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Abstract

We describe here a sensibility analysis
to help tune the parameters of an ant
colony model where ants leave a fuzzy
trace of pheromone to mark their track
and its neighborhood. We test it with
different parameters on some classical
problems.
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1 Introduction

Ant colonies is a heuristic inspired from nature to
solve optimization problems. When an ant finds
a source of food, it leaves a trail of pheromone
on its way back to the nest. The accumulation
of small individual reinforcements on the paths
allow an ant colony as a whole to find the best
way between a source of food and the nest. When
the source is exhausted, no new pheromone is de-
posited and the pheromone trails disappear as the
pheromone slowly evaporates.

In the same way, ant colonies systems [3] find
the optimal solution to a problem by the rein-
forcement of good solutions. In ant colonies sys-
tems, each ant (or its path) represents a solution,
and weights assigned to each solution represent
pheromone. A mechanism that increases weights
on the solutions correspond to pheromone re-
inforcement and a mechanism that decreases
weights correspond to pheromone evaporation. In
some approaches, only one solution receives an
increase of pheromone [4] on each turn, as if only

the leading ant on a group would be allowed to de-
posit pheromone. In both approaches, randomly
traces of individuals lead, after generations, to a
best individual representing an optimal solution.

In [1], an ant colony system is presented in which
an ant deposits pheromone not only on its path but
also on the paths close to it. In this formalism, the
ants are said to leave afuzzy trace, and the closer a
path is to the one that represents a good solution,
the larger the amount of pheromone it receives.
This is a direct analogy to the what happens in na-
ture, as the chemical particles of pheromone dis-
perse themselves in the air on a region around the
deposit. The difficulty to use these formalisms in
some optimization problems is to find a suitable
notion of closeness among paths, such as the case
of the Traveling Salesman Problem (TSP) [2].

This formalism is indicated for problems with
large search spaces and has been employed suc-
cessfully in a real world inverse problem, the es-
timation of chlorophyl profiles in offshore ocean
water [6]. This problem is made harder by the fact
that the cost of the computation of the goodness
of each candidate solution is very high. The use
of the ant colony systems with fuzzy pheromone
dispersion allows the search space to be well ex-
plored with only a small amount of solutions be-
ing actually examined.

Here we are interested on the task of tun-
ing the parameters of ant colony systems with
fuzzy pheromone dispersion on some optimiza-
tion problems. We address the solution of a sym-
bolic problem, the Gauss Queens Problem, and of
two numerical problems, using well-known func-
tions in optimization literature, the Rastrigin and
tripod functions. We focus in a dispersion func-
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tion that can be modeled by a linear fuzzy set and
verify the relation between the number of ants and
the radius of the dispersion.

This work is organized as follows. In Section 2
we describe the fuzzy pheromone dispersion algo-
rithm used in this work. In Section 3, we present
the results of the experiments made on the Rast-
rigin, the tripod and Gauss queens problems, and
Section 4 brings the conclusion.

2 The algorithm for function
optimization

In the following, we describe the fuzzy
pheromone dispersion algorithm we use in
the remaining of this text, based in [1]. For any
positive functionf from [a, b]n to R, it aims at
finding the arguments forf that lead to the global
minimum.

An ant is characterized by its path, that represents
its solution to the problem in hand. Each solution
is a vectorv = (v1, v2, ..., vn), where thei-th po-
sition contains the value for thei-th argument off
according to that solution. The path of an ant is a
set of edges that codify the solution, i.e. each edge
represents in fact an argument off . The value for
each edge on a path is taken from a discrete set, as
described below. The quality of the solution de-
scribed by vectorv is simply calculated asf(v).

Roughly speaking, in any generation, each ant
chooses the edges of its path, according to prob-
abilities that are proportional to the amount of
pheromone deposited on them. At the end of
this step, for each antk, we take the solution
v(k) encoded by its path and calculate its qual-
ity f(v(k)). Then, each ant allowed to leave
pheromone deposits an amount of pheromone on
its path that is proportional to the quality of the
solution associated to it and, moreover, it leaves
smaller quantities of that amount on paths con-
sidered to be close to its own path.

