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Abstract 

Dialogue systems find more and more 
applications but the scientific im-
provements face difficulties to be trans-
ferred into the dialog technologies. 
France Telecom R&D is designing a 
new architecture based on uncertainty 
management in dialogue. Dialogue con-
straints lead to define a Logical 
Framework for Probabilistic Reasoning 
(LFPR) which results are close to the 
ones of the Evidence Theory and the 
Assumption-based Truth Maintenance 
System (ATMS). The paper eventually 
compares it to the Theory of Hints of 
Kohlas and Monney. 

Keywords: Dialogue System, Uncertainty, Evi-
dence Theory, Theory of Hints, ATMS. 

1     Environment and General Considera-
tions 

More and more fields require Speech Applica-
tions. The Customer Services that can be exe-
cuted from distance are manifold: Distance Or-
ders, After Sales Services, Shipping Informa-
tion, … The Customer Services hotlines are very 
costly and though often overflowed. However, 
most of the calls concern issues that can be quite 
easily automated. This explains the rapid devel-
opment of Speech Applications these last years. 

Still, the scientific advances have not been sig-
nificant during this time because, as soon as a 
scientific novelty for such systems arises, the 
development duration grows and even more 
problematic, the developer must manipulate 

more and more scientific-level concepts. An-
other faced difficulty is that the implementations 
are very little reusable from one service to an-
other, even if they deal with a common field. 

In order to cope with these issues, some re-
searchers have tried to automatically process 
fully data-driven applications [1], [2]. They 
consider the dialogue cycle (typically Automatic 
Speech Recognition, Speech Language Under-
standing, Dialogue Management, Speech Lan-
guage Generation and Speech Synthesis, see 
Figure 1) as a Markov Decision Process and 
optimise each module independently from the 
others. Aside from the Dialogue Management, 
each of these modules can be at least partially 
reused from one application to another and can 
be learned from annotated corpora provided by 
the records of the human service it is going to 
replace. For the automated design of the Dia-
logue Management, they use a byroad by learn-
ing a model of the user on the annotated corpora 
basis and then by learning the management 
thanks to this model. 

 

 

 

 

Figure 1: the fully data-driven architecture. 
 

France Telecom R&D approach is quite differ-
ent because the group needs high quality dia-
logue services, even at the expense of some 
more manual design, and, in this scope, we think 
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that one should combine expert knowledge with 
online learning in order to optimise the system.  

But as well as the fully data-driven architecture, 
one of France Telecom R&D's system goals is to 
develop an end-to-end statistical dialogue archi-
tecture with a complete, mathematically precise 
treatment of uncertainty. This treatment is the 
topic of this paper. 

2     Context 

Historically, the dialogue manager of France 
Telecom R&D's dialogue system is automaton-
based. A state of the automaton does not corre-
spond exactly to a state of the system but to a 
family of states of the system, because some 
global variables are not represented in the state 
of the automaton but into the Context module. 
Most of the choices of transition between one 
state and another are made after testing the Con-
text. Figure 2 gives an overall picture of the 
current system. 

 

 

 

Figure 2: the current system. 
 

The first remark is that the current system is 
incomplete. The lack of symmetry is obvious 
and difficult to advocate. The SLU cannot write 
into the context and once the action determined 
by the Dialogue Manager, the rest of the archi-
tecture is basically a translation of a concept into 
a string and then a translation of a string into an 
audio stream. 

Figure 3 gives an idea of the target for the sys-
tem. The automaton of the Dialogue Manager 
target is the same as the historic one except that 
it is enhanced by uncertainty management (un-
certain context management and stochastic 
walkthrough of the automaton). For instance, in 
a state of the automaton, if the transition is de-
termined by the following test: 0X <<<< , the state 
sends a request to the Context Manager which 
delivers in response an estimation of the prob-

abilities, then the walkthrough continues in 
every possible branch. 

 

 

 

 

 

Figure 3: the target system. 

