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Abstract

Function approximation properties
of Mamdani fuzzy model are well
known. On the other hand, Takagi-
Sugeno fuzzy model with affine con-
sequent could be a local approxima-
tor of the dynamics. However, it can
also be tuned to be a function ap-
proximator, but loosing its local in-
terpretation. In this paper, an afline
global model with function approxi-
mation capabilities which maintains
local interpretation is introduced.

Keywords: Nonlinear systems, dy-
namics, fuzzy systems, modeling,
fuzzy control.

1 Introduction

Mamdani and Takagi-Sugeno fuzzy models
are traditionally used to model non-linear sys-
tems. Mamdani model [5] does not take into
account explicitly local dynamics in the rules,
but an appropriate selection of the member-
ship functions can provide an adequate inter-
polation of the system dynamics.

On the other hand, Takagi-Sugeno model [10]
has been widely used in fuzzy modelling for
control applications, because it includes valu-
able information about the local dynamics.
More precisely, this model interpolates among
affine submodels, something which apparently
should mean a good approximation of the dy-
namics of the non-linear system. However,
a non-convex interpolation is obtained and,

when the model is tuned to behave as a uni-
versal approximator, it does not fit the local
dynamics [1].

In the present work we propose to obtain the
best of Mamdani and Takagi-Sugeno models
by using an affine model with variant coeffi-
cients which are independently governed by
a zeroth order [uzzy inference system. This
model may be interpreted as a generalization
of Takagi-Sugeno model in which dynamic co-
efficients have been decoupled.

We will consider empirical models such as
Tpr1 = f(x), being x = [z1...2,]T, and f
a continuous or discrete non-linear function.
Our goal is to build non-linear models able to
reflect the dynamics of f.

2 Affine Local Models

In linear control theory, identification is
done by exciting the system around a point
(:cgo), el 9:,(321), and assimilating its response
with the one of an affine system. After the
identification process, we should obtain the
same model resulted from the linearization of

the empirical model:
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As an example, let us suppose a vehicle of
mass M moving along a straight line at ve-
locity v(¢), due to a force f(t), and under a
viscous friction B (figure 1).
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Figure 1: The vehicle

An empirical first order model of this system
may be given by Mv(t) = f(t) — Bv*(t). If
we choose M = 1 and B = 1, we have

A dynamical equilibrium point for this system
is held at v(@ = 2, f(O = 4. In order to ana-
lyze the dynamical behavior of this empirical
model, we will change the force f(t) to zero,
so the evolution of the vehicle will follow the

equation v = —v? (see figure 2):
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Figure 2: Empirical model of the vehicle

Figure 3 shows the dynamical evolution of the
system.

In order to obtain an affine model of the ve-
hicle, we identify the vehicle at v(®) = 2. We
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Figure 3: Dynamical evolution of the vehicle

should obtain the linearization of the empiri-
cal model, which is

PO PHIC) <v — v(o)) (3)

v d— 4o (4)

As it can be seen in figure 4, the error of the
affine model increases as we deviate from the
linearization point.
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Figure 4: Affine model at v(0=2

Figure 5 compares the response of the affine
model versus the response of the empirical
model.

Now the final value is 1 instead of 0 and the
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Figure 5: Vehicle model v.s. affine model re-
sponse

response is much faster than the empirical sys-
tem.

3 Mamdami Model

Let us suppose that Xl(”) are the fuzzy sets
for input x;, Vi; = {1,...,m},Vi={1,...,n}.
r; is the number of fuzzy sets for z;, and
MX(iz)(xl) are the corresponding membership

functions (figure 6),

x®  x®

Figure 6: Membership functions for input z;
which overlap by pairs, this means,
Z Hgtan (22) (5)
=1

Va:l(il) <z < xl(iﬁl), vi={1,...
(i1)

x;"’ are guide points.

