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Abstract 
In this paper, we describe various 
techniques used to make Intuitionistic 
Fuzzy Logic Systems amenable to 
operating on applications with large 
numbers of inputs. A rule reduction 
technique known as Combs method is 
combined with an automated tuning 
process based on Particle Swarm 
Optimization. A second stage of tuning 
on rule weights results in improved 
performance and further reduction in 
the size of the rule-base. The entire 
process has been developed to operate 
within the Matlab software 
environment. The technique is tested 
against the Wisconsin Breast Cancer 
Database. The use of these tools shows 
great promise in significantly 
expanding the range and complexity of 
problems that can be addressed using 
Atanassov’s Intuitionistic Fuzzy Logic. 

 
Keywords: Atanassov’s Intuitionistic Fuzzy 
Logic, Particle Swarm Optimization, Combs 
Method. 

1     Introduction 
The decision making paradigm known as Fuzzy 
Logic has been implemented in a wide range of 
applications since it was first introduced by Dr. 
Lotfi Zadeh in his seminal paper published in 
1965 [17]. A number of researchers have since 
made major contributions in expanding and 
adapting Fuzzy Logic beyond its initial 
conception. One major Achilles heel for Fuzzy 
Logic applications has been that in most current 
algorithms, memory requirements expand 
exponentially with linear growth in inputs. This 

property of the formulation can quickly 
overwhelm available computing resources in 
even relatively modest sized applications. One 
promising extension, Intuitionistic Fuzzy Logic 
(IFL), can further exacerbate memory problems 
by effectively doubling the number of input 
membership functions. Atanassov [1] introduced 
the notion of pairing non-membership functions 
in IFL with the usual membership functions of 
Fuzzy Logic. 
 
A number of researchers have developed 
techniques to mitigate the problem “exponential 
rule explosion” or “curse of dimensionality” 
through various means [8, 10, and 14], however, 
these methods generally tend to be complex and 
limited to special cases. One promising 
exception is a technique developed by William 
Combs that changes the problem from one of an 
exponential dependence to a linear dependence 
on the number of inputs [4]. The use of Combs 
method also simplifies rule-base generation and 
makes it easier to automate tuning of Fuzzy 
systems. 
 
Another issue that must be addressed when 
implementing a Fuzzy Logic algorithm for a 
specific application is constructing membership 
functions for each input that provide adequate 
system performance. A common approach taken 
is to interview experts in the particular field and 
use their feedback to build the fuzzy 
membership functions. This process can be 
cumbersome and/or completely impractical for 
large problems, leading to the need to 
implement some sort of automated membership 
function construction and optimization process. 
 
A number of methods for automating this 
process have been published in the literature. A 
common approach has been to somehow 
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construct membership functions and then use a 
population based optimization method such as 
the Genetic Algorithm to tune them. We chose 
to follow a variation of this approach by 
constructing the membership functions and 
using a method known as Particle Swarm 
Optimization (PSO) for tuning. The PSO 
algorithm, first developed by Eberhart and 
Kennedy [6], was inspired by the coordinated 
group behaviors of animals such as flocks of 
birds in flight. One important advantage of this 
technique is the simple formulation and 
implementation of the underlying equations. 
 
The main focus of our research has been to 
combine several techniques to simplify the 
tuning process and make it practical to address 
problems of much greater size and complexity 
[7]. Recently, we have built on previous 
research to further improve the optimization 
process. We believe our efforts have brought us 
closer to realizing an efficient, automated 
process to generate Fuzzy Logic systems 
capable of handling large and complex 
problems. 
 
The following section provides a brief 
background of Combs method and the database 
used to verify our approach.  The next section 
describes the PSO optimization process. 
Following that we provide some of our results 
and end with a section on our conclusions. 

2     Combs URC Method 
William Combs refers to his method as the 
union rule configuration (URC) versus what he 
calls the intersection rule configuration (IRC) of 
the traditional fuzzy rule-base construct [4]. The 
main difference between the URC and IRC is 
that every rule in the rule-base of the URC is 
required to have only one antecedent for every 
consequent. Initially, this may sound counter-
intuitive as a means of reducing the number of 
rules, however by imposing this restriction it 
means that each membership function of all the 
input variables is used only once in the 
antecedent of a rule in the rule base. Each of 
these rules are joined by a logical OR in the 
rule-base, hence the designation union rule 
configuration. 
 
Combs and his various co-authors show that the 
entire problem space can be accessed by 
implementing the URC. A spirited debate can be 

found in the literature discussing the validity of 
the claims made for the URC and the interested 
reader is referred to the references [3, 5, 12, and 
15] for detail on this topic. Our own experience 
to date has been that the URC performs as well 
or better than the IRC formulation.  
 
We used Combs method to apply Atanassov’s 
Intuitionistic Fuzzy Logic to the well known 
Wisconsin Breast Cancer Database (WBCD) 
[16]. An initial set of four IFL membership and 
non-membership functions were developed for 
each of the nine input variables of the WBCD. 
The 683 unique samples in this database 
associate various diagnostic tests as real-valued 
inputs with a binary output of benign/malignant 
for a suspect tissue mass. The WBCD was 
chosen as a test case because it provides a 
relatively large number of inputs, allowing us to 
demonstrate the rule-base reduction advantage 
of the URC method. The entire rule-base 
consisted of 36 rules (9 inputs x 4 
membership/non-membership functions) versus 
the 262,144 (49) maximum number of rules that 
could be used in the IRC method. 
 
