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Abstract

Nowadays, it is important to test
the computer networks under real-
istic traffic loads. One approach re-
lies on integrating a Genetic Algo-
rithm (GA) with the simulator of
the system under verification. One
of the main problems related to GA
is to find the optimal control pa-
rameter values that it uses. Fur-
thermore, different values may be
necessary during the course of a
run. Adaptive Genetic Algorithms
(AGAs) have been built that dynam-
ically adjust selected control param-
eters during the course of evolving
a problem solution. In this paper
we present a method of finding and
dynamically adjusting the optimum
probabilities to improve the GA per-
formance and to drive the generation
of a critical background traffic in a
computer network.

Keywords: Adaptive genetic al-
gorithms, background traffic, TCP,
UDP.

1 Introduction

Nowadays, the telecommunication systems
have reached a level of complication and com-
plexity such that classic analytic approaches
to their building and maintenance do not pro-
vide feasible solutions anymore. The com-
puter networks are in continuous evolution

and the protocols regulating their operation
must be assessed for their suitability to new
technologies. The effectiveness of a network
solution depends on both the specifications of
the protocols and their software and hardware
implementations.

Protocols are sets of rules that govern the
interaction of concurrent processes in dis-
tributed systems. The problem of design-
ing efficient and unambiguous communication
protocols existed long before the first com-
puters were built. Entire networks can be
paralyzed by faulty or incomplete protocols
and therefore their specifications play a cru-
cial role in the overall network performance.
The protocols being developed today are very
sophisticated offering more functionality and
reliability, but as a result they have increased
in size and complexity.

The problem that a designer now faces is how
to design large sets of rules for information ex-
change that are minimal, logically consistent,
complete and efficiently implemented. Thus,
given a protocol, how can an analyzer demon-
strate that it conforms to the correctness re-
quirements? The analysis of the different as-
pects of communications protocols is usually
done according to the following techniques [4]:

• Using Formal Description Techniques
(FDTs), such as SDL, LOTOS or ES-
TELLE. They are methods to check that
any protocol is correct and are power-
ful to capture most of the protocol se-
mantics. However some aspects of a net-
work protocol that are difficult to verify
with these methods, for example, those
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related to different message queues, time-
out counter, etc.

• Using simulation to verify the protocol.
A simulator covers a very large num-
ber of applications, of protocols, of net-
work types, of network elements and traf-
fic models and it can explore the depen-
dencies among the various hardware and
software components of a computer net-
work. The simulator models a number
of sources in the network that can be
programmed to generate traffic accord-
ing to statistical models defined after real
sources. One or more sources behave
according to the protocol under study
and the others are considered background
traffic generators. Poisson statistical pro-
cesses are often adopted as a model of
background traffic.

In [4] the authors indicate that neither ap-
proach is sufficient to give enough information
about the protocol performance. While the
FDTs delivers a mathematically proven an-
swer, it is forced to work on an over-simplified
view of the protocol. On the other hand, the
simulation rely on a clever choice of the traffic
pattern to yield useful results, and worst-case
analysis is often performed by hand-designing
the traffic. They propose the adoption of a
mixed simulation based technique that rely on
a GA to explore the solution space and look
for an inconsistency in the verification goal.

On the other hand, GAs use a number of pa-
rameters to control their evolutionary search
for the solution to their given problems. Some
of these include: population size, probabil-
ity of crossover pc, probability of mutation
pm, probability of selection ps(to select the
individuals from the population in order to
use them as parents for the new offspring).
The values of these parameters greatly deter-
mine whether the algorithm will find a near-
optimum solution, and whether it will find
such a solution efficiently. There are no hard
and fast rules for choosing appropriate values
for these parameters and many researchers
based their choices on tuning the control pa-
rameters ”by hand”, that is experimenting

with different values and selecting the ones
that gave the best results (as a problem of
trial and error).

Later, they reported their results of applying
a GA to a particular problem, paraphrasing
: ”. . . for the this experiment, we have used
the following parameters: population size of
50, probability of crossover equal to 0.8, etc.”
without much justification of the choice made.

