
Solving a Seal-Bid Reverse Auction by Fuzzy Multiple objective 
programming 

 
 

Chi-Bin Cheng 
Dept. of Information 

Management, Tamkang Univ., 
151 Ying-chuan Road, Tamsui, 

Taipei County, Taiwan 
cbcheng@mail.tku.edu.tw 

Yu-Ru Syau 
Dept. of Information Management, 
National Formosa University, 64 
Wunhua Rd., Huwei Township, 

Yunlin, Taiwan 
yrsyau@nfu.edu.tw 

Rung-Tsung Tzeng 
Dept. of Information 

Management, National 
Formosa University, 64 

Wunhua Rd., Huwei 
Township, Yunlin, Taiwan 

 
 

Abstract 

This study solves a sealed-bid and 
multiple issue reverse auction problem. 
At the supplier side, the bidding process 
is formulated as a fuzzy multiple 
objective programming to assist the 
supplier determining its optimum offer, 
while at the buyer side, the selection of 
the best offer from suppliers is 
considered as a multiple attribute 
decision making problem and is solved 
by the TOPSIS method. The solution to 
the supplier’s fuzzy multiple objective 
problem is obtained by a heuristic 
algorithm that adjusts the production 
plan to fulfill the buyer’s demand based 
on the information of current master 
production schedule and available-to-
promise inventory.  

Keywords: Reverse auctions, Electronic 
procurement, Available to promise, Fuzzy 
multiple objective programming, Multiple 
attribute decision making, TOPSIS. 

1     Introduction 
Within the B2B e-Commerce, many firms have 
recognized the opportunity of cost reduction via 
the use of online reverse auctions. Online 
reverse auctions, also called electronic auctions 
or simply reverse auctions [7], have become a 
common method to source goods and services 
by Fortune 2000 companies since 1995 [15]. 
Buyers believe that suppliers are motivated to 
use reverse auctions because of four benefits: 
the promise of increased business, market 
penetration, reduced cycle time between bidding 
and awarding of business, and better production 
scheduling and inventory management due to 

less time lost between the bid and the actual sale 
[12]. 

Reverse auctions are the traditional auctions 
in reverse [12]. In the traditional forward 
auctions, a seller offers a product for sale to the 
highest bidder, while in the reverse auctions a 
buyer offers a tender or contract for the supply 
of specific goods or service. In terms of the 
suppliers’ authority to view their competitors’ 
bids, there are two types of auction: sealed-bid 
and open-bid. Open- and sealed-bid auctions 
represent opposite ends of a spectrum of 
auctions: open-bid auctions have full price 
visibility, whereas sealed-bid auctions have no 
price visibility for bidders. Additional details of 
the online reverse auctions can be found in [5]. 

Reverse auctions have become a popular e-
procurement mechanism for being a driver to 
bargain with suppliers to reduce the unit price of 
purchased products. Thus, most existing online 
auctions mainly focus on a single issue, namely 
price of the merchandise [9]. Despite report of 
million dollars of saving with reverse auctions 
by companies such as Quaker Oats and 
SmithKlineBeecham [2], the empirical study by 
Emiliani and Stec [8] on the aerospace industry 
pointed out that reverse auctions have failed to 
live up to expectations with regard to global 
sourcing and unit price reduction. Online reverse 
auctions, rooted in power-based price 
bargaining, offer no real benefits for buyers or 
sellers [6]. 

To maintain the efficiency of reverse 
auctions and to avoid its disadvantages due to 
sole price bargaining, the present study proposes 
a reverse auction framework with multiple 
issues. The multi-issue referred here means that 
the bid is represented by many attributes such as 
quality grade, warranty, product features, and 
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terms of delivery and payment, etc., other than 
price. Previous research did not always make a 
distinction between issues and attributes [14]. In 
this paper we will use these two terms 
interchangeably. Price bargaining is a 
distributive bargaining, which involves the 
division of a fixed resource and results in a zero-
sum situation. On the other hand, the use of 
multi-issue in a negotiation is referred to as an 
integrative bargaining [16], and it results in a 
variable-sum situation in which the negotiators 
cooperatively face a common problem. A multi-
issue setting enables trade-offs between different 
issues, under the assumption of unequal weights 
between issues, such that both parties can reach 
a mutually beneficial agreement [3].  