3     Uncertainty Management 

The main inputs of uncertainty are the statistical 
models from ASR and SLU. They are supposed 
to provide probability. Even if at this stage they 
still fail to be really reliable, a lot of work is 
done in this direction [3], [4]. As online learning 
is one of France Telecom R&D goals, it will 
eventually provide other probability expressed 
sources of uncertainty. However, probabilistic 
networks [5], [6] are not suitable for this uncer-
tainty management for the two following rea-
sons. 

In a dialogue, the system exchanges signals with 
the user. Then, the processing of the signal pro-
vides the system with derivative information, on 
the basis of hypotheses. The rules are usually 
one-way and they do not deliver a full depend-
ency matrix. For instance, the result of the inter-
pretation can be the probability of this proposi-
tion: "the user said that he had an internet trou-
ble". But the transition to the probability to the 
following proposition: "the user has an internet 
trouble" is not direct because the user might not 
have said that he had a trouble and still have 
one. 

The dialogue requires a logical framework that 
enables to deal with rules and to find non trivial 
inferences and inconsistencies such as "it's 
unlikely that the user wants to subscribe both 
ADSL and cable internet connections". 

The paper describes the Logical Framework for 
Probabilistic Reasoning (LFPR). The automaton 
architecture can be emulated in the LFPR and 
the existing logical rules of the context compo-
nent are to be integrated in the LFPR too. 
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4     Logical Framework for Probabilistic 
Reasoning 

4.1     The Sets of Worlds 

The LFPR makes a hard distinction between the 
probability of a proposition and the probability 
that this proposition is demonstrated. When the 
system receives a piece of information about a 
proposition with a probabilistic reliability, then 
the proposition is demonstrated with this reli-
ability. However, this reliability is not necessar-
ily the probability of the proposition. For in-
stance, the probabilistic piece of information 
provided by the interpreter "the user said that he 
had an internet trouble" provides a demonstra-
tion of the proposition "the user has an internet 
trouble". This demonstration is founded on the 
hypothesis of the former good interpretation. 
However, even if the hypothesis is erroneous, it 
might be true that the user has an internet trou-
ble. 

The system is considered as an agent. Among all 
possible states of the world, only one is right 
and the agent tries to gather information in order 
to reduce the set of worlds he considers possible. 
In the logical framework, a world w  is a subpart 
of the set of the well-formed formula (WFF ) 
such that: 

( )i   w  is deductively closed 

( )ii  p∀ ∈ WFF , if p w∉ , then p w¬ ∈  

The set of worlds is noted W . A possible world 
w  is a consistent world, that is to say a world 
where w⊥∉ . As ⊥  subsumes all the well-
formed formula, there is one and only one im-
possible world that is noted w WFF⊥⊥⊥⊥ ==== . The 
probability measure ( )µ S  on world sets is con-
sidered and the measure ( )pµ  of a proposition 
p  is defined as the measure of its support on 
W . The following results are direct:  

( )iii  ,w wW∀ ∈ ∈∀ ∈ ∈∀ ∈ ∈∀ ∈ ∈⊤  

( )iv  (((( )))) 1µ ====⊤  

( )v   {{{{ }}}}\ w====W W⊤
⊥⊥⊥⊥  

Where ⊤  is the tautology and W⊤  is the set of 
possible worlds. 

A demonstration d  is a tuple of a proposition p  
and a set of worlds D  where the demonstration 
stands. A demonstration can be a hypothesis 
itself, id est directly dependent on a piece of 
information generated by a module. Or a dem-
onstration can be implied by a set of demonstra-
tions { }kd  thanks to a rule. In this case, D  is the 
intersection of the supports kD  of the demon-
strations kd . 

A demonstration d  of a proposition p  is said to 
be reliable in a world w  if d  is valid in w , 
which implies necessarily that p  is true in w . 
The statistical rules in the system provide a 
probabilistic number that can be identified to the 
probabilistic measure of the support of the reli-
ability of the demonstration they generate. 

A demonstration d  is said to be applicable in a 
world w  if the semantics allow d  to be applied 
in w . These semantics considerations include 
every condition that is not part of the reliability. 

The support dD  of a demonstration d  is by 
definition the set of worlds where d  is reliable 
and applicable. If dR  is the support of the reli-
ability of d  and dA  the support of the applica-
bility d , then the following equality stands: 

d d d= ∩D A R . 

