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Abstract

Microarray technology allows to
measure the expression of thou-
sands of genes simultaneously, and
under tens of specific conditions.
Clustering and Biclustering are the
main tools to analyze gene expres-
sion data, since they reveal genes
with the same behavior across sam-
ples. In this paper we present
three novel approaches for Cluster-
ing and Biclustering based on Es-
timation of Distribution Algorithms
(EDA) and Principal Components
Analysis. The goal is to find non-
exclusive (potentially overlapping)
groups of genes with similar beha-
vior and maximum between-sample
variance. We tested the proposed
methods on two real datasets, out-
performing previous results in terms
of quality and size of revealed pa-
tterns.

Keywords: Microarray, Clustering,
Biclustering.

1 Introduction

Microarray technology makes use of the se-
quence resources created by the genome
projects to monitor the expression of thou-
sands of genes in particular cell samples, times
and conditions.

A microarray is a slide on which single-
stranded DNA molecules are attached at fixed

locations called spots. There can be thou-
sands of spots on a single microarray, each one
containing a huge number of identical DNA
molecules which identify one gene. The hy-
bridization experiment consists on dying the
total mRNA from a cell sample with a fluores-
cent label and washing it over the microarray.
These labeled gene products hybridize to their
complementary sequences in the spots. The
fluorescence emitted from each spot when the
microarray is excited by a laser, allows to
measure the amount of sample bounded to the
DNA of the spot.

Gene expression profiles are usually presented
in a matrix An×m where rows represent genes,
columns represent different cell situations un-
der study, and each element aij indicates the
expression level of gene i under condition j.
Thereby microarray data provide a global pic-
ture of the cell activities and open the way to
a high-level understanding of its behavior.

Previous work on Clustering
The potential of clustering to reveal patterns
in microarray data was shown by Eisen et
al. [7], who applied hierarchical clustering
to identify functional groups of genes. After
that, many other approaches have been pro-
posed to cluster microarray data (for a review
see [10]). Clustering methods group genes
which have similar expression levels across
conditions (co-expressed genes). Genes in the
same cluster respond similarly in different cir-
cumstances, so they are likely to share a com-
mon function.

However, traditional approaches group genes
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into mutually exclusive clusters, whereas in
the real biological system a gene may play
multiple roles in different biological processes.
To address this, several methods have been
proposed ([9], [6]). Our work is largely mo-
tivated by the algorithm Gene Shaving [9],
which has become one of the most widely-
extended algorithms for the analysis of mi-
croarray data. Gene Shaving searches for
potentially-overlapping coherent clusters with
high variance across samples (i.e. high row
variance). Therefore, provided clusters be-
come very useful for identifying distinct types
of samples and studying the biological pro-
cesses which may cause these differences in
the behavior of the genes.

However, there can be tens of heterogeneous
conditions in one expression matrix, so look-
ing for genes behaving similarly in all the con-
ditions can lead us to miss relevant and inte-
resting patterns. Biclustering has emerged as
a suitable method to solve this limitation as it
allows to identify groups of genes co-expressed
under subsets of samples.

Previous work on Biclustering
Let R = {1..n} and C = {1..m} be the set
of rows and columns of An×m. A bicluster
B is defined as a submatrix B = AIJ of
An×m, with values correlated according to a
certain criterion. Particularly, we are inte-
rested in coherent groups of genes which be-
have very differently across conditions, follo-
wing the model proposed by Hastie et al. [9].
Finding maximal size biclusters in a matrix is
a NP-complete problem [15], hence almost all
the existing algorithms use heuristics appro-
aches ([12, 16, 4], for a review see [13]).

The only previous work which address the
identification of coherent biclusters with ma-
ximum variance is the work by Aguilar and
Divina [1]. They propose a Genetic Algorithm
(GA) for identifying non-overlapping coherent
biclusters with maximum variance across con-
ditions. However, their quality measure re-
quires the establishment of a threshold (upper
bound) δ for the coherence of the bicluster
which requires some prior knowledge which
depends on the dataset.