Finding robust control parameters setting is
not a trivial task, since their interaction with
GA performance is a complex relationship and
the optimal one are problem-dependent [1].
An optimal or near-optimal set of control pa-
rameters for one GA does not generalize to
all cases. This stresses the need for efficient
techniques that help finding good parameter
settings for a given problem, i.e. the need for
good parameter tuning methods.

The problem of finding optimal control pa-
rameters for GAs has been studied by many:
De Jong [6], Grefenstette [7], Schaffer [11],
Bramlette [2], Wu - Chow [13], Eiben - Hin-
terding - Michalewicz [5], Cicirello - Smith [3],
Herrera - Lozano [9], Subbu - Bonissone [12].

Furthermore, in [5] they arguments that any
static set of parameters, having the values
fixed during a GA run, seems to be inappro-
priate. Additionally, it is intuitively obvious
that different values of parameters might be
optimal at different stages of the evolutionary
process. For instance, large mutation steps
can be good in the early generations helping
the exploration of the search space and small
mutation steps might be needed in the late
generations to help fine tuning the optimal
individuals.

For these reasons, Adaptive Genetic Algo-
rithms (AGAs) have been built that dynami-
cally adjust selected control parameters dur-
ing the course of evolving a problem solution,
offering the most appropriate exploration and
exploitation behaviour. The straightforward
way to treat this problem is by using param-
eters that may change over time, that is, by
replacing a parameter p by a function p(t),
where t is the generation counter. However,
if the problem of finding optimal static pa-
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rameters can be quite difficult, designing an
optimal function p(t) may be even more diffi-
cult.

In this paper we present a method of find-
ing and dynamically adjusting the optimum
probabilities to improve the GA performance
and to drive the generation of a critical back-
ground traffic in a computer network. We
compare its results with: a) the ones obtained
in [4], where they carried out the experiments
with a GA that used static probabilities (tun-
ing ”by hand”), and b) the ones obtained of
a standard statistical approach (a common
model for background traffic adopted in sta-
tistical network analysis is a Poisson process
with exponentially distributed arrival times).

This paper is divided into 7 Sections, the first
of which is the introduction we have just dealt
with. Section 2 will show how to integrate a
GA with a Network Simulator. Section 3 will
present the components of the GA. Section
4 will show the topology of the network ex-
ploited in the experiments. Section 5 will de-
scribe the method to optimize the AGA con-
trol parameter. Section 6 will present the re-
sults obtained, and finally some conclusions
in Section 7.

2 Integrating a GA with a
Network Simulator

In [4] they show how to integrate a GA with a
network simulator to drive the generation of
a critical background traffic. The GA aims at
generating the worst-case traffic for the pro-
tocol under analysis, given some constraints
on the traffic bandwidth. Errors and weak-
nesses in the network protocol can there be
discovered via simulation of this worst-case
traffic. The figure 1 shows the architecture of
the environment that integrates the GA and
the simulator.

The approach is quite general and can be ap-
plied to different protocols using different sim-
ulators with limited effort. We have used a
publicly available simulator called NS-2 [10].
It is a discrete event simulator targeted at
networking research and provides substantial
support for simulation of TCP, routing, and

Genetic
Algorithm

Network
Simulator

NS - 2

relevant data

background traffic pattern

TCL script with
Network topology

Figure 1: Architecture of the environment
that integrates the GA and the simulator

multicast protocols over wired and wireless
(local and satellite) networks. The protocol
to examine is TCP protocol in order to better
focus on the verification methodology and ex-
plotation of the GA and not on the protocol
itself. The aim is to study the TCP proto-
col in real operating conditions. It set up an
IP network and a number of TCP probe con-
nections (sender-receiver pairs). The network
is loaded with a background traffic generated
by UDP (User Datagram Protocol) sender -
receiver pairs. During the analysis process,
the GA provides a pattern of the traffic gen-
erated by background sources and a network
simulation is run on the given topology. Dur-
ing this simulation, relevant data are gath-
ered from probe connections by the simulator
program and provided to the GA, which uses
them to estimate the damage that the back-
ground traffic made. Such information is then
used to drive the generation of traffic patterns
to be used in subsequent steps.