This algorithm has thus two important aspects:

1. the better is an ant that is allowed to deposit
pheromone, the bigger the trace it leaves;

2. the closer is an edge to the path of an ant that
is allowed to deposit pheromone, the more
pheromone this edge receives.

Let f be a positive function[a, b]n → R, and let
φ be the dilatation from domain[0, 1] to domain
[a, b], defined asφ(x) = a + x × (b − a). Let
d be a positive integer; we create a discrete set of
d + 1 values in[0, 1] asU = {0, 1

d , 2
d , ..., 1}. Ma-

trix τ contains the amount of pheromone on each
edge at any moment of the execution of the algo-
rithm: each positionτi,j represents assigning the
j-th value fromU (i.e. j

d ∈ U ) to thei-th compo-
nent of the path. Thus the value stored in position
τi,j (an amount of pheromone) is a weighing for
the choice of taking valueφ( j

d) as thei-th argu-
ment off . Here, contrary to the approach used
in [1], the initial values stored in matrixτ are ob-
tained at random.

As said previously, an ant deposits a certain
amount of pheromone on its path and smaller
quantities of this amount on edges close to its
path. Here, the notion of closeness is imple-
mented using the discretization inU ; the edges
considered to be close to an edge(i, j) are those
in set{(i, j′) | (|j − j′| ≤ dm) ∧ ( j′

d ∈ U)},
where the neighborhood radiusdm ∈ N is a rea-
sonably small natural number (0 ≤ dm << d

2 ).
Therefore, given that(i, j) is in the ant’s path, an
edge(i, j′) will receive extra pheromone ifj

′
d is

one of thedm values either below or abovejd in
setU . Note that usual scheme (no pheromone dis-
persion) is modeled bydm = 0.

We use a fuzzy setG with membership function
G : N → [0, 1] to model the notion of disper-
sion of pheromone on the edges in the neighbor-
hood of a path: the closer an edge to the path,
the larger its membership toG and the larger the
extra quantity of pheromone it receives. Various
types of convex fuzzy membership functions can
be used forG. In the algorithm below, we use
a triangular fuzzy set< c − dm, c, c + dm >,
with core equal to point valuec (i.e., G(c) =
1 ∧ ∀x 6= c,G(x) < 1) and support given by
values ofN in interval [c − dm, c + dm] (i.e.,
∀x ∈ [c − dm, c + dm], G(x) > 0). Thus we
have∀k ∈ N, Gc,dm(k) = max(0, 1− |c−k|

dm ).

In this work we address two mechanisms for the
deposition of pheromone. In the first mechanism,
all ants deposit pheromone in their corresponding
paths and neighborhoods. In the second mecha-
nism, only the ant with the best solution in each
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generation is allowed to deposit pheromone (this
ant can be thought of as the “leader” of its gener-
ation).

In algorithm FAC described bellow, each genera-
tion consists of a set ofm ants. We also have:

• τ is a matrixn × (d + 1) of float numbers,
representing all the possible edges.

• ants is am × n matrix in N, such that each
row contains the path of one of the ants con-
sidered in a generation.

• val is a vector of length m, con-
taining the values f(v(k)), where
v(k) corresponds to the solution
obtained through the k-th ant, i.e.
f(v(k)) = f(φ(antsk,0

d ), ..., φ(antsk,n−1

d )).

• vm is the best value ofval and nv is the
number of evaluations of functionf .

Algorithm FAC(m, d, dm,α, ρ, evalmax, ε, tts)

• m, d anddm are defined as above;

• α andρ are ant colony parameters indicat-
ing the accentuation of probabilities and the
evaporation rate, respectively;

• evalmax is the an upper bound for number of
evaluations of functionf ;

• ε > 0 is a lower bound for functionf ;

• tts is a boolean variable; iftts = true then
all ants leave pheromone, iftts = false
only the leader does it.

Initialize matrix τ with a random value in ]0,1].
Initialize vm andnv with 0.

While vm > ε andnv < evalmax do

1. Creation of ant paths:
for i = 0 to n− 1 do

• let normp be the normalized vector of
probabilities obtained from(τi)α.