The following example illustrates these con-
cepts. In an internet support service, it is sup-
posed that a statistical rule models that most of 
the connection problems are consequent to a 
misunderstanding in the hardware connections 
with the internet box. It is supposed also that 
whenever the system receives a call, it automati-
cally tests the line and this process can eventu-
ally provide the demonstration of another reason 
for the internet trouble. With a reliability-only 
based inference system, the system would infer 
that the internet box has not been properly con-
nected from a line test that revealed a trouble.  

Ι  line internet¬¬¬¬ ⇒⇒⇒⇒ ¬¬¬¬   RI  AI  

ΙI  internet connectedbox¬¬¬¬ ⇒⇒⇒⇒ ¬¬¬¬  RII  AII  

ΙII  line connectedbox¬¬¬¬ ⇒⇒⇒⇒ ¬¬¬¬  RIII  AIII  

The rule Ι  is a definition rule and it is always 
reliable: R WI ==== . As a consequence, the dem-
onstration ΙII  is reliable on a non empty set of 
worlds: 
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? 

? 

? 
pD  

⊥⊥⊥⊥D  pD¬¬¬¬  

? 

? 

 R R R RIII I II II= ∩ = ≠ ∅= ∩ = ≠ ∅= ∩ = ≠ ∅= ∩ = ≠ ∅  

However, everyone agrees that the demonstra-
tion ΙII  is not valid in such a context. The idea 
is that the fact that rule Ι  has been applied con-
ditions the possible set of worlds. If the meta-
knowledge information ∩ = ∅∩ = ∅∩ = ∅∩ = ∅A RI II  is added, 
then the support of the demonstration ΙII  is 
reduced to the empty set: 

  = ∩ ∩ ∩ = ∅= ∩ ∩ ∩ = ∅= ∩ ∩ ∩ = ∅= ∩ ∩ ∩ = ∅D R R A AIII I II I II  

Every time the system receives a new event e, 
the system is conditioned by the context implied 
by e. This context eC  is a set of worlds. The 
global context globC  is the context implied by all 
the events received by the system and by the fact 
that it is considered that the real world is not the 
impossible world, which implies the following 
development of globC , where ⊥⊥⊥⊥D  is the set of 
worlds where ⊥  has been demonstrated: 

  glob e

e

⊥⊥⊥⊥= ∩= ∩= ∩= ∩C D C∩  

The interesting probability measure for the 
demonstrations is the measure globµ  of their 
support conditioned to globC : 

[ ]: 2 0,1globµ →W  

  ( ) ( )
( )  

glob
glob

glob

µ
µ

µ

∩
=

S C
S

C
 

As a conclusion to the previous example, the 
following equality stands: ( ) 0globµ =DIII . 

If the propositional framework is fit up with a 
subsumption relation � , then a partial-order 
relation d�  can be constructed on demonstra-
tions. A demonstration 1d  is subsumed by a 
second one 2d , if the proposition 1p  which it 
demonstrates is subsumed by the proposition 2p  
that demonstrates 2d , if its reliability set 1R  is 
included by the reliability set 2R  of 2d  and if its 
applicability set 1A  is included in the applicabil-
ity set 2A  of 2d : 

1 2

1 2 1 2

1 2

d

p p

d d


⇔ ⊆⇔ ⊆⇔ ⊆⇔ ⊆
 ⊆⊆⊆⊆

R R

A A

�

�  

This section provided the reader with the con-
cepts and the tools for the computation of the 
contextual probability measure of demonstra-
tions. These tools are required to give a numeri-

cal evaluation of the contextual probabilities of 
propositions. This is the subject of the next sec-
tion. 

4.2     Evaluation 

At this point, the system is supposed to have a 
logically saturated base of demonstrations. 
However, the propositions truth cannot be di-
rectly evaluated by the system. As the demon-
stration base might be more or less contradic-
tory, considering that the system might have 
received contradictory information, the system 
requires an evaluation process to measure the 
part of true and false and make its opinion about 
a proposition p . 

