lj,l in the place pl for l = 1, ...,m− ri, the
other its components are zero.

9 Computer simulation example

Example 1. We created artificially four source
signals, sparse of level 2, i.e. each column of the
source matrix contains at least 2 zeros (shown in
Figure 5). They are mixed with a square normal-
ized matrix H1 (each column of it has norm one):

H1 =

 −0.5701 −0.4607 .1841 −0.9526
−0.5198 −0.6480 −0.7710 0.1488
−0.3628 0.4671 −0.1173 −0.2526

0.5225 −0.3869 0.5983 −0.0807

 .

The mixed signals are shown in Figure 6. We ap-
ply our fuzzy subspace clustering algorithm in or-
der to identify the 2-fuzzy 2-subspace skeleton of
the data points, and after that apply our matrix

identification algorithm. We obtain an estimation
W1 of the mixing matrix (after normalization of
each column):

W1 =

 0.5702 0.4605 0.9527 0.1838
0.5198 0.6479 −0.1487 −0.7709
0.3629 −0.4672 0.2525 −0.1173

−0.5225 0.3871 0.0805 0.5984

 .

which is very near to H1 (up to permutation and
sign).
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Figure 5: Example 1: original source signals.
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Figure 6: Example 1: mixed signals.

Example 2. The next example shows four depen-
dent source signals, sparse of level 2 (shown in
Figure 7). They are mixed with a square normal-
ized matrix H2 (each column of it has norm one):

H2 =

 0.8650 −0.4616 0.3813 0.3467
0.1296 0.0685 −0.0587 0.2996
0.1697 0.0214 −0.5688 0.1711
0.4541 −0.8842 0.7264 −0.8722

 .

The mixed signals are shown in Figure 8. We
identify the 2-fuzzy 2-subspace skeleton of the
data points by our fuzzy subspace clustering al-
gorithm and after that apply the matrix identifi-
cation algorithm. The estimated mixing matrix
(after normalization of each column) is:

W2 =

 0.3813 0.4616 0.8650 0.3463
−0.0587 −0.0685 0.1296 0.2995
−0.5687 −0.0216 0.1697 0.1713

0.7264 0.8842 0.4541 −0.8724

 .
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Figure 7: Example 2: original source signals.
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Figure 8: Example 2: mixed signals.

The separated sources are shown in Fig. 5.

In the next figures we show the results of applying
on the last example the SOBI algorithm (Figure
10) and Fast ICA algorithm (Figure 11).

10 Conclusion

We develop the idea of nonlinear fuzzy skele-
ton and present a fuzzy clustering algorithms for
finding such a skeleton. We present applica-
tions in statistical learning theory. First applica-
tion is a new classifier - a fuzzy skeleton classi-
fier, which classifies the points in accordance with
their nearness to the fuzzy skeleton of a corre-
sponding class. Presented examples suggest that
the proposed fuzzy skeleton classifier could be
better compared with the classical SVM classi-
fier. The second application is to the unsuper-
vised learning. Finding the affine skeletons of
data sets has a direct application to Blind Signal
Separation problems for de-mixing of unknown
mixture of source signals under mild sparsity as-

0 50 100 150 200 250 300
−1

0

1

2

0 50 100 150 200 250 300
−1

0

1

0 50 100 150 200 250 300
−2

0

2

0 50 100 150 200 250 300
−2

0

2

Figure 9: Example 2: separated signals.
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Figure 10: Example 2: results obtained by apply-
ing SOBI.

−2

−1

0

1

2

y1.      

−2

−1

0

1

2

y2.      

−2

−1

0

1

2

y3.      

50 100 150 200 250 300
−4

−2

0

2

4

y4.      

Figure 11: Example 2: results obtained by apply-
ing FAST ICA with hyperbolic tangent as activa-
tion function.

sumptions. We present identifiability conditions
for sparse BSS problems, allowing less hyper-
planes in the data points for full recovery of the
original sources and the mixing matrix. The ideas
are illustrated with examples.
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