Teich et al. [14] argued that bidders in 
reverse auctions were in need of support 
regarding how low to bid; however, how to 
support bidders to make appropriate bids has not 
received much attention in the auction literature. 
Thus, the reverse auction framework proposed 
in this paper not only consider the winner 
determination problem but also comprises an 
optimization model to assist suppliers construct 
the bid that is most beneficial to themselves and, 
at the same time, most promising to win. Our 
framework is therefore consists of two separate 
models, a multiple attribute decision making 
(MADM) for the buyer to evaluate the bids 
submitted by suppliers, and a fuzzy multiple 
objective decision making (FMODM) for the 
suppliers to determine their bids. The two 
models are solved from the buyer and the 
supplier’s perspectives, respectively, to optimize 
their own interests. 

2     Modeling of the Reverse Auction 
Problem 
This study considers a sealed-bid reverse 
auction, where the bid is presented by multiple 
attributes other than price. The auction is one-
sided (one buyer and multiple suppliers), and 
only one supplier can win the bidding, i.e. the 
entire demand is purchased from a single 
supplier. The proposed reverse auction process 
is illustrated in Figure 1, in which the steps are 
described as follows. 

Step1. The buyer sends the request for quotation 
(RFQ) to qualified suppliers. 

Step 2. Suppliers use a bid generation model to 
check their own production status and generate 
bids that they think are most beneficial and 
promising with respect to the buyer’s RFQ. Bids 
are then submitted to the buyer. 

Step 3. The buyer evaluates suppliers’ bids by a 
multiple attribute decision making (MADM) 
method. 

On receiving the bids from suppliers, the buyer 
can employ the MADM method to select the 
best bid according to the preference structure, 
e.g. weights of attributes, given by the buyer. 
The supplier will then check its production 
schedule, capacity constraints, and cost 
structure, and use the bid generation model to 
determine the optimum content of the bid. 
Though the present study suggests a common 
model for all suppliers, in the real-world 
practice each supplier of course can construct its 
own model and preference structure. The 
detailed models of the above auction process are 
discussed in the following subsections. 
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Figure 1: Reverse auction process 

2.1     Buyer’s decision-making model 
For simplicity, the present study assumes two 
issues in the auction. Each bid from suppliers is 
represented by a pair, (unit price, delivery time). 
The adoption of these two issues are based on 
previous research on competitive bidding [4] 
that showed the best performance to win an 
order from a customer is related to two 
indicators: product price, and delivery lead time. 

Let the returned bid of the i-th supplier be 
denoted by (pi, ti), where pi is the unit price 
offered by the supplier and ti is the promised 
time of delivery. When evaluating the bid, the 
delivery time, ti, is converted to the difference 
between the supplier’s delivery time and the 
buyer’s request delivery time specified in the 
RFQ. For convenience, we define this difference 
as a delay and denote it by di. This conversion 

770 Proceedings of IPMU’08



enables the comparison of bids on the same 
basis. Let e be the expected delivery time of the 
buyer, then the delay di is computed by the 
following equation. 
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The presentation of the bid is now changed to 
(pi, di). 

Bid evaluation by the buyer is to choose the 
best bid among all suppliers. This therefore 
becomes a multiple attribute decision making 
problem. The present study employs the 
Technique for Order Preference by Similarity to 
Ideal Solution (TOPSIS) method to solve this 
MADM problem. The TOPSIS was developed 
by Hwang and Yoon [10], based on the concept 
that the chosen alternative should be the shortest 
distance from the ideal solution and the farthest 
from the negative-ideal solution.  

The so-called ideal solution in TOPSIS is the 
combination of the best values of individual 
attributes among all alternatives. For example, 
there are three bids, ($100, 3 days), ($120, 0 
days), and ($110, 1 days), then the ideal solution 
to the buyer is ($100, 0 days), while the 
negative-ideal solution is ($120, 3 days). The 
concept of ideal solution is analog to the enquiry 
behavior of buyer in real-world. The buyer 
generally uses the information from other 
vendors to bargain with a target supplier. In such 
a case, the buyer often picks up those issues that 
favor he/she by other vendors as chips to 
bargain with the target supplier. 