The truth probability of p  is not influenced by 
demonstrations that demonstrate a proposition 
that subsumes p  or its contrary p¬¬¬¬ . The 
evaluation consists in making the contextual 
measure of the sets where p  and p¬¬¬¬  are respec-
tively demonstrated. The contextual computa-
tion also involves the measure of the set where 
⊥  has been demonstrated.  

 

 

 

 

 

 

Figure 5a and 5b: the 4-split of the set of worlds 
 

The inferior probability of a proposition p  is the 
contextual measure of sets where p  has been 
demonstrated: 

   (((( )))) (((( )))) (((( ))))
(((( ))))inf
p glob

glob p
glob

P p
µ

µ
µ
D C

D
C

∩∩∩∩
= == == == =  

The superior probability of a proposition p  is 
the contextual measure of sets where p¬¬¬¬  has not 
been demonstrated: 

  (((( )))) (((( )))) (((( ))))
(((( ))))sup

p glob

glob p
glob

P p
µ

µ
µ

D C
D

C

¬¬¬¬

¬¬¬¬

∩∩∩∩
= == == == =  

As p p¬ ⊥ ⊥¬ ⊥ ⊥¬ ⊥ ⊥¬ ⊥ ⊥∩ ⊇ ∩∩ ⊇ ∩∩ ⊇ ∩∩ ⊇ ∩D D D D , sup infP P≥≥≥≥  stands. It can 
also be shown that infP  and supP  are dual: 

 pD  pD  

pD¬¬¬¬  ⊥  p¬¬¬¬  

pD¬¬¬¬  p  ??? 
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(((( )))) (((( ))))
(((( )))) (((( ))))

(((( ))))
(((( ))))
(((( ))))

inf sup

1

p glob p glob

glob

glob

glob

P p P p
µ µ

µ
µ
µ

D C D C

C

C

C

∩ + ∩∩ + ∩∩ + ∩∩ + ∩
+ ¬ =+ ¬ =+ ¬ =+ ¬ =

= == == == =

 

4.3     Simplifications 

Unfortunately, there is not at disposal enough 
means to instantiate the different sets that are 
manipulated with the demonstrations, and even 
if there were, there would be big difficulties to 
compute the set intersections and unions. Usu-
ally, the best that can be done is to estimate the 
objective measure of the demonstration reliabil-
ities: (((( ))))i irµ R ==== , and declare some relations 

between the demonstration sets: i j∩ = ∅R A . In 
order to get the inferior and superior probabili-
ties computable, the following two default rela-
tions are considered: 

With no better information, if a global context 
globC  implies the use of a demonstration d  with 

applicability dA , then glob d⊆C A  stands. In 
other words, if the context implies the syntactic 
application of a rule, then, by default, the appli-
cability is granted. 

The atomic sets are the sets that are not com-
pounded. Basically, the contexts implied by 
events and the hypotheses reliabilities and appli-
cabilities are the atomic sets that are considered 
in this paper. With no better information, the 
atomic sets are considered independent between 
them, which corresponds to the maximum en-
tropy. As a consequence, if kG  are atomic sets 
that have no specific relation between them, the 
following relation stands: 

(((( ))))k k

kk

µ µG G∩
    

====        
    

∏∏∏∏  

4.4     Evaluation Algorithm 

The following fraction has to be calculated: 

   (((( )))) (((( ))))
(((( ))))inf
p glob

glob
P p

µ
µ
D C

C

∩∩∩∩
====  

The goal of the algorithm is to evaluate the nu-
merator and the denominator of the fraction.  

The first stage of the algorithm is the develop-
ment of the numerator and the denominator in 

atomic sets. The following well-known relations 
between sets are sufficient: 

  A B A B∪ = ∩∪ = ∩∪ = ∩∪ = ∩  

  ( ) ( ) ( )µ µ µA B B A B∩ = − ∩∩ = − ∩∩ = − ∩∩ = − ∩  

So, by developing the formula, the following 
sum (or a difference) of measures is obtained, 
where k∩  denotes an intersection of atomic sets: 

 (((( ))))
k

kµ
∩

∩±±±±∑∑∑∑  

The second stage deals with incompatibilities 
that show in the k∩  intersections. If an incom-
patibility is known as in the 4.1 section exam-
ple, then: 

