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Abstract

The paper presents a new approach
to the analysis of the greenhouse
gases inventories. For the evalua-
tion of the greenhouse gases emis-
sion we propose to use a fuzzy-
random model. This model enables
us to discriminate between different
sources of uncertainty in estimates
of emission inventories. The pro-
posed model can be used for a more
adequate verification of the commit-
ments to the Kyoto Protocol.
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1 Introduction

The emission of greenhouse gases constitutes
an important threat to the world’s ecosys-
tem. The Kyoto Protocol is an international
agreement in which over one hundred coun-
tries agreed to mitigate the emission of green-
house gases. The Parties who accept the Ky-
oto Protocol agreed to reduce the national
emissions of greenhouse gases by specified per-
cents given in the Annex I to this Protocol.
In order to verify the compliance to agreed
commitments it is necessary to evaluate the
amount of greenhouse gases which are emit-
ted by natural and non-natural (i.e. related
to human’s activities) sources. The results of
these evaluations, known as greenhouse gas
inventory estimates, are used by researchers

and policy makers in a variety of ways. For ex-
ample, researchers use these estimates in their
investigations of possible ways for the mitiga-
tion of emissions. On the other hand, policy
makers use them for the determination of the
nation compliance with international commit-
ments.

It is a well known and widely accepted fact
that the estimates of greenhouse gases inven-
tories are highly uncertain. Because of the
importance of the problem, especially in pol-
icy making, scientists devoted considerable ef-
fort to understand the causes and magnitude
of these uncertainties. An interesting review
paper of this problem has been recently pub-
lished by Gillenwater et al. [2]. According to
these, and many other, authors estimates of
uncertainties should be used to adjust emis-
sion inventories to make the compliance more
credible and to establish more grounded rules
of emissions trading in such situation. The
latter problem was addressed in the paper by
Nahorski et al. [6] who have proposed to link
the number of permits in emission trading to
the uncertainty in reported emission invento-
ries. According to their proposal, a country
whose inventory has higher uncertainty is al-
loted fewer permits than a country with the
same inventory but smaller uncertainty.

Investigation of uncertainties related to the
estimates of greenhouse gases inventories has
attracted attention of many researchers. All
of them agree that this is a very difficult prob-
lem, still not completely solved. The proposed
nowadays solutions are outlined in the second
section of the paper. We believe, that the cur-
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rently used probabilistic model does not re-
flect the complexity of all involved uncertain-
ties. Therefore, we propose to distinguish be-
tween uncertainties of a random (stochastic)
character, and uncertainties of a possibilistic
(fuzzy) one. In the third section of the paper
we propose a new model which combines the
uncertainties of both considered types. Ac-
cording to our proposal, the estimated values
of emission inventories should be described
by fuzzy random variables. The consequences
of this assumptions in the verification of the
compliance to international commitments are
discussed in the fourth section of the paper.

This paper presents first attempts to pro-
pose a new and more adequate mathematical
model for the estimation of greenhouse gases
emissions. Its further development should de-
pend upon the opinions of the area special-
ists. It will not be an easy task because the
majority of them are accustomed to purely
probabilistic models of uncertainty. There-
fore, other publications focused on the expla-
nation of the random-fuzzy model are going
to be published in the near future.

2 Assessment of national emissions
of greenhouse gases

Let us consider the problem of the verifica-
tion of commitments agreed in the Annex I
to Kyoto Protocol. The Parties who accept
the Kyoto Protocol agreed to reduce the na-
tional emissions of greenhouse gases by spec-
ified percents. The main problem with the
verification of these commitments stems from
a fact that these emissions cannot be directly
measured. Therefore, the total emission X
is estimated as a sum of emissions from ev-
ery type of activity, evaluated indirectly using
certain measures describing those activities.
For example, the emission from electric coal
power plants is evaluated using the knowledge
about the amount of burned coal. A simple
model recommended by IPCC [4] has a linear
form

xi =
m∑

j=1

xij =
m∑

j=1

cijaij , i = 0, 1, . . . , (1)

where aij is the j-th activity measure in the
i-th year, and cij is the emission factor in the
i-th year, which enables to calculate green-
house gas emission knowing the activity mea-
sure for the j-th activity. At a national scale
the values of activity measures aij are defi-
nitely uncertain, and the level of associated
uncertainty strongly depends on the type of
activity. For example, even simple activity
like burning of fossil fuels, which may be
known with quite good accuracy at the com-
pany level, not necessarily can be calculated
sufficiently accurately at the country level, be-
cause of lack of exact data, for example for
individually heated houses.

