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Abstract

Fuzzy systems have extensively
been applied to process uncertain
information and knowledge, and
have mostly been implemented
on traditional silicon based chips
or electronic circuits. This paper
proposes a new, non-silicon based
paradigm called amoeba-based
computing. In this scheme, fuzzy
systems, such as fuzzy logic (e.g.,
inference) and control, will be
implemented by means of behavior
of an amoeboid organism and an
associated control system. Recently
there has been a growing interest
in amoeba-based, massively parallel
computing that utilizes chaotic
behavior of the amoeba. Amoeba-
based fuzzy computing inherits
advantages of both amoeba-based
computing and fuzzy systems, and
provides unique computing capa-
bility of uncertain information and
knowledge.
Keywords: New computing
paradigm, amoeba-based com-
puting, evolvable chaotic fuzzy
architecture.

1 Introduction

New computing paradigms
For the past 40 years computer hardware
has been dominated by the traditional CMOS
or silicon-based integrated circuits (so-called

“silicon-based architecture”). Recently, com-
puter architecture concepts based on totally
new principles other than the silicon-based
technology have been given much attention.
While practical, everyday-use of these pro-
posals as computing devices is yet to be seen,
these ideas have stimulated the scientific com-
munity due to their fundamental nature, nov-
elty, and potentials for new forms of infor-
mation processing and applications. These
concepts include quantum, atomic (e.g., car-
bon nanotube transistors), molecular (e.g., or-
ganic), DNA, optical, micro/nanofluidic and
amoeba-based computing [11]. Some of these
new technologies are hoped to complement
or replace the current computer architecture
based on silicon chips. This paper considers
implementing fuzzy systems on the platform
of an amoeboid organism. Details of amoeba-
based computing and its applications to fuzzy
systems are discussed in this paper.

Fuzzy systems
Born in the United States around 1965 [14],
fuzzy set theory has grown to a major sci-
entific domain collectively called “fuzzy sys-
tems,” which include fuzzy sets, logic, algo-
rithms, control, and others. The most fun-
damental characteristic of a fuzzy system is
that it allows a gradual and continuous tran-
sition, say, from 0 to 1, rather than a crisp and
abrupt change between binary values of 0 and
1. Fuzzy systems are suitable for uncertain or
approximate reasoning, especially for the sys-
tem whose mathematical model is hard to de-
rive. Fuzzy logic allows decision making with
estimated values under incomplete or uncer-
tain information. Fuzzy system approaches
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also allow us to represent descriptive or qual-
itative expressions, and are easily incorpo-
rated with symbolic statements. These ex-
pressions and representations are more natu-
ral than mathematical equations for many hu-
man judgmental rules and statements [9,10].

The hardware implementations of fuzzy sys-
tems have been extensive, both in digital
and analog forms. Because of the preva-
lence of digital computing in general, digital
fuzzy system implementations are dominated
by silicon-based chips. Since many fuzzy sys-
tems deal with continuous values, analog im-
plementations are often the most reasonable
choice and they are typically realized by elec-
tronic circuits.

2 Amoeba-Based Computing

A plasmodium of a true slime mold Physarum
Polycephalum (Fig. 1A), a unicellular amoe-
boid organism with a single gel layer (cel-
lular membrane) encapsulating intracellular
sol, can be regarded as a kind of massively
parallel computer whose elements are micro-
scopic actomyosins (fibrous proteins) taking
contracting or relaxing states. Collectively
interacting actomyosins in the gel layer gen-
erate rhythmic contraction-relaxation oscilla-
tion (period ≃ 1 to 2min) of vertical body
thickness, and their spatiotemporal oscillation
pattern induces horizontal shuttle-streaming
of intracellular sol (velocity ≃ 1 mm/sec) to
deform the macroscopic shape. Despite its
homogeneous and decentralized structure, the
amoeba exhibits integrated computational ca-
pacities in its shape deformation [12].