2.2     Supplier’s decision-making model 
The supplier’s primary objective of course is to 
win the contract. The probability of winning the 
contract is definitely associated with the content 
of the bid. When the unit price is lower and the 
delay is smaller, then the probability to win the 
contract is greater. However, lower price and 
shorter lead-time often imply increasing costs 
and shrinking profit. For the supplier to maintain 
its competitiveness, it must also watch the profit 
margin when striving to obtain the contract. 
Thus, the present study considers the bidding 
decision as a trade-off between the supplier’s 
profit and the possibility to win the contract. 
This results in a multi-objective formulation. 
The notations used in the model are: 

Objectives: 

π: the gross profit generated from the bid. 

d: the delay; that is, difference between the 
supplier’s proposed delivery time and that 
specified in the buyer’s RFQ. 

Decision variables: 

yk: the quantity that is acquired from the k-th 
production method, k =1, 2, 3, 4 where y1 is 
the inventory, y2 is the current MPS; y3 means 
new production lots that uses the regular 
capacity will be added; and y4 denotes a crash 
production using overtime. 

p: the unit price to bid the contract. 

Parameters: 

τ: total production cost of the bid. 

ck: the unit cost associated with the k-th 
production method, k =1, 2, 3, 4. 

u
~ : the upper bound of the unit price that the 

suppler considers the bid is hopeless if he/she 
proposes a unit price greater then u~ ; since it is 
difficult to give a precise value, this parameter 
is defined as a fuzzy set. 

δ(⋅): this notation indicates that the resultant 
delivery time is a function of the production 
plan. 

Q: the demanded quantity specified in the RFQ. 

The mathematical model for the supplier to 
determine the bid is then formulated as: 
(FMODM) 

Maximize π   (2) 

Minimize d   (3) 

Subject to: 

p ≤u~     (4) 

π = p – (τ/Q)   (5) 

τ = c1 y1+c2 y2+c3 y3+c3 y4 (6) 

d = δ (y1, y2, y3, y4)  (7) 

y1+ y2+ y3 + y4= Q  (8) 

y1, y2, y3, y3, p ≥ 0  (9) 

The constraint (4) presents the supplier’s 
belief regarding the chance of wining the 
contract with different prices. It is difficult to 
give a precise value to elicit such belief. On the 
other hand, fuzzy sets are suitable to model this 
subjective judgment. Thus, constraint (4) is 
described by a membership function as depicted 
in Figure 2(a), where the membership 
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µprice(p)∈[0, 1] expresses the supplier’s belief of 
the possibility to win the contract with price p. 
The values of pinf and psup in Figure 2(a) are 
assigned by the decision-maker. The gradual 
transition of the belief defined in Figure 2(a) 
alleviates the difficulty of subjective judgment. 

The fuzzy constraint in the above model 
results in a fuzzy multiple objective decision 
making problem. A simple and commonly used 
method for fuzzy decision-making is the max-
min approach suggested by Bellman and Zadeh 
[1]. To use this approach we first define the 
satisfactory degree of the objectives by 
membership functions. The membership 
functions defined for π and d are shown in 
Figures 2(b) and 2(c), respectively. Again, 
Figure 2(c) is interpreted as the possibility of 
wining the contract with different d. It is noted 
that if the membership function in Figure 2(b) is 
defined on the profit rate (i.e. π/p) rather than on 
the profit itself, it would be more convenient for 
the decision maker to express his/her judgment. 
However, for simplicity we still define the 
membership function on the profit directly. The 
parameters in these two membership functions 
are given by the decision maker, too. 

The fuzzy decision-making of Bellman and 
Zadeh [1] is introduced as follows. Let Gi, 
i=1,…, m, be the m fuzzy goals and Lj, j=1,…,n, 
be the n constraints defined on the decision 
space Z. The satisfactory degree or the 
membership value of the fuzzy decision D is 
defined as a conjunction of individual 
satisfaction (also defined through membership 
functions) of all fuzzy goals and constraints. 
That is, 

),()()()()()(
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where z∈Z and ⊗ is a conjunction operator. The 
problem is then becomes to maximize µD(z). If 
there exists a z* such that )}({max*)( zz

D
z

D
µµ = , 

then z* is the optimum solution of the decision 
D. When the conjunction operator in the above 
equation is defined as a min operator, then the 
solution is in fact obtained by a max-min 
approach. Consequently, by applying the max-
min approach to the FMODM problem, the 
optimum solution is obtained as 

)}}(),(),({min{maxy*)( pricedelayprofit
y

FMODM pd µµ!µµ =  

     (10) 

where y = [y1, y2, y3, y4, p] and y satisfies 
constraints (4) ~ (9). The solution obtained by 

Equation (10) provides a compromise among 
objectives and constraints. 