,n}, where

Then, each rule Rl1-in) of Mamdani model
can be defined using the centers of gravity in-
stead of the fuzzy sets for each consequent [6]:

IF(z1is XY AND ... AND (z, is X))
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THEN apy = aiiy™)
and the output of the system can be computed
by

muir= 30 3w 2l (6)

11=1 in=1

where

’Ll ln)

HM (i (z1) (7)

represents the weight of each rule. It is known
that Mamdani model can be used as function
approximator [7, 8]. For example, the first
order empirical model xo = f(z1) may be ex-
actly approximated by a Mamdani model in

(i1+1)

the range :1:( W< g < z] , with two rules:

RO ¢ IP(zyis X' THEN w5 = f(z™)

RO . TP(zyis X" THEN 25 =
provided that f is strictly monotonous (in-
creasing or decreasing) in that range. Fur-
thermore, the fuzzy sets for perfect approxi-
mation are given by

F@Y) = f(a)
qul)(xl):f( ;H) fxg,ﬁ) (8)

(
MX{il-ﬁ-l)(xl) = ﬂX(q)(xl) (9)

These membership functions do not belong to
[0,1] when f is not monotonous.

As an example, if we identify the vehicle at
v = 0 and v® = 2 we obtain that o(!) =0
and 92 = —4. Then, Mamdani model can be
described with two rules as:

RW . IF(vis VW) THEN oY) =0
R® . IF(vis VO)THEN o = —4

If we chose triangular membership functions
(see figure 7):
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v
Py (v)=1- 3 (10)
v
ty e (v) = 2 (11)
v V(2
0 2 v

Figure 7: Membership functions for v

the output of the system, Vv € [0, 2], is given
by:

0= o) 8+ ppe ) o7
v v
= (1 - 5) 045 (—4) = —20(12)

The resultant approximation is compared
with the empirical model as shown in figure
8, where we can appreciate the error between
both of them. Anyway, both are convex in-
terpolations.

/l‘}ﬂ
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Figure 8: Mamdani model
Figure 9 compares the response of Mamdani

model versus the response of the empirical
model.
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Figure 9: Empirical model v.s. Mamdani

model response

The final value is the same, but the response
is six times faster than the one of the empir-
ical system. Anyway, it is always possible to
select other membership functions shape, to
improve the interpolation, and thus to model
perfectly the dynamics of the system. Know-
ing that the empirical model is given by

b= flv) = —v* (13)

we can choose the membership functions as
follows (see figure 10):

.__0(2) +'U2
Hy (1) (v) = _0(2)2 n U(1)2
2
- 1- UZ (14)
—v? o) v?
Ky (2) (U) —U(2)2 —|—'U(1)2 - Z (15)
1746 V@
0 2 v

Figure 10: Parabolic membership functions
for v
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So the system’s output will be identical to the
empirical one:

v = /I/V(1)(U).
2

v \ U2
= (1_Z>'O+Z'<_4)

The previous idea can be easily generalized to
systems with n inputs.

4 Takagi-Sugeno Model

In Takagi-Sugeno model [10, 11], each rule
R(1-in) ig described as follows:

IF(zy is X'")Y AND ...
AND (zy, is X{")) THEN

Tntl = a(()il"'i") + agil“'i”):zrl +. .t alaein)g,

The meaning of these affine consequents is to
identify the system at different points, one
per rule, and interpolate the dynamics of the
system among them, in order to compensate
identification errors. Then, the output of the
system is computed as follows:

Tpn+l = Zl - Zn w(llln)(x) (a(()illn)

i1=1 in=1

+ ag““'l")ml +...+ agl"'i")xn>(17)
where again we have supposed that the mem-
bership functions of the input variables z;
overlap by pairs. As an example, if we iden-
tify the vehicle linearizing it at vV = 0 and
v = 2 we should obtain that V) = 0 and
9 = 4 — 4v. Takagi-Sugeno model is de-
scribed as follows:

RWY : [F(wis VW)Y THEN oY =0
R® . IF(vis V@) THEN ©® =4 — 4y

If we choose triangular membership functions
(see figure 11),
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v
pyw(v) =1~ 5 (18)
v
py (v) = 3 (19)
v V@
0 2 v

Figure 11: Triangular membership functions
for v

the system’s output will be given by:

V= py) (v) o) + Uy @) (v) @
v v
S R
= 20— 0% # —0* (20)

Takagi-Sugeno approximation is compared in
figure 12 with the empirical model, where we
can observe the error between both of them.