Analogously, the values of emission factors cij

may be highly uncertain. This may be even
the case for otherwise quite well known fac-
tors, when lack of detailed activity data re-
quires aggregation of activities with different
emission factors. As a consequence, an im-
plied emission factor has to be used in such
case corresponding, say, to the mix of different
types of fuels. For other activities the emis-
sion factors may be confidential or simply not
known due to the lack of precise knowledge
of underlying emission processes. Thus, they
can be only evaluated using experts opinions.
That is why the IPCC document Guidelines
[4] specifies that Uncertainty range can be es-
timated using classical analysis or the Monte
Carlo technique. Otherwise, the range will
have to be assessed by national experts.

In [5] the guidelines have been prescribed
how to calculate the uncertainty ranges
for national inventories. Two methods,
called TIER1 and TIER2, are recommended.
TIER1 uses simple error propagation equa-
tions, with assumptions of independent
stochasticity of both activities and emission
factors. TIER2 uses Monte Carlo analysis.
It requires detailed knowledge of probability
density functions of the above mentioned vari-
ables as well as their correlations. It is also
much more resource intensive. Therefore, it
has been performed only for few countries.
Typically, even in those countries only TIER1
analysis is performed every year. TIER2
analysis is performed only then, when bigger
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methodological modifications in the inventory
process are introduced.

More detailed information on this problem
can be found in papers by Winiwarter [10],
and by Rypdal and Winiwarter [9]. A de-
tailed recent presentation of the calculation of
inventory of greenhouse gases and its respec-
tive uncertainty can be found, for example, in
[8].

3 Fuzzy-random model for the
assessment of emissions

The existence of different types of uncertainty
that influence the estimated value of total
greenhouse gases emission is widely accepted
by area specialists. There is no agreement,
however, about mathematical models which
are the most suitable for their description. In
this paper we assume that all activity mea-
sures aij can be assessed with specific degrees
of accuracy described in terms of probability
distributions. Thus, we assume that uncer-
tainties related to the assessments of aij are
of random character. In fact they consist of
two components: one related to measurement
procedures and the other related to random
variability of real (unobserved) values of all
activity measures, known in the related liter-
ature as the trend uncertainty. Under certain
rather strong assumptions this type of uncer-
tainty may be estimated from time series con-
sisted of point-wise assessments of the total
emissions of considered types. However, for
sake of simplicity, we assume that these two
components are indistinguishable, and the to-
tal uncertainties related to the assessments of
activity measures can be estimated from ex-
isting statistical data.

Suppose now, that for each activity we ob-
serve a time series consisted of n+1 yearly ob-
servations: (a0j , a1j , . . . , anj) , j = 1, . . . ,m.
Nahorski and Jȩda [7] considered different sta-
tistical methods for the analysis of time series
describing the total greenhouse gases emis-
sions. They investigated two models: one
based on spline functions and the other of a re-
gression type. In both cases it is assumed that
the expected value of total emissions varies

in time according to unknown deterministic
function of time, and the randomness of obser-
vations is due to a random error component.
We propose to apply the same methodology
for the description of time series representing
all activity measures.

The nature of uncertainty assigned
to the associated emission factors
(c0j , c1j , . . . , cnj) , j = 1, . . . ,m is hardly
easy for precise evaluation. This uncertainty
contains undoubtedly a random factor (for
example, for an electric coal power plant
the emission rate varies randomly with
randomly varying quality of burned coal),
but may also contain another factor, related
to imprecise opinions of experts. The results
of the assessment for Austria and Norway
(see the papers Winiwarter [10] and Rypdal
& Winiwarter [9]) show that imprecise expert
opinions may contribute from 10% to 20%
of total uncertainty of the total assessment.
For this reason specialists assume that the
values of emission factors, and more gener-
ally, the values of emissions from different
activities, should be evaluated in terms of
intervals of possible values. Moreover, in
order to arrive at point-wise assessments
of total emissions, calculated according
to (1), they also provide decision makers
with specific values for the emission factors
(c0j , c1j , . . . , cnj) , j = 1, . . . ,m. We claim,
however, that even in case of very vague
information about the values of cij using
exclusively either interval values or precise
values of emission factors is too restrictive.
It seems to us that the representation of
this information using possibility distribu-
tions is much more informative. Taking
into account a double nature of uncertainty
related to estimated values of the emision
factors, we may assume that these quanti-
ties may be represented by fuzzy random
variables. Therefore, each observed value
of the emission factor should be given as
a fuzzy number represented by a set of its
α-cuts:

