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Abstract

Classification is an active topic of
Machine Learning. The most recent
achievements in this domain sug-
gest using ensembles of learners in-
stead of a single classifier to improve
classification accuracy. Compar-
isons between Bagging and Boosting
show that classifier ensembles per-
form better when their members ex-
hibit diversity, that is commit dif-
ferent errors. This paper proposes
a genetic algorithm to design classi-
fier ensembles, using a fitness func-
tion based on both accuracy and di-
versity. The proposed implementa-
tion has been run on several UCI
Machine Learning datasets and com-
pared to the performances obtained
with bagging algorithm and a single
classifier of the same nature.
Keywords: Classification, Classi-
fier Ensembles, Diversity.

1 Introduction

Supervised classification is an ac-
tive area of research in the Machine
Learning Theory. Consider a dataset
t = {(x1, y1) , (x2, y2) , . . . , (xN , yN )} where
each xi ∈ X ⊂ Rn is an input vector and each
yi ∈ Ω = (w1, w2, . . . , wc) is a class label.
The objective is to learn the target function
f : Rn → Ω from t to map new unlabeled
input vectors to their corresponding class.
The Machine Learning literature is extremely

large regarding pattern recognition and
classification [5, 15]. Recent achievements in
the field of supervised learning suggest that
combining different learners instead of a sin-
gle classifier can improve accuracy [10]. Well
known illustrations of this theory are bagging
and boosting algorithms [7, 2] which proof
that fusion of weak learners outputs achieves
higher accuracy than a single classifier. The
success of such ensemble methods relies on
diversity, a concept which tries to explain
how the differences between classifiers of
an ensemble can improve the accuracy of
the global predictor. This paper presents a
genetic method to design classifier ensembles
as an optimization process, considering
the diversity [11] and the accuracy of the
ensemble at each stage of its creation. The
next section of this paper presents several
references from the literature about diversity
in classifier ensembles and describe several
implementations using explicit formulation of
diversity to train ensemble of classifiers. The
third section presents the GenDiv algorithm,
a GA-based implementation to design a clas-
sifier ensemble as an optimization process.
Evaluation of the proposed implementation
on several UCI Machine Learning datasets
and comparisons with the accuracy of a
single classifier are given in the forth section.
The last section of this paper is dedicated to
conclusions and possible improvements of the
proposed algorithm.
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2 Diversity in classifier ensembles

The question one can ask is how a set of weak
learners whose individual accuracy is slightly
superior to a random guess can perform bet-
ter than the single best classifier when com-
bined into an ensemble? The answer to this
question can be partially explained using the
concept of diversity. If all the classifiers in
the ensemble were identical, the accuracy of
the whole ensemble would be equal to the one
of its individual members. To perform bet-
ter than a single classifier, the samples which
are misclassified must be different from one
individual learner to another. The algorithm
that best illustrates this principle is probably
the Adaboost algorithm [7]. Adaboost builds
an ensemble by training individual classifiers
in a cascading style, so that the current clas-
sifier focus its training on the samples that
were misclassified by the previous classifiers of
the ensemble. Adaboost has proven to be one
of the most efficient ensemble algorithm. It
enforces diversity by focusing on the comple-
mentarity between the individual classifiers of
the ensemble. Several diversity metrics can be
found in the literature. In [11] the authors ex-
pose the most widely used diversity measures.
In this paper, diversity is quantified using the
disagreement measure exposed in [9]. Table
1 gives the incidence matrix build on oracle
outputs of two classifiers Ci and Cj .

Table 1: Incidence matrix of oracle outputs
for two classifiers.

Cj correct(1) Cj wrong(0)
Ci correct(1) a b
Ci wrong(0) c d

The disagreement measure between Ci and Cj

is equal to the probability that the two clas-
sifiers disagree on their decisions:

Di,j = b + c (1)

Values of Di,j close to 1 signify higher diver-
sity. Another frequently used measure is the
Interrater Agreement κ. For c class labels, κ
is defined on the c × c coincidence matrix M

of the two classifiers. The entry mk,s of M
is the probability that Ci labels an object as
ωk when Cj labels it as ωs. The agreement
between Ci and Cj is given by:

κi,j =
∑

k mkk −ABC

1−ABC
(2)

where
∑

k mkk is the observed agreement
between the classifiers and ABC is the
agreement-by-chance

ABC =
∑

k

(∑
s

mk,s

)(∑
s

ms,k

)
(3)

Low values of κ signify higher disagreement
and hence higher diversity. Di,j and κi,j are
pairwise measures between two classifiers. To
generalize the diversity to the whole ensem-
ble, the measure is averaged across all pairs
of classifiers. In this paper, the diversity Dive

of the whole ensemble is expressed as:

Dive =
2

L (L− 1)

L−1∑
i=1

L∑
j=i+1

Di,j (4)

where Ci and Cj are members of ensemble e.