U4
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Figure 12: Takagi-Sugeno model

The response of the Takagi-Sugeno model is
practically the same than the one of the affine
case (see figure 5). The response of the system
is much faster than the one of the empirical
system, and the final value is | instead of 0.
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As we can see, the approximation interpolates
between the two affine systems, so the func-
tion must be always inside both triangles and
will never match exactly the empirical model,
independently of the membership functions
shape. Furthermore, the model matches the
function value at the guide points, but not its
derivative, which should be the idea of linea-
rizing at those points.

It should be noted that the selection of par-
abolic membership functions, do not provide
better results. Suppose that the membership
functions are

2
pya(v) =1— T (21)

2

v
Py (V) = T (22)

then
b= pyw @) 3+ pye () 9@
2

v
= [1-% 0+f(4—4)
= 1 1 v
3

Takagi-Sugeno affine model always produces
a non-convex interpolation. These interpola-
tion difficulties have been widely referred to
in the literature [1] but, in most cases, the
proposal of other authors is to obtain local
affine submodels which do not correspond to
the system affine identification.

5 The Affine Fuzzy Dynamic
Model

Our goal is to build an affine global model,
able to fit the local dynamics without loosing
approximation capabilities. First we replace
Takagi-Sugeno rules by Mamdani rules with
n + 1 consequents:

IF(z1is X\ AND ... AND (2, is X))

THEN ag = ai*" AND ...
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AND a, = alir-in)

n

Then, defining

a(x) =3 ... 3 wlitin (x)alt) (24)

i1=1 in=1

vl ={0,...,n}, the output is given by

Tpt1 = ap(X) +ar1(xX)x1 +. ..+ an(X)z, (25)

In fact, this equation can be considered as a
Mamdani model supervising an affine system
with variant coeflicients, as shown in figure
13.

Y

Mamdani

('Llln) o« o

ao ay(le.”ln)

A

x x
ap(x) —1—?‘,({)3:1 +...Fan(x)zy, -t

<

Figure 13: Block representation of Takagi-
Sugeno affine global model

ap(x) is an offset term, while q;(x) represent
the variant dynamics of the system. It should
be noted that all these dynamic coefficients
are coupled, because they are calculated using
the same set of rules.

We propose to use an affine global model with
different set of rules for each coefficient a;(x)
(see figure 14).

As we will see now, by using this model we are
using the same affine global expression, but
maintaining local and global interpretability,
and approximating both the function value
and its derivative by changing independently
the offset and dynamic terms, this means, by
decoupling the system dynamics. Further-
more, we keep the number of rules to the min-
imum. We will see how to build an approxi-
mator using this model.
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Figure 14: Block representation of the affine
global model with decoupled dynamics

Let us suppose the first order case of empirical
model x2 = f(z1), and define

ai(z1) = f'(x1) (26)

ao(zy) = f(21) — f'(z1)z (27)

with ai(z;) and ag(zxy) strictly monotonous
in the range :vgil) <z < :vgiﬁ_l) (otherwise,
the membership functions will not belong to
[0,1], and another partitioning is required).
Then, f(z1) may be exactly approximated by
a Takagi-Sugeno model in this range, with two

subsets of rules:

R ¢ IP(zy is X)) THEN ag = a{V

RO . 1Pz is XY THEN ag = a{* Y
with
(1+1)
ag. —aop(x1)
2 — n A 28
’uXiol)(xl) a(()z1+1) _ a(()ll) (28)

Mxigﬁ-l)(xl) =1- “Xﬁ})(xl) (29)
and

R . IP(z, is X)) THEN a; = o{™

R L IP(zis XU THEN ay = (Y
with
(11+1)
a —ai(x1)
; = . . 30
,UXilﬂ(xl) agll+1) _ agll) ( )
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a(llln)

x x
aphx) + a1(x)x1 + ... —%)xn | ol

Py (@) =1 = pyap (@) (31)
The output is calculated as

Xo = a0($1) + al(xl)xl (32)