3 Genetic Algorithm

For a description of the GA used we have to
bear in mind the following five components:

1. A genetic representation. Each individ-
ual represents a background traffic pat-
tern. Therefore each individual encodes
the description of the traffic generated
by all the background connections for the
whole duration of the simulation. A con-
nection is specified by a UDP source and
destination pair. Individuals are encoded
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as strings of 4500 genes. Each gene repre-
sents a single background packet. Genes
are composed of the delay that represents
how long the given source will wait be-
fore sending a new packet after sending
the current one.

2. Formation of an initial population. The
background traffic corresponding to the
initial population is generated accord-
ing to a Poisson process whose inter-
arrival time between packets is exponen-
tially distributed.

3. Evaluation of individual fitness. The fit-
ness function measures the probe connec-
tions´ throughput, i.e., the performance
of the probe TCP connections perceived
by end users during the simulation ex-
periment. The fitness function should
increase with the increasing goodness of
a solution, and a solution is good when
the background traffic pattern is criti-
cal. Therefore, the fitness function is in-
versely proportional to the total number
of bytes perceived by the end users.

4. Genetic Operators.

The selection operator picks the individ-
uals from the population in order to use
them as parents for the new offspring. A
selection of individuals of the population
is carried out based on the probability
of selection. These individuals are se-
lected according to the tournament selec-
tion. The GA applies one point crossover
and a random mutation that substitutes
each gene with a new random one. Af-
ter each mutation, genes in the individual
need to be sorted. The elitist strategy [6]
is considered as well.

5. Values for the parameters that the GA
uses. The parameters used by the GA In
[4] are summarized in table 1.

But, are these static probabilities the optimal
ones to obtain the best GA behavior?. In-
stead of using these probabilities, we propose
to use other (that may change over time) that
previously have been found with our method.
The section 5 describes this method.

Table 1: GA parameter values
Parameter Value
population size 50
selection probability 0.4
crossover probability 1.0
mutation probability 0.01
number of generations 500

Evaluation system

Network Simulator NS - 2

Trace file (.txt)

Individual (background traffic pattern UDP)

Population of individuals

…..

Probe connections´

throughput

4500 packets

GA

Figure 2: Genetic Algorithm

Some of the software for the GA used the
GAlib genetic algorithm package, written by
Matthew Wall at the Massachusetts Institute
of Technology.

4 Network topology

The topology of the network exploited in the
experiments is shown in figure 3. Three
TCP connections span form the transmit-
ters TXi to the receivers RXi through three
IP routers. Each TCP connection performs
long file transfers generating a series of 1024
Kbyte messages at a maximum mean rate
of 1.33Mb/s. Acknowledgments from each
transmitter are carried by messages flowing
in the reverse direction. These TCP connec-
tions represent the probe connections of the
experiments.

Two sources (BSi) generate background UDP
traffic directed to their respective destinations
(BDi) over the same links traversed by the
TCP connections. The timing of background
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packets is controlled by the GA. Each link has
a capacity of 10Mbps in each direction and
introduces a fixed 10 µs delay. Routers intro-
duce a fixed 0.1 ms delay component which
accounts for the processing required on each
packet and adds to the queuing delay.

Tx1 (1.33 Mpbs)

Tx2 (1.33 Mpbs)

Tx3 (1.33 Mpbs)

BS1 BS2

Rx1

Rx2

Rx3

BD1

BD2

10 Mbps 10 Mbps

delay:10 µs delay:10 µs

FTP / TCP

UDP

Figure 3: Topology of the network

5 Adaptive Genetic Algorithm
control parameter optimization

The aim is to find the optimum probabili-
ties to improve the GA performance. These
probabilities are dynamically adjusted and
changed over time. We have used three func-
tions pi(t), i = 1, 2, 3 (t is the generation
counter) where each one will affect, of inde-
pendent form, to the Ps, Pc and Pm respec-
tively. Each function will be of the following
form:

p(t) = pi
0(1− Ln(t + 1)(1/ai)

(ciLn(T + 1))(1/ai)
)

ai ∈ ]0,2]
ci ∈ [1,T]

(1)

where pi
0 is the initial value of the probabil-

ity, t is the generation counter which shall be
kept in the interval [0, T ] (T is the maximum
of generations). The parameters ai and ci will
model the concavity or convexity of the cur-
vature and the attenuation of the initial value
respectively. Figure 4 shows different curva-
tures depending on the values ai and ci for
T=500 and pi

0 = 0.75.