The aim of this paper is to present three
new algorithms (one for Clustering and two
for Biclustering) for identifying potentially-
overlapping groups of genes with the maxi-
mum variance across samples. Section 2 de-
scribes the first proposed approach: Gene-&-
Sample Shaving, which uses Principal Com-
ponent Analysis to identify biclusters, ex-
tending the Gene Shaving algorithm pro-
posed by Hastie et al. [9]. In section 3
we propose a novel framework for clustering
and biclustering using Estimation of Distribu-
tion Algorithms: EDA-Clustering and EDA-
Biclustering. Section 4 shows the results ob-
tained by the proposed approaches on two
real microarray datasets. Finally, section 5
presents conclusions and future work.

2 Identifying max-variance
patterns with Principal
Components

2.1 Initial Approach: Gene Shaving

Rather than simply looking for genes with
similar expression patterns, Gene Shaving
searches for coherent clusters with high vari-
ance across samples [9]. The algorithm takes
the expression matrix An×m and the number
of desired clusters M as input. Let Sk be a
cluster of k genes and

aSk = (
1
k

∑
i∈Sk

ai1,
1
k

∑
i∈Sk

ai2, ...,
1
k

∑
i∈Sk

aim)

(1)
be the collection of m column averages of the
expression values for this cluster.

For every cluster size k, the algorithm seeks a
cluster Sk having the highest variance of the
column averages, i.e. arg max var(aSk). For
obtaining this cluster, Gene Shaving gener-
ates a sequence of nested clusters:

Sn ⊃ ... ⊃ Ski ⊃ Skj ⊃ ... ⊃ S1 (2)

of decreasing size, starting with k = n, the
total number of genes, and finishing with
k = 1 gene. At each stage the largest prin-
cipal component of each cluster of genes is
computed. This eigen-gene is the normalized
linear combination of genes with the largest

Proceedings of IPMU’08 691



variance across the samples. Then we dis-
card a fraction (α ∈ [0, 1]) of the genes ha-
ving lowest correlation (lowest absolute inner-
product) with this eigen-gene, obtaining the
next nested cluster. The process is repeated
until we get a cluster with one gene.

Once the nested sequence of clusters has been
completed, the algorithm selects one cluster
from the sequence. This selection is done by
calculating, in analogy with ANOVA (Ana-
lysis of Variance), the following measures of
variance for each cluster Sk:

VW = 1
m

∑m
j=1[ 1

k

∑
i∈Sk(aij − aj)2]

VB = 1
m

∑m
j=1(aj − a)2

VT = 1
k×m

∑
i∈Sk

∑m
j=1(aij − a)2 = VW + VB

(3)

Where aj = 1
k

∑
i∈Sk aij in all the expressions

above.

The Within Variance (VW ) measures the vari-
ability between the genes of the cluster (co-
hesion of the cluster). The Between Vari-
ance (VB) is the variance of the mean gene
of the cluster (variance across samples). To
minimize the VW and maximize the VB, the
percentage of variance explained (R2) is com-
puted:

R2 = 100
VB
VT

=
VB
VW

1 + VB
VW

(4)

So large R2 values imply high values of VB and
low values for VW . To know whether a value
of R2 for a given cluster Sk is larger than we
would expect by chance, i.e. if the rows and
columns of A were independent, Hastie et al.
proposed the GAP measure [9].

Let Dk be the R2 measure for Sk, and A∗b a
permuted data matrix, obtained by randomly
permuting the elements of each row of A. If
we form B such matrices, we can define GAP
as the function:

GAP (Sk) = Dk −D∗k (5)

Where D∗k is the R2 meanvalue for Sk in the
B randomly permuted matrices: A∗1, ..., A∗B.

Therefore, a large GAP value for Sk reveals a
relevant (non-spurious) pattern.