We employ the amoeba as it can freely change
its planar shape only inside the stellate bar-
rier structure on an agar plate (Fig. 1B),
and experimentally implement a model in
which its state transition is represented by
the amoeba’s photoavoidance-based shape de-
formation under optical feedback control [2].
The i th lane of the stellate structure, called
“node i” (i ∈ {1, 2, · · · , 8}), takes the active
state xi = 1 whenever the fraction of the area
occupied by the amoeba’s branch exceeds a
threshold value of 1/4, otherwise the inactive

Figure 1: (A) An individual amoeba of a true
slime mold (scale bar = 10 mm). (B) Bar-
rier structure on agar plate without nutrients
(scale ba r= 2 mm). A small piece of the
amoeba cut from a huge one can survive as
a complete individual even without food sup-
ply for up to about a week, because it can
store nutrients fed before the experiment as
internal energy source. Initial configuration <
0, 0, 0, 0, 0, 0, 0, 0 > is input by placing the in-
dividual amoeba at the center. (C) Transient
configuration < 0, 0, 0, 0, 0, 0, 0, 1 >. White
light was projected to white rectangular re-
gions. The amoeba’s oscillation phases are bi-
narized as black and gray for relaxing (thick-
ness increasing) and contracting (decreasing)
states, respectively. Phase wave propagates
from the center to periphery with symme-
try breaking. (D) First-reached solution <
0, 1, 0, 0, 1, 0, 0, 1 > (duration ≃ 4 h). (E)
Spontaneous destabilization of solution D. Ar-
rows indicate the growth directions of newly-
emerged branches growing under illumina-
tion contrary to photoavoidance. (F) Second-
reached solution < 0, 1, 0, 0, 1, 0, 1, 0 > (du-
ration ≃ 1 h). (G) Spontaneous destabiliza-
tion of solution F. (H) Third-reached solution
< 0, 1, 0, 1, 0, 1, 0, 1 > (duration ≃ 7 h).
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Figure 2: Optical feedback system. For trans-
mitted light imaging using a video camera
(VC), the sample circuit (SM) was illumi-
nated from beneath with a surface light source
(LS). The recorded image was processed us-
ing a PC to update the monochrome image
for illumination with a projector (PJ).

state xi = 0. Using image processing tech-
nique, the state of each node is measured from
a digital image taken by a camera at every 6
sec (Fig. 2). We can inactivate a node by il-
luminating the corresponding region, because
the amoeba’s branch in the node shrinks (de-
generates) due to its photoavoidance. Con-
versely, any node is activated naturally if it
is not illuminated, as the amoeba inherently
tries to expand (grow) all branches to occupy
the entire agar region with its total volume
kept constant. A branch grows or degener-
ates (velocity ≃ 1 cm/h) as shuttlewise sol
influx-efflux for the branch is iterated.

In [3-5], Aono, et al. showed that such sys-
tem can implement a chaotic neurocomput-
ing. In this system, each node is interpreted
to represent a neuron of an artificial neural
network when the optical feedback is applied
according to a recurrent neural network al-
gorithm for combinatorial optimization [8].
The state transition of such neuron, the os-
cillatory behavior of the amoeba’s branch in
the corresponding lane, is chaotic (i.e., deter-
ministic, nonlinear, and sensitive to its initial
condition) due to the amoeba’s inherent na-
ture. The usefulness of chaotic dynamics for
optimization has already been clarified with

chaotic neural network models [1, 7]. Because
of its slow processing speed, amoeba-based
computing is not proposed as a high-speed al-
ternative to replace traditional silicon-based
technology, but it is interesting from a scien-
tific viewpoint for the following reasons: (1)
It is the first actual, non-silicon based imple-
mentation of a chaotic neuron model. (2) It
exhibits an interesting problem solving capa-
bility in which the speed may not be an issue.
Such capability includes deadlock breaking,
escaping from local minima for optimization
problems, learning and memory [3-5, 13]. (3)
There are many chaotic phenomena in nature
such as lasers and certain properties observed
in atoms and molecules. The dynamic speed
of these phenomena is very fast; some can eas-
ily surpass their current silicon-based counter-
parts. When the problem solving techniques
in this scheme are realized in these areas, it
could lead to a new fast computing paradigm.