Since it is difficult to obtain an explicit function 
for the constraint (7) in the FMODM 
formulation, we are unable to solve the problem 
directly. Instead, a heuristic algorithm is 
formulated in the next section to solve this 
FMODM problem. 

3     Heuristics for solving the FMODM 
The first objective in the FMODM is to 
maximize the gross profit, which is associated 
with the price and the production decisions. Two 
ways to raise the profit is to set a higher price 
and/or to find a production plan with lower cost. 
However, a higher price may reduce the chance 
to win the contract, and a lower cost production 
plan often implies less effort in meeting the 
buyer’s demand of delivery time, which in turn 
also decreases the winning chance. The two 
objectives are apparently conflict in nature. 
Thus, the most appropriate bid is the one that 
make compromise between the two objectives. 
This observation is coincided with Equation 
(10). The algorithm developed to solve the 
FMODM is based on such a concept. The flow 
chart of the proposed algorithm is illustrated in 
Figure 3. 

In the algorithm, each generated proposal 
(i.e. production plan and price) is evaluated 
through the membership functions of profit, 
delay, and price. At the stage of price 
determination, since the production plan has 
been determined, the maximization of µFMODM(y) 
is in fact equivalent to 

)}}(),(),({min{max*)( pricedelayprofitFMODM pdp
p

µµ!µµ =  

The newly generated proposal and its 
corresponding µFMODM(y) are recorded. The 
algorithm continues seeking feasible proposals 
until no more such proposals will be generated, 
then all the generated proposals will be 
compared according to their values of 
µFMODM(y). The one with the greatest µFMODM(y) 
value is selected and proposed to the buyer. The 
question now is how to generate production 
plans? We have limited our production to three 
methods, namely by the current plan, changing 
the production plan with available capacity, and 
a crash production with overtime capacity. The 
first method is most economic, because nothing 
needs to be changed. The second one will cost 
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more, because not only changing the planned 
production but also requiring additional setup 
costs for new production. The last method is 
most expensive, since the regular hour capacity 
is not enough and it has to use the overtime for 
setting up new production. The buyer’s demand, 
Q, is thus fulfilled by the combination of 
previous inventory and the three production 
methods. 

The present study adopts the concept of 
Available to Promise (ATP) inventory to find 
possible production plans. ATP is the 
uncommitted portion of a company’s inventory 
and planned production, maintained in the 
master schedule to support customer order 
promise.  

The ATP calculation used here is the look-
ahead procedure, which involves summing 
booked customer orders period by period until 
(but not including) a period in which there is a 
Master Production Schedule (MPS) amount. The 
MPS is a schedule to indicate the quantity and 
timing of planned production. The concept of 
ATP is introduced next. 

3.1     Available to promise 
Considering a master schedule for the next eight 
weeks indicates the quantity and delivery times 
for a product as shown in Table 1, in which the 
schedule shows the forecasted demand and real 
customer orders (i.e. committed orders). The 
initial inventory prior to the schedule is 100 
units. Let Ik be the projected on-hand inventory 
at the k-th week, and Fk be the forecasted 
demand and Ok be the committed customer order 
at the k-th week, respectively. The projected on-
hand inventory is calculated by: 

Ik = Ik-1 – max{Fk, Ok}. 

Projected on-hand inventories are shown in 
Table 1 for the first four weeks until the 
projected on-hand amount becomes negative. 

When the projected on-hand inventory 
becomes negative, a planned production (i.e. 
MPS) is assigned. Assuming the production lot 
size is 60 units, the MPS for the master schedule 
of Table 1 is determined as shown in Table 2. 
The ATP appears in each interval between two 
consecutive MPS. The amount of the ATP is the 
initial inventory or the MPS deducts the 
cumulated customer orders before the next MPS 
as shown in Table 2. For instance, the ATP in 

Weeks 1~3 is 100-(20+20+5)=55, and is 60-
(5+25)=30 in Weeks 4~5. If there is a new order 
with demand of 80 units coming in and requires 
the delivery by Week 5, the sales representative 
can promise the delivery immediately because 
the cumulative ATP is (55+30)>80. As 
additional orders are booked, they would be 
entered in the schedule and the ATP amounts 
would be updated. In case the order is 90 units 
in the aforementioned example, then either the 
sales representative asks the buyer extending the 
delivery to Week 6, or the production division 
will have to change the production plan. 