In [13], the authors propose to use Kappa-
Error Diagram, a two dimensional scatter
plot of pairwise accuracy/diversity values, to
study the diversity of different ensemble algo-
rithms. Several implementations to explicitly
use diversity while training a classifier ensem-
ble have been proposed. In [4], the authors
define a topology of algorithms and methods
related to diversity in classifier ensembles and
how to achieve it. In order to create diversity
between classifiers, both the structure of the
learner and the training data can be modi-
fied. However, it has been noticed that re-
shaping the data generally performs better
than manipulations on architecture [16]. Act-
ing on the training data is only effective for
unstable classifiers, like decision trees or neu-
ral networks, for which small changes in the
training data can lead to significant differ-
ences in the learned target function. Most of
the diversity methods exposed in the litera-
ture use these types of base learner, contrary
to nearest neighbour classifiers for instance,
for which the learned decision boundaries are
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robust to data alteration over the training set.
Ensemble algorithms are used together with a
combiner for supervised classification, to per-
form fusion of the label outputs of the dif-
ferent members of the ensemble. The com-
biner is generally a majority voting, weighted
or not, but an additional classifier can be used
to obtain the output of the whole ensemble.
Various combination methods are reported in
[10].

Apart from the method used to diversify the
learners in the ensemble, a distinction can be
established between ensemble algorithms that
make an implicit or explicit use of diversity
while training the ensemble. Bagging [2] for
instance, belongs to the implicit methods. A
certain number of base learners are trained
with randomly chosen samples, but the diver-
sity of the ensemble is observed a posteriori.
Althought the Adaboost algorithm does not
manipulate a diversity metric during the de-
sign stage of the ensemble, it belongs to the
explicit methods, because samples distribu-
tion is no longer chosen randomly, but with
the objective of maximizing the complemen-
tarity between the elements of the ensem-
ble, by focusing on previously misclassified
samples. Another explicit ensemble method
is the DECORATE algorithm described in
[14]. DECORATE iteratively trains ensemble
members by adding artificial samples to the
original training data. Those artificial sam-
ples are generated according to a metric in-
cluding diversity in order to maximize the di-
versity of the whole ensemble. Bagging and
boosting are meta-algorithms and can be used
with any type of base learner. The Random
Forest algorithm has been designed for deci-
sion trees. Random Forest [3] create ensem-
bles of decision trees trained on a randomly
chosen subset of features. In [12], the au-
thors propose the Rotation Forest algorithm,
and perform Principal Component Analysis
(PCA) on the feature subsets to enforce di-
versity. They also present a detailed com-
parison between Bagging, Boosting, Random
Forest and their implementation. The authors
conclude that diversity is not the only impor-
tant factor when designing classifier ensem-

bles, and show that the performances of the
ensemble strongly rely on the individual accu-
racy of its members. The next section of this
paper presents the GenDiv algorithm. Gen-
Div is a GA-based implementation designed
to optimize both individual accuracy and di-
versity of ensemble members.

3 The GenDiv Algorithm

Genetic algorithms [8] are optimization
heuristics inspired by evolutionary biology
and used when there is no exact method
with reasonnable complexity for a given prob-
lem. Starting from a set of initial individuals,
the population is optimized using reproduc-
tion, crossover and mutation operations, un-
til a maximum number of iteration has been
reached, or when there is no significant im-
provement over a certain number of iterations.
Genetic algorithms require a coding scheme
and a fitness function. The coding scheme,
generally a binary string, is used to obtain a
genetic representation of the solution domain,
and the fitness function is used to evaluate
the solution domain and select the individu-
als that will breed the next generation of so-
lutions.

The GenDiv algorithm aims at designing a
classifier ensemble by selecting from a pool
of classifiers the subset of elements that best
optimize a fitness function. Prior to the
optimization process, the GenDiv algorithm
builds a pool of base learners by training N
classifiers on a random redistribution of the
original training set. By sampling examples
from the original training set with replace-
ment (also called bootstrap sampling), it is
likely that the individual classifiers within the
pool will exhibit some diversity. Algorithm 1
gives the pseudo code used to build the pool
of base classifiers, and the pseudo code used
to perform the evolutionary step is described
in algorithme 2. Before the first iteration, the
N classifiers from the pool built previously are
randomly grouped into P ensembles of L clas-
sifiers. Each ensemble is then given a fixed-
length array of L integers as genome. Those
integer genes represent the indexes of the base
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Algorithm 1 Initialisation step of the GenDiv algorithm
Require:

Xtr : the training samples (an n× p matrix)
Xte : the test samples (an m× p matrix)
N : the number of classifiers in the resulting pool

Ensure:
Pool : a pool of N base classifiers
Outputs : an m×N matrix containing the labels computed by each classifier on Xte

