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Abstract 

Computationally recognizing causal re-
lationships in data is fundamentally im-
portant to good decision-making. There 
are vast amounts of computer stored, 
multi-faceted data. Understanding how 
stored data items affect each other is cru-
cial in making good decisions. The most 
important decisional information is an 
understanding of causal relationships. A 
method to discover causality from large, 
observational data sets would be trans-
formative. Broadly effective computa-
tional methods are computationally un-
tested. 

An abundance of digital data riches 
promise a profound impact in both the 
quality and rate of discovery and innova-
tion in science and engineering, as well as 
in other societal contexts.  Worldwide, re-
searchers are producing, accessing, ana-
lyzing, integrating and storing massive 
amounts of digital data daily, through ob-
servation, experimentation and simula-
tion, as well as through the creation of 
collections of digital representations of 
tangible artifacts and specimens.  Modern 
experimental and observational instru-
ments generate and collect large sets of 
data of varying types (numerical, video, 
audio, textual, multi-modal, multi-level, 
multi-resolution) at increasing speeds.  
Often, the data users are not the data pro-
ducers, and they thus face challenges in 
harnessing data in unforeseen and un-
planned ways.  In many science or engi-
neering applications, for example, in 

mesoscale weather prediction or critical 
infrastructure protection applications, the 
ability to gather, organize, analyze, 
model, and visualize large, multi-scale, 
heterogeneous data sets in rapid fashion is 
often crucial. 
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1 Introduction 
The ability to recognize and develop causal rela-
tionships is essential for reasoning; it forms the 
basis for learning to act intelligentially in the 
world. Knowledge of causal relationships provides 
a deep understanding of a system; and, potential 
control over the system coming from the ability to 
predict action’s consequences that have yet to be 
performed. Starting with the ancient Greeks, phi-
losophers, mathematicians, computer scientists, 
cognitive scientists, psychologists, and others have 
formally explored questions of causation.  

The recognition of causal relationships from ob-
servational data, while sought for generations, is 
still very unsatisfactory. Most investigators no 
longer believe in the efficacy of astrology or in 
reading animal entrails; but an alternative, broadly 
effective methodology has yet to be developed. 
Causality has been widely considered by the earli-
est recorded investigators such as Zeno [28] and 
Plato [14]. However, little has been done to com-
putationally recognize causality in large amounts 
of observational data.  

Causal relationships exist in the commonsense 
world. When a glass is pushed off a table and 
breaks on the floor, we might say that being 
pushed from the table caused the glass to break. 
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(Although, being pushed from a table is not a cer-
tain cause of breakage; sometimes the glass 
bounces and no break occurs; or, someone catches 
the glass before it hits the floor.) More weakly, 
counterfactually, not falling to the floor may pre-
vent breakage. (Sometimes, a glass breaks when it 
is tipped over on the table.) So, knowledge of at 
least some causal effects is imprecise. Perhaps, 
complete knowledge of all possible factors might 
lead to a crisp description of whether an effect will 
occur. However, in our commonsense world, it is 
unlikely that all possible factors can be known 
with certainty. 

This lack of complete, precise knowledge should 
not be discouraging. We do things in the world by 
exploiting our commonsense perceptions [27] of 
cause and effect. When trying to precisely reason 
about causality, we need complete knowledge of 
all of the relevant events and circumstances. In 
commonsense, every day reasoning, we use ap-
proaches that do not require complete knowledge. 
Often, approaches follow what is essentially a sat-
isficing [23] paradigm.  

2 Complexes 
When events happen, there are usually other re-
lated events. The entire collection of events can be 
called a complex. The events can be called the 
elements of the complex. 

A mechanism [24] or a “causal complex” [3] [4] is 
a collection of events whose occurrence or non-
occurrence results in a consequent event happen-
ing. A causal complex is the complete set of events 
and conditions necessary for the causal effect 
(consequent) to occur. Hobbs [3] suggests that us-
ing a causal complex does not require precise, 
complete knowledge of the complex.  