• for k = 0 to m− 1 do createantsk,i ∈
U according to probabilitiesnormp.

2. Evaluation:
for k = 0 to m− 1 doval(k)← f(vk);
let vm be the lowest value inval andb the
ant evaluated withvm (the best ant).

3. Evaporation:
matrix τ becomes the product of itself with
(1− ρ).

4. Pheromone Updating:
if tts then(* updating with all ants *)

for k = 0 to m− 1 do

for i = 0 to n− 1 do

x← antsk,i

for j = max(0, x− dm)

to min(d, x + dm) do

τi,j ← τi,j + Gx,dm(j)
val(k)

else(* updating only with the best antb *)

for i = 0 to n− 1 do

x← antsb,i

for j = max(0, x− dm)

to min(d, x + dm)) do

τi,j ← τi,j + Gx,dm(j)
vm

5. Incrementation ofnv with nv + m.

At the end of an execution, the algorithm delivers
the best value(v, f(v)) and the number of evalu-
ations off taken to reach it.

3 Tests and results

In the following we present sensibility analyses
on the parameters of the algorithm above regard-
ing three problems, two numerical (Rastrigin and
tripod functions) and one symbolic (Gauss queens
problem). For all the problems, the results pre-
sented are the average of 100 trials. Unless stated
otherwise, we have used evaporation rateρ = 0.1
and accentuation coefficientα = .5.

In all our experiments, the scheme in which only
the best ant leaves pheromone fared much worse
than the case where all ants leave pheromone and,
for this reason, in the figures we only illustrate
this second scheme (tts = true).

814 Proceedings of IPMU’08



Figure 1: Rastrigin function (single dimension).

3.1 Experiments with the Rastrigin function

The Rastrigin function is defined as

fR(x) =
∑

i=1,n

[x2
i + 10− 10× cos(2πxi)]/400,

wherex ∈ Rn (see Figure 1 withn = 1).

We performed experiments for this function in di-
mension 1 withx ∈ [−30, 30]. Using a discretiza-
tion factor ofd = 100, the optimal value forfR is
10−4, reached withx = 0.

3.1.1 Neighborhood radius

We studied the behavior of the neighborhood ra-
diusdm for functionfR; Figure 2.a (respec. Fig-
ure 2.b) depicts the average number of evaluations
taken to reach the optimum using between 50 to
250 (respec. 2 and 30 ) ants. We can see that the
best results are obtained with a very small num-
ber of ants, and that there is no need to use radius
values larger than 8.

In these experiments, the average number of eval-
uations taken to reach the minimum in the case
of no fuzzy trace use (dm = 0) is about twice
as high as the ones using fuzzy trace, and for this
reason this case is not shown in the graphics.

3.1.2 Evaporation rate

In each generation, the pheromone is decreased
losing a partρ of it. Figure 3 shows the average
number of evaluations to reach the optimum with
dm = 10, varyingρ in [0, 0.9]. The best results
are always roughly aroundρ = 0.1 to 0.4.

3.1.3 Accentuation of probabilities
coefficient

We varied the accentuation of probabilities pa-
rameterα for the Rastrigin function in dimension
1, usingdm = 10. The experiments confirm that
the best values are aroundα = 0.5 (see Figure 4).
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200 250 ants
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Figure 2: Number of evaluations per neighbor-
hood radius for the 1-D Rastrigin function: a) 50
to 250 ants and b) 2 to 30 ants.

Figure 3: Number of evaluations per evaporation
rate for the 1-D Rastrigin function.

3.2 Experiments with the tripod function

The tripod function is defined as:

if y < 0

thenfT (x, y) = |x|+ |y + 50|
else ifx < 0

thenfT (x, y) = 1 + |x + 50|+ |y − 50|
elsefT (x, y) = 2 + |x− 50|+ |y − 50|.

Although very simple, this function has three
minima (see Figure 5), and is quite difficult to
minimize with stochastic heuristics [5].