 
Table 1: Master schedule and projected on-hand 

inventories

 

Table 2: MPS and ATP 

 

Changes to the master production schedule 
can be disruptive particularly changes to the 
early portions of the schedule. Stability of the 
schedule is important, because turbulent changes 
imply additional costs and the nearer the change 
is the higher the cost. Thus, the changes to the 
earlier portions of the schedule are generally 
prohibited. Master production schedules are 
often divided into four phases referred to as the 
time fences, namely the frozen zone, the firm 
zone, the full zone, and the open zone [13, 
p.628]. The first phase usually contains the first 
few periods of the schedule. Once it is 
established, changes cannot be made without the 
permission from the highest levels in an 
organization. In the second phase, changes are 
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still disruptive; management views the schedule 
as firm, and only exceptional changes are made. 
In the third phase, although changes do impact 
the schedule, their effect is less critical and they 
are made if there is a good reason of doing so. 
The final phase is considered as open, meaning 
that most of the capacity has not been allocated. 

3.2     Production plan generation 
The generation of production plans follows the 
following scenarios. 

Case 1: If the current MPS is able to meet the 
buyer’s demand, i.e. the cumulative ATPs prior 
to the delivery time requested by the buyer is 
greater than or equal to the buyer’s demand, 
then nothing will be changed. Since this plan is 
the most economic one ever possible, the search 
of alternatives is terminated. 

Case 2: If Case 1 is not existed, then one can 
still choose not to change the current MPS but 
extend the delivery time instead. This new 
delivery time is found by accumulating the 
ATPs until the period that the cumulative 
amount is greater than or equal to the buyer’s 
demand. 

Case 3: To explore more alternative plans, we 
can try to advance the delivery time one period 
ahead of the plan found in Case 2, and then 
consider if the available capacity is sufficient to 
carry out this trial plan. 

Case 4: The feasibility of a trial plan is checked 
by the available capacity by the delivery time of 
the trial plan. If the capacity is enough to 
produce the deficiency of ATPs, i.e. the 
difference between the buyer’s demand and the 
cumulative ATPs, then additional productions 
will be added to the original MPS; otherwise, 
Case 5 is applied. To continue exploring 
alternative plans, the delivery time of the newly 
generated plan is advanced one period ahead 
again, and its feasibility is checked in the same 
manner. Case 4 is repeated until the trial 
delivery time is earlier than the original delivery 
time requested by the buyer. 

Case 5: When the capacity is insufficient, trial 
production plans can still be achieved by using 
overtime to compensate the deficiency of the 
regular hour capacity. Again, the delivery time 
of this newly generated plan is advanced one 
period ahead, and Case 4 is repeated. 

 

4 Conclusions 
This paper has presented a framework for 
sealed-bid-multi-issue reverse auctions. In this 
auction setting, one buyer sends the RFQ to 
many suppliers and suppliers then return the 
buyer with bids represented by two attributes, 
namely price and delivery time. Bids are only 
visible to the buyer and the winner is determined 
in one-shot. The decision-making problems of 
the supplier and the buyer are solved by two 
respective models. The supplier’s decision is 
formulated as a fuzzy multiple objective 
decision making problem, in which the bid is 
determined with the considerations of the 
supplier’s capacity constraints, production costs, 
profit margin, and the chance to win the 
contract. At the buyer side, the problem is to 
determine the winning bid, which is referred to 
as the winner determination problem. The 
multiple attribute decision making approach, 
TOPSIS, is used to solve the problem.  

Previous approaches for solving reverse 
auctions mainly focused on the winner 
determination problem at the buyer side. In the 
present study, we have considered the situation 
that suppliers and the buyer pursuit their own 
interests in the reverse auction, and formulated 
the decision-making problems based on their 
respective aspects. Such formulations enable 
suppliers to propose the most beneficial offers to 
them conditioning to their production status. 

The proposed decision-making model of the 
supplier is solved by a heuristic algorithm based 
on the concepts of master production schedule 
and available-to-promise inventories. The 
master production schedule and available-to-
promise inventories are commonly used in 
practice to handle customer orders. They are 
frequently updated by companies to reflect 
current production and inventory status. The use 
of these tools in our solution procedure provides 
the supplier an accurate estimation of his/her 
production costs and the delivery date to 
promise, and hence enables the supplier to 
construct bids that are profitable as well as 
probable to obtain the contract. 
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profit, and (c) delay 
 

 

 

 

 

 

 

 

 

 

 
 

Figure: 3 Flow chart of the algorithm 
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