Each complex can be considered to be a granule. 
Larger complexes can be decomposed into smaller 
complexes. Thus, going from larger-grained to 
smaller-grained. For example, in Figure 1, the 
largest-grained event is the sole causal element: 
turn on the ignition switch. The complex of other 
elements represents the finer-grains. These ele-
ments in turn could be broken down into still finer-
grains; for example, available fuel can be broken 

down into:  fuel in tank, working fuel pump, intact 
fuel lines. 
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Figure 1. Nested causal complex. 

3 Relationship Between Granularity and 
Imprecision  

Causality is often granular. This is true both for 
commonsense reasoning as well as with more 
formal mathematical and scientific theories. At a 
very fine-grained level, the physical world itself 
(including time) may be granular (at least if 
modern string theory is correct).  

Commonsense causal perceptions are often 
granular. Some causal events may be larger-
grained while some supporting causal structures 
may be described as relatively fine-grained. In 
turn, there may be still finer identifiable causal 
elements. Each successively finer level may be 
thought of as a nested granular causal structure. 
Larger-grained causal objects are necessarily more 
imprecise as some of their constituent components. 
Some components of a larger-grained causal object 
may be precisely known, while others maybe be 
imprecise, and others unknown. The larger the 
grain, the greater is the likelihood that there might 
be underlying missing or unknown supporting 
components.  

How to algorithmically evaluate the impreciseness 
of a larger-grained causal object when some of the 
underlying components are imprecise is not clear. 
Perhaps, some form of type-II fuzzy logic [11] ma-
nipulation might be helpful. A more detailed 
discussion of granularity and causality may be 
found in Mazlack [10]. 

4 Coincidence Is Not Causation 

4.1 Statistics 
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The use of statistics has enabled investigators to 
have an idea of what items have a better chance of 
co-occurring. However, coincidence is not causal-
ity. For example, when someone shops in a food 
store, there is a relatively good chance that both 
bread and milk will be purchased during the same 
store visit; but, the inter-item causal relationship is 
minimal. Alternatively, when strawberries and 
whipped-cream are both purchased during the 
same store visit, the inter-item causal relationship 
has some strength.  

The standard method in the experimental sciences 
of recognizing causality is to perform randomized, 
controlled experiments. Depending on their design, 
randomized experiments may remove reasons for 
uncertainty whether or not a relationship is casual. 
However, the very large, non-experimental data 
that need to be examined are not the product of 
controlled experiments. Some work has been done 
using statistical testing to reduce the search space 
in non-experimental data [1] [21]. 

4.2 Association Rules 
There are several different data mining products 
that are sometimes naïvely considered to be causal 
[9]. The most common are association rules. 

Customers who 
buy beer and sausage 

also tend to buy hamburger 
with {confidence = 0.7} 
in {support = 0.2} 

Figure 2. Example of an association rule 

At first glance, association rules, seem to imply a 
cause-effect relationship; that is:  

A customer’s purchase of both sausage and 
beer causes the customer to also buy 
hamburger. 

But, all that is discovered is the existence of a sta-
tistical relationship between the items. They have a 
degree of joint occurrence. The nature of the rela-
tionship is not specified. It is not known whether 
the presence of an item or sets of items causes the 
presence of another item or set of items; or the 
converse, or some other phenomenon causes them 
to occur together. 

Purely accidental relationships are not nearly of 
the same level of interest as causal relationships. 
For example, if it is true that buying both beer and 
sausage somehow causes someone to buy 
hamburger, then a merchant might profitably put 
beer (or sausage) on sale and then increase the 
price of hamburger to compensate for the sale 
price. On the other hand, knowing that bread and 
milk are often purchased together may not be use-
ful information as both products are commonly 
purchased on every store visit.  

One of the reasons why association rules are de-
veloped is to aid in making retail decisions. How-
ever, simple association rules may lead to errors. 
Errors might occur; either if causality is recog-
nized where there is no causality; or if the direc-
tion of the causal relationship is wrong [21] [7]. 

5 Existing Causal Recognition Methods  

5.1 Positive Causation 
There are different approaches to causality. The 
idea of “positive” causation (α → β) is at the core 
of common sense causal reasoning. Often a posi-
tive causal relationship is represented as a network 
of nodes and branches [6]. 