Pool← ∅
for i = 1 to N do
• draw a bootstrap sample Xtr

i from the original training set Xtr

• build base classifier Ci using Xtr
i as training set

• Pool← Pool ∪ Ci

• retrieve the m× 1 vector Ŷi containing the class labels computed by Ci on Xte

• store Ŷi in the output matrix: Outputs(:, i)← Ŷi

end for
return Pool along with Ouputs

classifiers from the pool that are used in each
ensemble, so that the evolutionary algorithm
can breed the optimal classifier ensemble by
selection and inheritance of the genes that
best satisfy the fitness function. The fitness
function used by the GenDiv algorithm and
computed for all candidate ensembles at each
iteration is given by:

Fitnesse = α ·Acce + (1− α) ·Dive (5)

where Acce is the accuracy of ensemble e using
majority voting as combiner, and Dive is the
diversity of ensemble e, given in Eq. (4). The
more important the fitness of a given candi-
date ensemble is, the more often this ensemble
will be selected for reproduction. Each pair of
ensembles selected for reproduction produces
two successors using a single-point crossover
operation described in figure 1. The genome
of each parent, that is, the list of base classi-
fiers that form the ensemble, is randomly split
in two parts, so that each successor inherits a
part of each of its parents genome. To avoid
multiple appearances of a given classifier in
the same ensemble, duplicated genes are ran-
domly replaced by classifiers from the initial
pool, but that do not already exist in the
genome of the ensemble. This feature, along
with random mutations, can also help the evo-
lutionary algorithm to escape local minina.

Figure 1: Illustration of the crossover

At each iteration, GenDiv replaces the pop-
ulation of P ensembles by their P succes-
sors (each pair of individuals breeding ex-
actly two new ensembles), so that the pop-
ulation size remains constant. To avoid a
general deterioration of the population, the
new ensemble which possesses the smallest fit-
ness is systematically replaced by the ensem-
ble having the highest fitness in the previous
breed. This evolution step is repeated until a
maximum number of generations is reached
or until no more improvement occurs dur-
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Algorithm 2 Evolutionary step of the GenDiv algorithm
Require:

P : the number of ensembles to be optimized
L : the number of classifiers in each ensemble
Pool : the pool of N = L× P classifiers provided during initialisation step
Outputs : the output matrix computed during initialisation step
Y : an m× 1 vector containing the true class label for each test sample
MaxGen : the number of generations used for genetic optimization
mr : the mutation rate of the genetic algorithm
α : the coefficient used in the fitness function given in equation 5

Ensure:
E∗: the optimal ensemble resulting from the last generation

// Random selection of the initial population
for i = 1 to P do
• randomly select L distinct classifiers from Pool without replacement
• denote by Genomei the base learners selected from Pool to build ensemble Ei

• compute Acci by Majority Voting from Outputs and Y
• compute Divi as defined in equation 5
• Fitnessi ← α ·Acci + (1− α) ·Divi

end for
// Selection, reproduction and mutation of successive breeds
iter ← 1
while (iter ≤MaxGen) do
• denote by E+ the ensemble which possesses the highest fitness value
• let Parents be a list of P ensembles selected (possibly multiple times) according to their
fitness
• arrange Parents to form pairs of distinct ensembles EiEj

for all (pairs EiEj of ensembles in Parents) do
∗ build two new ensembles E

′
ij and E

′
ji using crossover and mutation operators

∗ update accuracy, diversity and fitness values of E
′
ij and E

′
ji

end for
• denote by E− the ensemble with the lowest fitness value in the new population
• E− ← E+

• iter ← iter + 1
end while
return E∗ the optimal classifier ensemble in the last generation
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ing several successive iterations. When evo-
lution is complete, the algorithm returns the
ensemble which possesses the highest fitness
in the remaining population. The detailed
pseudo code of the genetic implementation is
given in algorithm 2. GenDiv requires heavy
computation during its initialization, because
P × L base classifiers must be trained and
their respective outputs must be computed
on additional tests samples. Since the evo-
lution procedure consists in switching classi-
fiers between ensembles until the best solution
is found, no more training or output compu-
tation is required during this stage. So, the
evolution of initial candidate solutions com-
pletes faster than initialization. In the next
section of this paper, we present results ob-
tained with the GenDiv Algorithm on several
UCI datasets[1] and discuss the influence of
diversity and individual accuracy when de-
signing classifier ensembles.

4 Experimental material

UCI datasets used during experiments are re-
ported in Table 2. The base classifiers used for
experiments are decision trees, because they
are sensitive to redistributions of the original
training set, and thus exhibit diverse errors.
The GenDiv algorithm is implemented using
Matlab 6.5, which also provide a built-in tool-
box to design decision trees.