Figure 6 shows the number of evaluations taken
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Figure 4: Number of evaluations per accentuation
of probabilities for the 1-D Rastrigin function.

by the algorithm to reach the optimum for the tri-
pod function withx andy in domain[−100, 100]
and discretization factord = 200, varying the
number of ants and the neighborhood radiusdm.

Figure 5: Tripod function forx, y ∈ [−100, 100].

The best results were obtained with a large num-
ber of ants (from 100 to 500) and relatively small
values fordm (between 2 and 6). Withdm greater
than 7, results from 50 to 1000 are quite similar.
The use of a small number of ants (2 to 10) did not
yield good results, particularly for small values of
dm (between 0 and 7).

3.3 Experiments with a symbolic problem

The Gauss queens problem consists in placingn
queens on an× n chessboard, in such a way that
the queens would not be able attack one another,
considering the movements the queen is allowed
to take in chess.

The possible configurations can be represented
by a sequence ofn values taken from the set
{1, 2, ..., n− 1}, where the value in thei-th posi-
tion in the sequence indicates the row of the queen

Figure 6: Number of evaluations per neighbor-
hood radius for the tripod function: 5 to 500 ants.

in the i-th column. A set of solutions forn from
4 to 9 are for instance (see Figure 7):

chessboard4× 4→ (2 4 1 3)
chessboard5× 5→ (3 1 4 2 5)
chessboard6× 6→ (3 6 2 5 1 4)
chessboard7× 7→ (3 1 6 2 5 7 4)
chessboard8× 8→ (6 3 1 8 4 2 7 5)
chessboard9× 9→ (4 1 7 9 2 6 8 3 5)

Figure 7: A solution for the7×7 queens problem.

A solution to the problem can be found by mini-
mizing functionfgauss, that computes the number
of couples of queens in catching positions on the
chessboard. For example,fgauss(1, 3, 2, 5, 5) =
4 and fgauss(2, 7, 5, 3, 1, 6, 4) = 0. The ants
algorithm generatesn-dimensional vectors in
[1, n]n and so we have used discretization factor
d = n− 1.

In Figures 8.a and 8.b, we see that for a7 × 7
chessboard, the best results are obtained with
a small number of ants and with radius around
dm = 4 (values fordm = 0 anddm = 1 are too
large and are not plotted).

We see that the use of a larger number of ants does
not yield better results, but that even then the best
value fordm is still around 4. Note also that a
very small number of ants (2 to 10) give results
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worse than for a large number of ants (100 to 350)
in the case of no pheromone dispersion (dm = 0).

a)

b)

Figure 8: Number of evaluations per neighbor-
hood radius for the7× 7 chessboardfgauss func-
tion: a) 2 to 10 ants and b) 50 to 500 ants.

4 Conclusion

We presented a study on the tuning of parame-
ters of ant colony systems with fuzzy pheromone
dispersion on some optimization problems. In
this algorithm, the closer is an edge to the path
in which an ant deposits pheromone, the more
pheromone this edge shall receive. Moreover, the
amount of pheromone deposited by an ant is pro-
portional to the quality of the solution it repre-
sents.

Using a a linear fuzzy set we verify that usu-
ally only a relatively small number of ants and
small values for the neighborhood radius that
characterizes the dispersion are needed to obtain
good results. In all experiments, no dispersion
of pheromone (dm = 0) always yielded infe-
rior results. The scheme in which all ants deposit
pheromone showed much better results than the
one in which a single ant is allowed to do so.

In the case of Rastrigin function, using here a very
small search space, the best results were obtained
with the number of ants varying between 2 and

20 and with neighborhood radius around 8. For
the tripod function, with a search space of around
40.000 points, one obtains good results with 50
to 100 ants anddm between 2 and 6. For the
Gauss problem with 7 queens, with a search space
of 77 points (> 800.000), the best results are ob-
tained with a small number of ants (2 to 10) and
dm around 2 to 6.

As future work, we intend to extend the sensibil-
ity analyses. In particular, we would like to verify
the sensibility of the algorithm in relation to other
types of fuzzy set shapes for pheromone disper-
sion, such as the Gaussian curve.
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