5.2 Counterfactuals 
Negation or counterfactuals (¬α → ¬β) have a 
place; although it may result in errors in reasoning. 
For example:  

If a person drinks wine, they may become 
inebriated.  

cannot be simply negated to  
If a person does not drink wine, they will not 
become inebriated. 

Generally, counterfactual reasoning can play a 
useful role in causal reasoning [Ortiz, 1999]. 
Counterfactuals can represent useful tools for 
identifying the role that an event plays in a collec-
tion of events. Unfortunately, because of compu-
tational needs, their use in non-experimental data 
is limited [26].  

Effects can be over determined [16]; that is: more 
than one item can cause an effect. In the previous 
case,  
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If a person drinks wine, they may become 
inebriated.  

people may, at the same time, also may be  
Drinking beer and become inebriated whether 
or not they do not drink wine.   

The issue of overdetermination, and the degree of 
overdetermination makes causal discovery more 
complex. 

5.3 Uncorrelatedness, Unresponsiveness 
Another idea that can be involved in causal reason-
ing is causal uncorrelatedness [18]; where if two 
variables have no common cause they are causally 
uncorrelated. This occurs if there are no single 
events that cause them to both change.  

Similarly, Dawid [2] speaks in terms of unrespon-
siveness and insensitivity when β is unresponsive 
to α whatever the value of a might be set to, β will 
be unchanged. Along the same vein, Shoham [19] 
[20] distinguishes between causing, enabling, and 
preventing.  

5.4 Graph Based Methods 
Various graph-based methods have been suggested 
to recognize causality. Probably the best known is 
the class of Bayesian based methods based on Di-
rected Acyclic Graphs (DAGs). The most fully 
developed approach is Pearl [13]. Silverstein [21] 
[22] followed a similar approach. (Other graph-
based methods include [Khoo, 2000] [5] [Po-
gliano, 1995].) The constraints on DAGs are: 

• The causal relationship is acyclic 
• The Markoff condition holds 
• Granularity is fixed 
• Significant random events do not occur 
• Data and events can be precisely and 

unambiguously described 

Pearl [12] and Spirtes [25] make the claim that it is 
possible to infer causal relationships between two 
variables from associations found in observational 
(non-experimental) data without substantial do-
main knowledge. Spirtes [25] claims that directed 
acyclic graphs can be used if (a) the sample size is 
large and (b) the distribution of random values is 
faithful to the causal graph. Robins [15] argues 
that this is incorrect. Lastly, Scheines [17] claims 

that only in some situations will it be possible to 
determine causality. Besides the constraints on the 
DAGs, the directed graph methods all have similar 
liabilities, specifically: 

• Discrete or continuous data must be reduced to 
Boolean values.  

Objection: This is an early technique that was 
and is used in data mining when analyzing 
market basket data. However, it is essentially 
flawed. Quantities do matter; some data co-oc-
currences are conditioned on there being a 
sufficiency of a co-occurring attribute. Also, 
some relationships may be non-linear based on 
quantity. For more extensive examples, see 
Mazlack [9] 

• Completeness: There is no missing data.  
Objection: There is almost always missing data 
of some sort. Data collection is rarely fully 
representative and complete. Incremental data 
is often acquired that is at variance with previ-
ously acquired data. What is needed is a meth-
odology that is not brittle in the face of 
incompleteness. 

5.5 DAG Liability: Cyclic Graphs Exist 
Directed Acyclic Graphs (DAGs) only work if 
causal relationships are not cyclic, either directly 
or indirectly (through another attribute).  

This is at variance with our commonsense un-
derstanding of the world. While some causal 
situations may be acyclic, clearly others are cyclic.  

General cycles can occur [6] [8]. Non-cyclic 
elements can influence cyclic elements. Depending 
on the conditioning of the cyclic nodes, the causal 
path might remain within the cycle, or it might 
branch out. There may or may not be a cumulative 
effect (feedback). 