   { }k globw⊆ ∩ = ∅C∩ ⊥⊥⊥⊥  

⇒  ( ) 0kµ =∩  

The third stage deals with remaining applicabil-
ity sets, on which there is no information about 
the measure. The fact that glob d⊆C A  is used in 
order to remove them from every k∩  equation, 
as justified in the 4.3 section. The k∩  sets con-
sist of intersections of reliabilities and contexts 
implied by events only: 

  k i e

i e

R C∩ ∩ ∩= ∩= ∩= ∩= ∩  

At the fourth stage, as explained in the 4.3 sec-
tion too, the sets that remain in every k∩  inter-
section are considered as independent. Then, the 
fraction reduction can be executed by removing 
the contextual factors from numerator and de-
nominator. Indeed the context sets are present in 
every intersection k∩ . 

For the fifth stage, only atomic reliability meas-
ures remain and their measures are informed by 
the rules and now, the probability can be nu-
merically evaluated. 

4.5     Example 

The 4.1 section example is carried and the sys-
tem learns in addition that there is a problem on 
the line (automatic test) and that the box may be 
not connected (the user told he was not sure):  

Ι   line internet¬¬¬¬ ⇒⇒⇒⇒ ¬¬¬¬  RI  AI  

ΙI   internet cb¬¬¬¬ ⇒⇒⇒⇒ ¬¬¬¬  RII  AII  
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ΙII   line¬¬¬¬  RIII  AIII  

ΙV   cb¬¬¬¬  RIV  AIV  

Where cb denotes that the box is well con-
nected. 

The following additional knowledge still stands: 

 ∩ = ∅∩ = ∅∩ = ∅∩ = ∅A RI II  

The following inferences are generated:  

V I II= += += += +  line cb¬¬¬¬ ⇒⇒⇒⇒ ¬¬¬¬  RV  AV  

VI I III= += += += +  internet¬¬¬¬  RVI  AVI  

VII VI II= += += += +  cb¬¬¬¬  RVII  AVII  

VIII V III= += += += +  cb¬¬¬¬  RVIII  AVIII  

The illustration is made on the evaluation of the 
inferior and superior probabilities of cb. 

There is no demonstration of cb. Therefore, the 
infP  calculation is direct: 

 

(((( )))) (((( ))))
(((( ))))

{{{{ }}}}(((( ))))
(((( ))))

inf

0

cb glob

glob

glob

glob

P cb

w

µ
µ

µ
µ

D C

C

C

C

∩∩∩∩
====

∩∩∩∩
= == == == =

⊥⊥⊥⊥

 

The calculation of the superior probability is 
more interesting. There are three different dem-
onstrations of cb¬¬¬¬ : ΙV , VII  and VIII . Intui-
tively, the VII  and VIII  demonstrations are 
identical and not even valid because of the in-
compatibilities between AI  and RII . The sec-
tion 4.4 algorithm is applied as follows. 

At the first stage, the numerator and the de-
nominator are expanded separately. They are 
respectively called num and den in the rest of 
the section. First globC  and cb¬D  are expanded: 

glob e

e

e

e

⊥⊥⊥⊥= ∩= ∩= ∩= ∩

====

C D C

C

∩

∩
 

(((( ))))
(((( ))))(((( ))))

(((( ))))
(((( ))))
(((( ))))

cb h h

d D cb h H d

D R A

R A

R A R A R A

R A R A R A

R A R A R A R A

IV IV

I I II II III III

I I II II III III

I I II II III III IV IV

∪ ∩¬¬¬¬

∈ ¬ ∈∈ ¬ ∈∈ ¬ ∈∈ ¬ ∈

    
    = ∩= ∩= ∩= ∩
    
    