[
cα
ij,L, cα

ij,R

]
, α ∈ (0, 1]. The existing

nowadays area-specific information usually
does not allow us to build complicated possi-
bility distributions representing the observed
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values of (c0j , c1j , . . . , cnj) , j = 1, . . . ,m. In
lack of specific information the possibility
distribution of each emission factor may be
approximated by the following triangular
membership function:

µ(cij) =


0 cij < cij,min

cij−cij,min

cij,sng−cij,min
cij,min ≤ cij ≤ cij,sng

cij−cij,max

cij,sng−cij,max
cij,sng ≤ cij ≤ cij,max

0 cij > cij,max

,

(2)
where (cij,min, cij,max) , i = 0, . . . , n, j =
1, . . . ,m are the intervals of possible val-
ues of emission factors cij , and cij,sng, i =
0, . . . , n, j = 1, . . . ,m are the singular values
of these factors provided by experts for the
point-wise assessment of the total emission.
Therefore, the evaluated total yearly emission
is a realization of a fuzzy random variable de-
fined as

X̃i =
m∑

j=1

X̃ij =
m∑

j=1

C̃ijAij , i = 0, 1, . . . , (3)

where Aij is the random variable of the j-th
activity in the i-th year, and C̃ij is the fuzzy
random variable of the j-th emission factor in
the i-th year. We should note however, that in
certain cases the representation of fuzzy vari-
ables using triangular membership functions
may be inappropriate. Consider, for exam-
ple, the case when the knowledge of physical
and chemical mechanisms which link activi-
ties with emissions is known only partially. It
happens, for example, when the specialist do
not agree which mathematical model should
be used for calculations. In such cases it is
impossible to indicate a single value of the
emission factor that has the highest measure
of possibility. Thus, other possibility distri-
butions such as e.g. trapezoidal may be more
appropriate.

Probability distributions describing random
variability of activities and emission factors
are very difficult for precise estimation. First
of all these random variables are usually cor-
related, and their probability density func-
tions may have different shapes (not neces-
sarily close to the bell-shaped normal distri-

bution). Therefore, the exact shape of the
probability distribution that governs the ran-
dom variability of the total emission can be
hardly evaluated. However, because of a usu-
ally large number m of considered activities
we may assume that this probability distri-
bution may be approximated by the normal
distribution. This phenomenon has been al-
ready noticed by Winiwarter [10] who used
Monte Carlo simulations for the evaluation of
this probability distribution. The estimation
of the expected fuzzy value of the total emis-
sion should be easier for calculation if we as-
sume that the components of fuzzy random
vectors (Aij , C̃ij) are mutually independent.
When this assumption is true, the expected
fuzzy value of the total emission may be cal-
culated as the following linear combination of
fuzzy numbers:

x̃⋆
i =

m∑
j=1

x̃⋆
ij =

m∑
j=1

c̃⋆
ija

⋆
ij, i = 0, 1, . . . , (4)

where a⋆
ij are the observed (estimated) val-

ues of activities, and c̃⋆
ij are fuzzy numbers

of triangular or trapezoidal shape that repre-
sents imprecisely evaluated emission factors.
Unfortunately, the assumption of the mutual
independence of the components of (Aij , C̃ij)
is not sufficient for simple calculation of the
variance of X̃i. The main reason for this diffi-
culty is the apparent dependence between the
emission factors

Suppose now, that having the observed real-
izations of fuzzy random variables x̃ij, j =
1, . . . ,m, i = 0, 1, . . . , n we want to predict
the total emission for the commitment year
k > n. Let

(
aγ

kj,L, aγ
kj,R

)
be the prediction

confidence interval on the confidence level γ
for the amount of the j-th activity in the com-
mitment year k. Note, that for γ = 0 this
interval shrinks to the point-wise forecast for
the value of xkj. From the theory presented in
the previous section we know that fuzzy confi-
dence interval for X̃kj on the confidence level
γ is represented by a set of α-cuts (nested
α-level intervals):

(
aγ

kj,L ∗ cα
ij,L, aγ

kj,R ∗ cα
ij,R

)
.

The construction of the fuzzy prediction inter-
val for the total emission Xk in the commit-
ment year k is a difficult task and, in general,
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may require the application of Monte Carlo
methods. However, when the forecasts for
akj are described by normal distributions this
construction is straightforward.