Table 2: Characteristics of the UCI datasets.
Dataset Classes Samples Features

Credit 2 690 15

Pendigits 10 10992 16

Waveform 3 5000 40

The GenDiv algorithm is run on 5 ten-fold
cross validations to breed a population of
P = 10 classifier ensembles, each consisting
of L = 10 decisions trees taken from an ini-
tial pool of 100 classifiers. Results reported in
this section are averaged across the 50 testing
accuracies obtained over the different runs.
When the datasets from the UCI consist in
separate training and test files, training and
test samples are used altogether for cross vali-
dation, so that 90 percent of the available data

are always used to train the base classifiers.
The remaining 10 percent are used to compute
the label outputs of each base learner on ad-
ditional test samples and to perform the evo-
lutionary step of the GenDiv algorithm. For
all UCI datasets, the mutation rate and the
coefficient used in the fitness function given in
Eq.(5) are set respectively to mr = 0.001 and
α = 0.75. The value given to α ensures that a
more important role will be dedicated to ac-
curacy rather than diveristy during the desing
stage of the ensemble, since previous studies
have already shown that optimizing diversity
alone generally lowers the accuracy of classi-
fier ensembles. For the Credit dataset, which
possesses a small number of samples, the size
of the bootstrap sample is the same as the size
of the initial training set. For pendigits and
waveform datasets, the size of the bootstrap
samples used for training each member of the
ensembles is reduced to 2000 and 750 sam-
ples respectively, to alleviate the computation
required during initialization while providing
a sufficient number of samples to accurately
train each base learner. A large number of
samples is required for the genetic optimiza-
tion to perform effectively. The initial bag-
ging step may not always generate enough di-
versity, and in this case, the GA-based opti-
mization will perform poorly. We set the max-
imum number of generation to 20 and plot the
evolution of ensemble solutions for the pendig-
its dataset in figure 2.
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Figure 2: Evolution of candidate ensembles
for the pendigits dataset
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Figure 2 draws the evolution of a set of classi-
fier ensembles during the GA-based optimiza-
tion. Each point represent a classifier ensem-
ble, defined by its misclassification error and
diversity. It shows that the GenDiv algorithm
progressively lowers the misclassification error
of initial candidate ensembles while diversity
is optimized. In this example, the GenDiv
algorithm can be seen as a good optimiza-
tion step when used together with bootstrap
resampling. Table 3 compares the classifica-
tion error of the GenDiv algorithm after 100
generations with the performances obtained
with Bagging and a single classifier (SB) of the
same nature. In this study, a single classifier
is a unique decision tree trained on the whole
training set. The Bagging algorithm can be
seen as a random selection of L = 10 deci-
sion trees from the initial pool of classifiers.
Results show that GenDiv can efficiently op-
timize classifier ensembles in terms of misclas-
sification error. This study also confirms that
diversity and individual accuracy of ensemble
members must both be considered when de-
signing classifier ensembles.

Table 3: Classification Error for GenDiv, Bag-
ging and Single Best classifier.

Dataset GenDiv Bagging SB

Credit 12.97±1.55 14.13±1.30 17.25±2.02

Pendigits 10.30±0.74 11.24±0.12 13.03±1.30

Waveform 14.40±0.94 17.68±1.09 15.22±0.40

5 Conclusion and future works

This paper presents the GenDiv algorithm, a
genetic implementation which considers both
accuracy and diversity during the design
stage of classifier ensembles. Bootstrap
resampling is used to generate a set of candi-
date ensembles which are optimized using a
genetic heuristic. This method minimizes the
misclassification error of the ensemble while
maintaining diversity between its members.
Results obtained with several UCI bench-
marks show that it is superior or at least
competitive to bagging and that the designed
ensembles perform better than a single
classifier of the same nature. Experiments

also confirm that indivual accuracy plays
an important role when designing classifier
ensembles, and that diversity is not the only
factor that must be considered. The main
drawback of the GenDiv implementation
is the large number of random classifiers
that must be generated during the initial-
ization step to provide a sufficient number
of candidate ensembles. The GA-based
optimization also rely on the initial diversity
generated with bootstrap resampling. For
this reason, the GenDiv algorithm is more
likely to perform efficiently for large datasets.
The disagreement value used in the fitness
function is a pairwise measure, averaged
across all pairs of classifiers to express the
diversity of the whole ensemble, which may
reveal not as accurate as using a non pearwise
metric applied on the whole ensemble, or as
adding classifier one by one to the ensemble
focusing on diversity, the way Adaboost
operates. Futur improvements will include
a replacement of the diversity measure used
in the current GenDiv implementation, as
well as a modification of the algorithm to
increase the quantity of initial diversity
using extraction of feature subsets. Further
investigations about using diversity during
the design stage of classifier ensembles are
also planned.
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