For example, in the case of the vehicle, ¢ =
—v? in the range 0 < v < 2 the affine model
with decoupled dynamics is as follows:

ap(v) = —v? + 2% = v? (33)

a(v) = —2v (34)

R : IP(vis V{") THEN ao =0

RY : IF(is V?) THEN ag =1

with
(2) 2
ag’ — ao(v) v
gy () = =l-7 ()
Vi a[()2) aél) 4
v2
pye (W) =1 —ppo(v) = (36)
and

RY ¢ IF(is V{V) THEN a; =0

R® . IF(v is V) THEN ay = —4

with
(2)
a;”’ —ai(v) v
W) =—g—mgp =1-5 (7
vt agz) — agl) 2
v
ppoW) =1=pyo)=5  (38)
So
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Figure 15: Affine model with decoupled dy-
namics

Figure 15 interprets this model as an affine lo-
cal model which moves continuously tangent
to the empirical one, by changing indepen-
dently ag(v) and ag(v).

This result can be generalized to nt® order sys-
tems provided that the empirical model can
be expressed as zn11 = £(x) = [Ty gi(1),
or zny1 = f(x) = 2y gil@).

6 Conclusion

This paper has shown how Mamdani and
Takagi-Sugeno models can be combined so
that local and global interpretations are pre-
served. A novel affine global fuzzy model has
been introduced. This model uses different
sets of rules for each coefficient of the affine
model, and so decoupling the dynamics of the
system. Furhtermore, the model is easy to
implement, as it has been shown in the exam-
ples.

Acknowledgements

This work is funded by Spanish Ministry
of Science and Technology (ROBONAUTA
project DP1-2007-66846-C02).

References

[1] R. Babuska, R. Jager, and H. Ver-
bruggen, “Interpolation issues in sugeno-

720

takagi reasoning,” in Proc. Int. Conf. on
Fuzzy Systems, 1994, pp. 859-863.

D. Driankov, H. Hellendoorn, and M. Re-
infrank, An Introduction to Fuzzy Con-
trol. Springer Verlag, 1993.

R. Hassine, F. Karray, A. M. Alimi, and
M. Selmi, “Approximation properties of
piece-wise parabolic functions fuzzy logic

systems,” Fuzzy Sets and Systems, vol.
175, pp. 501-151, 2006.

R. Jager, “Fuzzy logic in control,” Ph.D.
dissertation, Delft University of Technol-
ogy, Delft, the Netherlands, 1995.

W. J. M. Kickert and E. H. Mamdani,
“Analysis of fuzzy logic control,” Fuzzy
Sets and Systems, vol. 1, pp. 2944, 1978.

F. Matia and A. Jiménez, “On optimal
implementation of fuzzy controllers,” In-
tenational Journal of Intelligent Control
and Systems, vol. 1, no. 3, pp. 407-415,
1996.

F. Matia, B. M. Al-Hadithi, and
A. Jiménez, “On normalised fuzzy sys-
tems for fuzzy control,” in EUSFLAT
Conference, Palma de Mallorca (Spain),
1999.

F. Matia, A. Jiménez, B. M. Al-Hadithi,
and R. Galdn, “Fuzzy models: En-
hancing representation of dynamic sys-
tems,” in 15th IFAC World Congress,
Barcelona, 2002.

W. Pedrycz, “Why triangular member-
ship functions?” Fuzzy Sets and Systems,
vol. 64, pp. 21-30, 1994.

M. Sugeno, “An introductory survey
of fuzzy control,” Information Sciences,
vol. 36, pp. b9—83, 1985.

T. Takagi and M. Sugeno, “Fuzzy iden-
tification of systems and its applications
to modeling and control,” IEEE Trans-
actions on Systems, Man and Cybernet-
ics, vol. 15, no. 1, pp. 116-132, February
1985.

Proceedings of IPMU'08