The basic concept of an amoeba-based com-
puting system can be described as follows.
Given a target problem, such as implemen-
tation of logical operations or an optimiza-
tion, we set an appropriate optical feedback
scheme. An amoeba is placed, and its geomet-
ric configuration that may reach a solution to
the problem is measured by the optical feed-
back system (Fig. 2). The system then deter-
mines a desirable direction the amoeba should
take and sends this information to the amoeba
as light stimulation. The amoeba evolves to
a new configuration, partially by its own re-
sponse and partially under the guidance of the
light stimulation. This leads to an intriguing
and unique computing paradigm. Uncertain
knowledge can be incorporated in the feed-
back system, interacting with the amoeba.

3 Amoeba-Based Fuzzy
Computing

Amoeba-based computing has primarily been
applied to non-fuzzy problems by quantiz-
ing or discretizing the continuous character-
istics of the amoeba [3]. Amoeba-based fuzzy
computing implements fuzzy quantities by di-
rectly utilizing the amoeba’s continuous val-
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ues (i.e., the state of each node is represented
by a fraction of the area occupied by the
amoeba’s branch in the corresponding lane).
Amoeba-based fuzzy computing is a new com-
puting paradigm that implements fuzzy sys-
tem functions, such as inference and control,
on the platform of the amoeba. When it is re-
alized, it will have advantages inherited from
both systems. These include robustness and
the ability to deal with hard problems inher-
ited from both systems. In the following we
discuss simple examples to illustrate the basic
concepts.

4 Application Example -
Amoeba-Based Constraint
Satisfaction Problem Solving

We show here a simple example of amoeba-
based computing — solving a constraint sat-
isfaction problem established by concurrently
operated logical NOR functions.

4.1 Problem Solving for Non-fuzzy
NOR Functions

We write yi = 1 when the illumination for
node i is turned On, whereas yi = 0 represents
that the illumination is turned Off. Optical
feedback system automatically updates the il-
lumination according to a certain rule. Here
we introduce the following rule for updating
the illumination at 6 sec intervals: The node
i is illuminated (yi(t + 1) = 1) to be inactive
(xi(t + 1) = 0), if at least one of its adjacent
nodes is active (xi−1(t) = 1 or xi+1(t) = 1),
otherwise (xi−1(t) = xi+1(t) = 0) nonillumi-
nated (yi(t + 1) = 0) to be active (xi(t + 1) =
1). This rule establishes the following con-
straint satisfaction problem: Find the system
configuration < x1, x2, · · · , x8 > such that all
nodes satisfy xi = NOR(xi−1, xi+1).

As the solutions of this problem, there are
10 configurations consisting of rotation sym-
metries of < 1, 0, 1, 0, 1, 0, 1, 0 > and <
1, 0, 0, 1, 0, 0, 1, 0 >, that are expected to be
stably maintained because the amoeba tak-
ing one of these configurations is no longer
forced to reshape by illumination and can ter-
minate the expansion of its branches inside

all nonilluminated nodes. Any configuration
can be clearly judged as a solution, distin-
guished from a transient state, if and only
if all nodes satisfy the following condition:
yi(t + 1) = 1− xi(t + 1).

It should be noticed that concurrent pro-
cessing of the circularly connected NOR-
operators, analogous to Dijkstra’s gdining
philosophers problemh, entails deadlock-like
unsolvability of the problem when all oper-
ations are executed in a synchronous man-
ner [2]. Suppose that all branches expand or
shrink with a uniform velocity. From the ini-
tial configuration < 0, 0, 0, 0, 0, 0, 0, 0 > evok-
ing no illumination (Fig.1B), the synchronous
growth movements of all branches will lead
to < 1, 1, 1, 1, 1, 1, 1, 1 > in which all neu-
rons are illuminated. Then, all branches shall
shrink uniformly to evacuate from the illu-
minations, until they reach the initial con-
figuration allowing them to expand again.
In this manner, the system can never reach
a solution, as the synchronous movements
result in perpetual oscillation between <
0, 0, 0, 0, 0, 0, 0, 0 > and < 1, 1, 1, 1, 1, 1, 1, 1 >.
The synchronous movements would be in-
evitable, if the amoeba’s oscillatory behavior
could only produce periodic spatiotemporal
patterns with circular symmetry. However,
as shown in Figures 1C-H, our system can ac-
tually solve the problem, because the amoeba
produces chaotic oscillatory behavior involv-
ing spontaneous symmetry breaking.