= ∩= ∩= ∩= ∩

∪ ∩ ∩ ∩ ∩ ∩∪ ∩ ∩ ∩ ∩ ∩∪ ∩ ∩ ∩ ∩ ∩∪ ∩ ∩ ∩ ∩ ∩

∪ ∩ ∩ ∩ ∩ ∩∪ ∩ ∩ ∩ ∩ ∩∪ ∩ ∩ ∩ ∩ ∩∪ ∩ ∩ ∩ ∩ ∩

= ∩ ∩ ∩ ∩ ∩ ∩ ∩= ∩ ∩ ∩ ∩ ∩ ∩ ∩= ∩ ∩ ∩ ∩ ∩ ∩ ∩= ∩ ∩ ∩ ∩ ∩ ∩ ∩

 

 

Where (((( ))))D cb¬¬¬¬  is the set of the demonstrations 

that demonstrate cb¬¬¬¬  and (((( ))))H d  is the set of 

hypotheses used by the demonstration d . As a 
consequence, the following equations are ob-
tained for num and den. 

cb e

e

i cb i

i i

i i

i i

num µ

µ µ

µ µ

¬¬¬¬

¬¬¬¬

    
= ∩= ∩= ∩= ∩        

    

            
= − ∩= − ∩= − ∩= − ∩                        

            

            
= − ∩ ∩= − ∩ ∩= − ∩ ∩= − ∩ ∩                        

            

D C

C D C

C R A CIV IV

∩

∩ ∩

∩ ∩

 

i

i

i

i

µ

µ

    
− ∩ ∩ ∩ ∩ ∩ ∩− ∩ ∩ ∩ ∩ ∩ ∩− ∩ ∩ ∩ ∩ ∩ ∩− ∩ ∩ ∩ ∩ ∩ ∩        

    

    
+ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩+ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩+ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩+ ∩ ∩ ∩ ∩ ∩ ∩ ∩ ∩        

    

R A R A R A C

R A R A R A R A C

I I II II III III

I I II II III III IV IV

∩

∩

i

i

den µ C∩
    

====         
    

 

The reader can notice that the VII  and VIII  
demonstrations form already one, and that sub-
sumption effort can be made either into the lo-
gics or during evaluation. 

The second stage deals with incompatibilities. 
The only one is: ∩ = ∅∩ = ∅∩ = ∅∩ = ∅A RI II : 

i i

i i

num µ µC R A CIV IV∩ ∩
            

= − ∩ ∩= − ∩ ∩= − ∩ ∩= − ∩ ∩                        
            

 

The third stage removes the remaining applica-
bilities from the equations: 

i i

i i

num µ µC R CIV∩ ∩
            

= − ∩= − ∩= − ∩= − ∩                        
            

 

The fourth stage uses the independence assump-
tion to get:  

(((( )))) (((( )))) (((( ))))

(((( ))))

i i

i i

i

i

num

den

µ µ µ

µ

C R C

C

IV= − ×= − ×= − ×= − ×

====

∏ ∏∏ ∏∏ ∏∏ ∏
∏∏∏∏

 

Eventually the fraction can be simplified by 
removing the context factor and it provides the 
very simple equation for the superior probabil-
ity: 

(((( )))) (((( ))))sup 1P cb µ RIV= −= −= −= −  
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6     Comparison with State-of-the-Art 

6.1     The Evidence Theory 

The Evidence Theory [7], [8] does not model 
any equivalence to the applicability concept. It 
is the reason why Pearl [5] addressed the criti-
cism about the lack of handling of default rules. 
Apart from the applicability, there is equiva-
lence with the LFPR. 

The demonstration concept of the LFPR is noth-
ing else than a mass assignment where the set E  
corresponds to the support in the set of worlds 
W  of the demonstration proposition p , and 

where the mass (((( ))))m E  corresponds to the dem-

onstration reliability R . Analogously, any mass 
assignment m  can be emulated into the LFPR 
with the following procedure: for every set 

2WE ∈∈∈∈  such that (((( )))) 0m E ≠≠≠≠ , a demonstration dE  

has to be created, such that the proposition pE  it 
demonstrates is the logical description of E , 
such that its reliability ER  has a measure equal 
to (((( ))))m E  and is separated1 from any other dem-

onstration reliability that has been generated 
from the mass assignment m  and independent 
from any other demonstration reliability that has 
been generated from another mass assignment, 
and such that its applicability EA  is equal to W . 