In order to do the optimization of the prob-
abilities that the GA uses, as well as of the
parameters ai and ci of each function pi(t),
we will apply an Additional Genetic System
(AGS) to the GA, as is shown in the figure 5.
In the population of the AGS a candidate so-
lution is PSn, n = 1,. . . ,20, which represents
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c=1;a=0,1

c=500;a=0,1

c=1;a=2

c=2;a=1

c=5;a=0.2

Figure 4: Effect of the parameters ai and ci

the set of values applied to the genetic oper-
ators which are used by the GA along with
the parameters ai and ci. Each PSn, codes a
vector of real values in the following way:

PSn = {ps, pc, pm, a1, c1, a2, c2, a3, c3}

Evaluation system

Network Simulator NS - 2

Trace file (.txt)

Individual (background traffic pattern UDP)

Population of individuals

…..

Probe connections´

throughput

4500 packets

GA

Population of Probablity Sets

…..

PS under evaluation

AGS

Evaluation system

of AGS

Figure 5: Evolutionary learning of the PS of
a GA

Thus, we represent a population of 20 indi-
viduals by PS and it is set up as follows:
PS = (PS1, . . . , PS20). We have consid-
ered a steady-state GA model that applies a
crossover operator based on the use of fuzzy
connectives [8] and a mutation random opera-
tor. The selection operator selects the best in-
dividuals (PSn) from the population in order
to use them as parents for the new offspring.
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The elitist strategy [6] is considered as well.
We used the standard parameter settings for
a population of 20 individuals [11].

6 Results

Now, we present the results. When the AGS
is added to the AG, the the PSn of the popu-
lation PS obtaining the highest mark, was the
one consisting of:

PSbest = { 0.70, 0.53, 0.0004, 0.38, 38.41,
0.75, 35.66, 0.57, 76.85}
Later, we will apply these probabilities in the
GA (in this case AGA) for each experiment
and all the conditions/assumptions are ex-
actly the same as in [4]. We run the AGA
15 times, each one with a maximum of 500
generations. Table 2 shows the results ob-
tained. The performance measures used are
the following:

• Min performance: the lowest through-
put (bits/seg) obtained at the end of each
run.

• Gen WL performance: number of gen-
erations after which improvements in so-
lution quality were no longer obtained.

Table 2: Throughput of probe connections ob-
tained with the AGA.

Experiment Min Gen WL
1 381148 287
2 558008 232
3 417087 377
4 401955 120
5 365070 442
6 578815 470
7 304540 492
8 382094 426
9 379256 66
10 383039 498
11 396280 262
11 529635 336
13 568412 342
13 366015 156
15 528689 498

Figure 6 shows the throughput of the probe
connections for the experiment 7. The val-
ues obtained are compared to the ones of
a standard statistical approach, where the
background traffic is randomly generated ac-
cording an equivalent Poisson process. For
the statistical approach, we report the low-
est throughput obtained after simulating 15
times random patterns. This value does not
change significantly as new traffic patterns are
randomly generated. As it can see the AGA
managed to degrade the probe connections´
throughput from 1.5 Mbps to 0.3 Mbps (in
the best case).
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Figure 6: Throughput of the probe connec-
tions for the experiment 7

On the other hand, in [4] they carried out the
experiments with a GA that used the proba-
bilities shown in table 1. The GA managed
to degrade the probe connections´ through-
put to 0.48 Mbps. They show the result of
an only experiment (we suppose that it is the
best one obtained). Therefore, the AGA (us-
ing the probabilities obtained by the AGS)
improves in 10 of the 15 experiments, that we
have done, to the GA.

7 Conclusions

If we bear in mind the results of the exper-
iments, we have to remark the following as-
pects:

• The behaviour of a GA is strongly deter-
mined by the probabilities used.

• Using the AGS is more time consuming
however the application of the probabili-
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ties obtained from the AGS in the AGA
provides a better results.

• The AGA probabilities have been ob-
tained for this particular problem and
for this reason it is possible that we will
get other results when dealing with other
problems.

• The results proved that, when the back-
ground traffic is driven by the AGA, the
TCP performance is much lower than
when traffic is generated by statistical
methods or when is driven by a GA that
uses the probabilities shown in table 1.
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