The symmetry-broken oscillation pattern
(Fig.1C) yields mutual time lags among move-
ments of branches and decides which branches
should exclusively expand. Owing to this
asynchronously fluctuating movements, the
system first reached and stably maintained
a solution (Fig.1D). This result implies that
our amoeba-based computer can surely per-
form the connected NOR functions, and so
other arbitrary logic functions [6]. Intrigu-
ingly, the stabilizing mode of the first so-
lution was maintained for a long time, but
was spontaneously switched to the destabiliz-
ing mode without any explicit external per-
turbation, as two branches newly emerged
with localized high oscillation amplitude and
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started to invade illuminated regions contrary
to photoavoidance (Fig.1E). While aggressive
expansion of the branch 7 was sustained un-
der illumination, the branch 8 was shrunk
by illumination, and the first solution eventu-
ally evolved into another solution (Fig. reffig-
ure1F). Then the spontaneous destabilization
occurred again (Fig.1G), and consequently
the system achieved the transition among
three solutions (Figs. 1D, F and H) within
16 h.

4.2 Problem Solving for Fuzzy NOR
Functions

We can consider a fuzzy version of the above
NOR function. Let A and B be propositional
variables. In ordinary (non-fuzzy) logic, each
of A and B can assume 0 (False) or 1 (True).
In fuzzy logic, each of A and B can assume
0 (False), 1 (True) or any fractional value be-
tween 0 and 1. Although there are several
versions to define fuzzy logic functions, the
most widely employed one are as follows:

A AND B = min(A,B),
A OR B = max(A,B),

NOT A = 1−A.

Based on these definitions, we have:

NOR(A,B) ≡ NOT (OR(A,B))
= 1−max(A,B).

We can implement the fuzzy version of the
NOR function in our amoeba-based comput-
ing system. A fuzzy propositional variable
can be represented by a fractional value of the
dimension (area) of the amoeba’s branch oc-
cupying the corresponding node without con-
sidering the threshold. Circularly connecting
the above NOR functions, we can establish
the fuzzy version of the constraint satisfac-
tion problem requiring all nodes to satisfy
xi = NOR(xi−1, xi+1) = 1−max(xi−1, xi+1).
This problem can be implemented through
the optical feedback system as follows:

yi(t + 1) = 1− xi(t + 1)
= 1−NOR(xi−1(t), xi+1(t))

= 1− (1−max(xi−1(t), xi+1(t)))
= max(xi−1(t), xi+1(t)).

We note that the fuzzy version of the illumina-
tion status yi takes a real value as 0 ≤ yi ≤ 1,
representing a fraction of the illuminated re-
gion in the entire rectangular region in the
corresponding lane (i.e., the area of the bright
illumination pattern / the area of the entire
lane) as completely Off (0), On (1), or some-
where between. Solutions to this problem, for
example, < 0.9, 0.1, 0.9, 0.1, 0.9, 0.1, 0.9, 0.1 >
and < 0.9, 0.1, 0.1, 0.9, 0.1, 0.1, 0.9, 0.1 >, are
given in an analogous fashion to that of the
non-fuzzy version.

5 Discussion

In conventional paradigm, deadlock is a com-
mon problem for arbitrary concurrent pro-
cesses, and can be avoided in its “software
level” if programmers can know about com-
putational resources requested by all pro-
cesses in advance of coding the resource al-
location. In other words, deadlock avoidance
is impossible for many cases, because no one
can know beforehand all potential requests of
the processes. In contrast, our system can
flexibly avoid deadlock-like inoperative condi-
tions and can search for reasonable solutions
without any resource allocation program, be-
cause in its “hardware level” the amoeba can
autonomously materialize and alter the re-
source allocation (i.e., allocation of sol influx-
efflux for selecting which branches should ex-
pand) in a nonperiodic but nonrandom man-
ner. This unique capability may be advan-
tageous in development of autonomous sys-
tems operated in actual environments, such
as robot control systems, that should flexi-
bly respond to concurrent occurrences of un-
expected events by avoiding inoperative con-
ditions even if the programs prescribed only
for expected events are defective or useless.

6 Conclusion

The proposed amoeba-based computing may
open up completely new ways of processing
uncertain information. In particular, it can
lead to solve problems for inference, control
and optimization under uncertainty.
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