Figure 1 shows the distribution of the values of 
one of nine WBCD input variables with respect 
to benign/malignancy of the tissue mass. On this 
chart a diagnosis of benign is marked as an “x” 
and a diagnosis of malignant is marked with an 
“o”. The distribution shows a strong 
correspondence between low values and a 
diagnosis of benign, however there are a number 
of exceptions to this generalization. This 
distribution is characteristic to a greater or lesser 
degree in all nine of the input variables. 
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Figure 1: Distribution of Input “Bare Nuclei” 
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3   Fuzzy Classification Model 
In the spirit of simplifying the development and 
tuning processes, the entire optimization 
algorithm was created, debugged and executed 
within the Matlab software suite [11]. The 
intuitionistic fuzzy classifier was created in the 
Matlab Fuzzy Logic Toolbox.  A set of 
customized Matlab m-files provide overall 
control of the optimization process.  The m-files 
make calls to the PSO and IFL modules, with 
the program terminating after a user-defined 
number of iterations have been completed.   
 
The Fuzzy Logic Toolbox provides a number of 
general default values for the user to choose 
from in building the fuzzy classification model.   
For instance, the software allows the user to 
choose between two methods, minimum or 
product, to fill in for the “AND” function in the 
rule antecedent.  In our case we chose to employ 
the product method.  Other standard parameters 
selected were; weighted average for 
defuzzification, the Sugeno-type inference 
method, and rectangular membership functions.  
 
The output values from the IFL module were 
continuous over the interval [0 1].  Any output 
number that was .5 or less was assigned a 
diagnosis value of benign, and conversely a 
number greater than .5 was assigned to be 
malignant.  It was considered desirable that in 
the final optimized fuzzy classifier not only 
should the output provide as many correct 
diagnoses as possible, but also that the raw 
output numbers should be as close as possible to 
the extremes of the [0 1] interval thus reducing 
ambiguity in each diagnosis.   

4   Optimizing with PSO 
Since the rule-base is pre-determined in our 
approach to the URC, the initial focus of the 
optimization process was on the definition of the 
(non)membership functions. In this most recent 
work, further rule-base reduction was achieved 
through the optimization of weighting factors 
for each individual rule. 
 
Each input variable was assigned 2 membership 
and 2 non-membership trapezoidal shaped 
functions. These functions were given values of 
low/high and (not high)/(not low) respectively. 
Two of the four points that determined each 
trapezoid were anchored to one side of the 
allowable input range depending on whether the 

function described a predominately low or high 
input value. This action left two points of each 
membership function to float freely over the 
input range and it was these two values that 
were subjected to the optimization process.  
 
The total number of optimization variables was: 
(9 input variables) x (2 points per function) x (4 
functions per input variable) = 72 variables. 
 
Figure 2 shows an example of the 
(non)membership function for one input variable 
with the 8 points subjected to optimization 
circled. Here we abbreviate “membership and 
non membership” with “(non)membership”. 
 

 

 

 

 

 

 

 

Figure 2: Four (non)Membership Functions with 
Eight Circled Optimization Variables 

 
Particle Swarm Optimization (PSO), like the 
Genetic Algorithm is a population-based 
optimization method inspired by biological 
phenomena. In the case of PSO the inspiration 
comes from flocking behaviors of birds or 
schooling of fish. An optimization run is 
initialized by dispersing a population of 
solutions at random throughout the N-
dimensional problem space. A new position for 
each of the solutions or “particles” is then 
calculated based on the generating equations: 
 

Vid
+1

 = Vid + c1r1(Xid
best - Xid)  

                  
                  + c2r2(Gd

best – Xid) 

(1) 

Xid
+1 = Xid + Vid

+1    

i = 1,…M  Population    
d = 1,…N  Dimensions 

(2) 

 
where Xid is the particle position vector and Vid 
is an associated “velocity” vector. The 
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predetermined constant coefficient c1 is often 
referred to as the cognitive parameter and c2 as 
the social parameter in the velocity vector. The 
random numbers r1 and r2 are selected from a 
uniform distribution on the interval [0,1] and 
Xid

best and Gd
best are the previous personal best 

position for each individual particle and the 
global best position of the population, 
respectively. 
 
An excellent add-on to the Matlab software 
suite, the PSO Toolbox, is distributed free for 
use on the internet [2]. We modified the source 
code of this package to interface with the Fuzzy 
Logic Toolbox that is also an add-on to Matlab 
software suite [9]. A flow diagram of the 
membership function optimization process is 
shown in Figure 3. 
 

 

 

 

 

 

 

 

 

 

Figure 3: IFL Membership Function 
Optimization 

 
 
Like the Genetic Algorithm, PSO requires a 
fitness function to rank the worthiness of 
candidate solutions. The output values from the 
IFL system ranged continuously over the 
interval [0, 1], any value below 0.5 was assigned 
to be a diagnosis of benign and any value above 
0.5 was assigned as malignant. Initially, there 
were two terms in the fitness function that we 
designed as a minimization problem.  
 