4 Verification of Kyoto Protocol
commitments

According to the Annex I to Kyoto Protocol
a country fulfils its commitment if in the com-
pliance year k its emission does not exceed the
value yk = ρx0, where x0 is the emission in the
base year, and ρ is a coefficient agreed upon
in the Kyoto Protocol. In our analysis we
begin from the simplest case when the value
of yk is given, and the activity measures in
the commitment year akj, j = 1, . . . ,m have
been already established. Thus, we have to
verify if x̃k ≤ yk. From the theory of fuzzy
sets we know that the unique method for the
verification of this inequality does not exist.
However, for this purpose we can use one of
possibility and necessity measures proposed
by Dubois and Prade [1], either the PD index
or the NSD index. In the considered case the
values of these indices should be calculated for
the relation yk ≻ x̃k.

The Possibility of Dominance index for two
fuzzy sets Ã and B̃ is defined as [1]

PD = Poss
(
Ã � B̃

)
=

= sup
x,y;x≥y

min {µA (x) , µB (y)} (5)

where µA (x) and µB (y) are the membership
functions of Ã and B̃, respectively. PD is the
measure for a possibility that the set Ã is not
dominated by the set B̃.

The Necessity of Strict Dominance (NSD) for
two fuzzy sets Ã and B̃ is defined as [1]

NSD = Ness
(
Ã ≻ B̃

)
=

= 1− sup
x,y;x≤y

min {µA (x) , µB (y)} =

= 1− Poss
(
B̃ � Ã

) (6)

The value of the NSD index represents a mea-
sure of necessity that the set Ã dominates the
set B̃.

In the considered case by simple calculations
we can show that the NSD measure is greater

than zero if the α-cut of x̃k at the level α = 1
is located to the left of yk, i.e. if the inequality
x1

k,R ≤ yk holds. Thus, we have

NSD = 1− α⋆ (7)

where
α⋆ : xα⋆

k,R = yk. (8)

From these equations we can also see that
NSD = 1 if the whole support of x̃k is lo-
cated to the left of yk. In a more general
case, when the the emission in the base year is
given as a fuzzy number (due to the fuzziness
of the emission factors), the commitment may
be verified by the calculation of the NSD in-
dex for the relation ỹk ≻ x̃k. In such a case,
for the computation of NSD we use (7), but
the value of α⋆ is now calculated from the fol-
lowing expression:

α⋆ : xα⋆
k,R = yα⋆

k,L. (9)

Decision on compliance can be now taken
checking if NSD ≥ NSDcrit, where NSDcrit

is a preagreed value.

155 159 163 167
0

1

-

6

x

α∗

[Tg]

µ(x)

Figure 1: Uncertainty distributions of emissions
inventory in the (shifted) base year (dashed lines)
and compliance period (solid lines) with resulting
value of α∗.

Let us consider an illustrative example. The
data used are taken from [8] and represent
the uncertainty distributions of CO2 emis-
sions inventories in the years 1990 and 2004 in
the Netherlands, calculated using the Monte
Carlo analysis. The situation discribed here
is, however, ficticious. We assume that the
higher emissions are from the base year, 1990,
and the smaller from the compliance period,
2008-2012, as agreed in the Kyoto Protocol.
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Further, we assume that the Netherlands obli-
gation is to reduce 9% of the base year emis-
sions. Then we get ρ = 0.91 and we can draw
the shifted base year and compliance period
emissions as in Fig. 1. The value found from
the figure is α∗ = 0.227 and therefore we have
NCD = 0.773. The final decision on compli-
ance will now depend on choice of NCDcrit.

5 Further research

The value of the PD index, calculated accord-
ing to (5), might be of practical interest only
in case when the most plausible value of the
estimated emission is greater than the most
plausible required value. In this case the ne-
cessity of fulfillment is equal to zero, but the
possibility of this may be positive. Both in-
dices may be also used, if we want to know in
advance, after the evaluations of emissions in
years numbered from 0 (base year) to n have
been observed, if the commitment in a year
k > n is likely to be fulfilled. We can solve
this problem by the verification of a statistical
hypothesis that the expected value of the pre-
dicted emission (estimated from fuzzy random
data) is lower than a given fuzzy valued limit.
Thus, we have the problem of constructing a
statistical test for fuzzy data and fuzzy statis-
tical hypothesis. This problem may be solved
using, for example, a possibilistic approach
proposed by Hryniewicz [3].
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