The Evidence Theory approach is focused on the 
mass assignment although the LFPR approach 
focuses on the logics and the inference. Thus, 
when LFPR measure µ  is constant and does not 
depend on the observations2, the Evidence The-
ory mass assignment is updated after each new 
observation and the belief functions correspond 
to the contextual measure globµ . 

6.2     The Theory of Hints 

The main idea of de Kleer while inventing the 
ATMS [9], [10], [11] was to enable the reason-
ing under assumptions. The ATMS assumptions 
respectively correspond to the LFPR hypothe-
ses. The role of the ATMS is to compute the set 
of assumptions that are necessary for the deriva-

                                                      
1. ∩ = ∅∩ = ∅∩ = ∅∩ = ∅E FR R  

2. The observations provide the system with 
measures ( )µ R . This is information about the 
measure, not an evolution of the measure 

tion of a given node that is labelled with a 
proposition. The set of assumptions is actually a 
union of intersections of assumptions. The union 
part shows that the node proposition can be in-
ferred from different justifications and the inter-
section part comes from the combination of 
assumptions necessary for one justification. 
There is a lot of similarity in both approaches 
but this paper studies more precisely the analogy 
with the ATMS inspired Theory of Hints of 
Kohlas and Monney 

The purpose of the Theory of Hints [12] is to 
merge the Evidence Theory with ATMS. The 
main idea was to include the uncertainty through 
the anomaly concept within the logics. The ex-
ample of section 4.5 becomes in the Theory of 
Hints: 

Ι  line internet¬¬¬¬ ⇒⇒⇒⇒ ¬¬¬¬  

ΙI  1internet cb a¬¬¬¬ ⇒⇒⇒⇒ ¬ ∨¬ ∨¬ ∨¬ ∨  

ΙII  2line a¬ ∨¬ ∨¬ ∨¬ ∨  

ΙV  3cb a¬ ∨¬ ∨¬ ∨¬ ∨  

V  1line a¬¬¬¬ ⇒⇒⇒⇒  

Rule V  basically says: line¬¬¬¬  is an exception to 
rule ΙI . The generated rules are the following 
ones: 

= += += += +VΙ I II  1line cb a¬¬¬¬ ⇒⇒⇒⇒ ¬ ∨¬ ∨¬ ∨¬ ∨  

= += += += +VΙI VI III  1 2cb a a¬ ∨ ∨¬ ∨ ∨¬ ∨ ∨¬ ∨ ∨  

= += += += +VΙII III V  1 2a a∨∨∨∨  

= += += += +ΙX I III  2internet a¬ ∨¬ ∨¬ ∨¬ ∨  

= += += += +X IX II  1 2cb a a¬ ∨ ∨¬ ∨ ∨¬ ∨ ∨¬ ∨ ∨  

Eventually VIII  subsumes VII  and X . The 
role of the applicability is the same as the rule 
V : to model the context implied by the use of 
the rule Ι . When the LFPR constraints the con-
text with meta-knowledge, the Theory of Hints 
does it into the logic, and both frameworks fi-
nally come to the same results. The difference 
between the two theories mainly concerns the 
approach and the complexity: in the Theory of 
Hints, the logics are overloaded with anomalies 
although in the LFPR, one has just to remember 
the hypotheses that have been done to make 
every assumption. The complexity on request is 
greater in the LFPR because the dependencies 
calculations have not been done during the logi-
cal inferences contrary to the Theory of Hints. 
The interest of the LFPR approach is to compute 
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the complex dependency only when requested. 
There is almost no raise of complexity between 
a classical logical inference engine and the 
LFPR engine during the demonstration genera-
tion. The only raise comes from the subsump-
tion tests that are more complex in LFPR than in 
a basic engine with no uncertainty capabilities. 

7     Conclusion 

This article presented a new framework, the 
Logical Framework for Probabilistic Reasoning 
(LFPR). This framework is based on logics, but 
it can be considered as an extension of the Evi-
dence Theory, and it obtains the comparable 
results with the Theory of Hints. We motivated 
the choice and the interest of this theory in the 
particular application field: Dialogue Systems. 

In the future, we plan to add learning ability to 
the LFPR, by designing a back propagation of 
rewards through the inference graph. 
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