The first term was dominant and served to 
ensure that best fitness was assigned to the 
candidate IFL system that gave the fewest 
number of incorrect diagnoses. A secondary 
term in the fitness function served to minimize 
the ambiguity in correct diagnoses by penalizing 
values that came close to a value of 0.5. This 
secondary term served as a tie breaker between 

multiple candidates that had the same number of 
misdiagnoses by giving preference to the 
candidate that maximized the root mean squared 
distance from the value of 0.5 for each set of 
input values.  The goal for this secondary term 
was to reduce “ambiguity” or sensitivity of the 
output to small variations in the input values. 
 
In a later refinement the secondary ambiguity 
term in the fitness function was modified in such 
a way that for extended periods during the 
optimization process the action of this term was 
reversed to encourage convergence toward a 
value of 0.5. This was done in order to 
encourage exploration by the search mechanism 
by requiring a minimum amount of perturbation 
to achieve a possible improvement in the 
number of misdiagnoses. In these cases a large 
number of epochs were reserved at the end of an 
optimization run with the secondary fitness term 
switched to driving convergence away from a 
value of 0.5 and reducing ambiguity in the final 
result. Figure 4 illustrates this refinement in the 
secondary term of the fitness function. 
 

 

Figure 4: Effect of the Secondary Fitness Term 
on Convergence 

 

An additional step was then implemented that 
carries on from the process described above. In 
this process the IFL system with optimized 
membership functions was subjected to a re-
optimization, this time of weighting factors for 
each rule in the rule-base. This re-optimization 
process was again performed using the PSO 
algorithm, only this time a weighting factor for 
each of the 36 rules in the rule-base were the 
assigned optimization input variables. This 
second optimization process followed the same 
flow as that shown in Figure 3 with rule weight 
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Benign Malignant 
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creation replacing the membership function 
creation block.  

In these rule optimization runs a third term was 
added to the fitness function that served to 
minimize the total number of rules utilized by 
the optimized fuzzy classifier.  The interest for 
this feature was to reduce the number of rules on 
top of the gains contributed by using the URC 
method, resulting in even faster computer run 
times.  This would be an important feature for 
very large fuzzy classification problems.   

At first, it seemed likely that this third term 
would conflict with the ambiguity role of the 
second term.  As it turned out however, 
incorporating the rule reduction term had only a 
slight negative impact on the secondary 
ambiguity goal. 

The improvement in the fitness function during 
an optimization run followed an exponential 
decay, showing rapid improvement early on and 
much slower gains with increasing numbers of 
epochs. The PSO method provided convergence 
in a reasonable amount of time on a relatively 
modest computing platform. The method also 
was easy to formulate and code into a working 
program in a short amount of time.  
 

5   Results  
The optimization process successfully produced 
an Atanassov’s Intuitionistic Fuzzy System that 
provided results similar to that found by other 
authors [13]. The best outcome produced a 
system that gives a correct diagnosis 98.975% of 
the time or 7 misdiagnoses out of 683 cases. In 
the second phase of the tuning process, rule 
weight tuning produced further improvement 
gains in the secondary fitness term. In addition, 
16 of the 36 rules were eliminated completely 
during this process. This resulted in a 44% 
reduction in the rule-base and membership 
function definitions, thus decreasing system 
memory requirements and increasing execution 
speed. It should be noted that these 
improvements occurred on top of the already 
reduced rule base size achieved through using 
the Combs method. 
 
A separate optimization run was made using 
Fuzzy Logic membership functions only.  The 
best performance that could be achieved was a 
system that gave 9 misdiagnoses out of 683 

cases or an accuracy of 98.68%. Therefore the 
membership function only case produced 2 
additional or 28.57% more misdiagnoses. In a 
large population this improvement might result 
in a significant number of lives saved from 
misdiagnoses. A typical optimization run with a 
population of 120 particles running for 60,000 
epochs would finish in 36 hours on a Dell 
Latitude D600 laptop.  

6   Conclusions  
An Atanassov’s intuitionistic fuzzy system was 
optimized to produce a correct breast cancer 
diagnosis with an accuracy that rivaled that of 
the best systems to date. The IFL employed 
Combs URC rule construction methodology to 
limit rule-base growth to a linear relationship 
with increasing numbers of inputs and 
membership functions. The optimization process 
proceeded in two stages. Using Particle Swarm 
Optimization, membership functions for the IFL 
system were first optimized to reduce 
misdiagnoses to 7 out of 683 cases. In the 
second phase of optimization PSO was again 
used to tune rule weights, resulting in a better 
tuned system with a reduced rule-base.   
 
The entire process was developed and executed 
within the Matlab software suite. The 
combination of tools used provided a relatively 
automated process that required less memory 
and faster running times than would normally be 
expected for a large number of inputs. The 
resulting IFL system with (non)membership 
functions performed better than a similarly 
optimized standard Fuzzy system with 
membership functions only.  
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