Figure 3 illustrates a cumulative effect cycle that 
has external input. The depression cycle could also 
be linked to a cycle increasing the significant 
other’s lack of interest as depression increased. 
(This would also be another factor that would 
increase the depression intensity.) 
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Figure 3. Cyclic causal dependency with 

cumulative effect. 
 
Possibly the cycle might be collapsed to an impre-
cise larger grained single node labeled depression. 
The down side of doing this is that the cyclic na-
ture of depression would be obscured. As indi-
cated earlier, the price of greater grain size, is 
greater imprecision. 

 
Figure 4. Previous figure’s cycle nested into 

greater-grained representation. 

5.6 Problems Meeting The Markov 
Conditions  

There are situations where the Markoff time 
independent and memoryless conditions are not 
met, and consequently DAGs cannot be used.  

• Markov Stationary Condition holds (Probabilities 
are time independent).  

Objection: This does not correspond to our 
commonsense understanding of the world. If 
one event is dependent on two other causal 
events, if one causal event happens much ear-
lier (or later) than the other causal event, we 
may well have a different result. 

hot food
delivered

A B

guests
arrive

C

satisfactory dinner party  

Figure 5. Case where differing times in causal 
events affects probability of causal result. 

• The Markoff Condition (Memoryless) holds: Let 
A be a node in a causal Bayesian network, and let 
B be any node that is not a descendant of A in the 
network. Then the Markoff (Markov) condition 
holds if A and B are independent, conditioned on 
the parents of A. The intuition of this condition 
is: If A and B are dependent, then B must either 
be (a possibly indirect) cause of A or (possibly 
indirectly) caused by A. In the second case, B is a 
descendant of A, while in the first B is an ances-
tor of A and has no effect on A once A’s immedi-
ate parents are fixed. This makes sense in the ex-
ample shown in Figure 6. 

history of 
smoking

A

E

lung
cancerC

fatigue

B
chronic

bronchitis

D

mass seen on
chest X-ray  

Figure 6. “Memoryless” Markoff condition holds 

However, not all commonsense perceptions of 
causality work this way. Often, we believe that 
history matters as in the presumptive stereotypical 
example shown in Figure 7. 

E

C

D

A B

student works 
to pay for 

undergraduate 
education

affluent
parents pay
for undergraduate
education

graduate 
school

study 
engineering

study 
philosophy  

Figure 7. Causality where memory plays a part. 
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6. LONG TERM GOALS  

The long term goal of the work is to discover (data 
mine) causal relationships in stored, observational 
data.  

There are several specific aims: 

• Determine whether cyclic causal relationships 
can be recognized.  

It has proven to be difficult to recognize any 
causal relationships, acyclic or cyclic, so far 
there are no successful efforts to identify cyclic 
causal relationships. It is clear that they exist. 
However, it is not clear whether a causal cycle 
can be recognized from data, even if it exists. 

• Determine whether optimum grain size can be 
discovered:  

Discover whether it is possible to (a) discover 
whether the grain size of causal complexes can 
be recognized and subsequently (b) whether an 
optimum grain size can be determined. 

• Determine whether undefinability can be 
managed:  

Can issues of undefinability and imprecision be 
recognized and defined? Can it be recognized 
when specific tools such as fuzzy sets or rough 
sets can be used to manage imprecision? 

These issues are distinct in the sense that they in-
volve at least potentially distinguishable questions. 
Resolving one does not require resolving another; 
however, resolving at least one could lead to a 
worthwhile follow-on investigation. 

7. Epilogue 
New methods are required that create knowledge 
and understanding from an abundance of digital 
data across the science and engineering frontier, 
and that accelerate the transformation of knowl-
edge into new products and services that stimulate 
economic growth as well as other societal benefits. 

Recognizing causality in very large digital data 
sets would place us on the threshold of a transfor-
mation in our understanding of the world around 
us. This promises a profound impact on the ability 
to generate and apply new knowledge.  In addition, 
this will stimulate further advances in computa-
tional thinking. 

The research outcomes will produce paradigm 
shifts in our understanding of a wide range of sci-
ence and engineering phenomena and socio-tech-
nical innovations. 
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