After selecting one cluster from the sequence,
A is orthogonalized with respect to the mean
of the selected cluster, promoting new pat-
terns to be revealed in further iterations.

2.2 Biclustering based on Principal
Components: Gene-&-Sample
Shaving

Gene-&-Sample Shaving is a novel approach
we propose for identifying biclusters with
max-variance patterns based on Principal
Components.

The main idea of the algorithm is to compute
the leading Principal Component (PC) for
both the rows and the columns of the expres-
sion matrix. The genes with the lowest corre-
lation with the eigen-gene (PC of the genes in
A) are removed in order to keep those genes
with maximum variance across samples (by
analogy with the Gene Shaving algorithm).
However, we also remove those samples which
present the highest correlation with the eigen-
sample (PC of the samples in A), hence keep-
ing the samples with minimum variance over
the genes. The latter is what we call Sample
Shaving. Combining the removal of genes and
samples (Gene Shaving and Sample Shaving)
we get coherent biclusters in which genes ex-
hibit very different behavior across samples.

Due to the fact that expression matrices
present much more genes than samples (typi-
cally thousands of genes and tens of samples),
the best results are obtained by firstly remov-
ing genes and then removing conditions from
the obtained clusters of genes. Thus, we apply
Gene Shaving to obtain a sequence of nested
clusters of genes (eq. 2) and then we perform
a Sample Shaving to the clusters of this se-
quence to convert them into biclusters. The
best bicluster found in this process (the one
with the highest GAP value) is returned.

After obtaining one bicluster, the original ex-
pression matrix is orthogonalized with respect
to the mean of the bicluster. This is done
to promote new signals to be revealed in fur-
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ther iterations, allowing potential overlapping
among signals.

3 Identifying max-variance
patterns with Estimation of
Distribution Algorithms

3.1 EDA-Clustering

As it can be noted, the generation of the
sequence of nested clusters in Gene Shav-
ing (eq. 2) is strongly driven by the vari-
ance of the genes across conditions, as genes
are shaved-off depending on their correlation
with the leading principal component. How-
ever, we are also interested in obtaining high-
coherence clusters and this criterion is not
directly used for obtaining the clusters se-
quence. It is only considered at the end of
the process, when the GAP statistic for every
cluster of the sequence is computed in order
to select one of them.

The Gene Shaving process can be seen as a
multiple-step Feature Subset Selection (FSS )
problem in which, given a set of genes Sk with
k ∈ [2, n], we want to select a subset with
k×(1−α) genes: Sk×(1−α) ⊂ Sk, which maxi-
mizes a given criterion. Gene Shaving uses the
variance of the cluster mean as optimization
criterion. We consider that maximizing GAP
function instead of between-sample variance
provides overall better results. Therefore, we
address the FSS problem of finding clusters
with high values for the GAP function with
Evolutionary Algorithms (EA) and particu-
larly with Estimation of Distribution Algo-
rithms (EDA), which have been proven to
have an excellent performance on highly com-
plex optimization problems [11].

Estimation of Distribution Algorithms
(EDAs) are a set of Evolutionary Algorithms
mainly characterized by the use of explicit
probability models to recover the information
of the selected individuals and to sample new
solutions [11]. In EDAs, there are neither
crossover nor mutation operators. Instead, a
probabilistic model is inferred from selected
individuals of the current generation, and
the new population of individuals is sampled

from the estimated distribution (see Figure
1).

Figure 1: Scheme of an EDA algorithm.

We implemented the Univariate Marginal Dis-
tribution Algorithm (UMDA) by Muhlenbein
[14], which considers the variables (i.e. genes)
to be independent. To represent the solutions,
each individual is coded as a binary string of
length n representing whether each gene is
selected in the cluster or not. The univari-
ate distribution for every gene can be com-
puted as the fraction of individuals from the
selected population DSe

l−1 (Figure 1) for which
that gene is selected.

We applied the UMDA algorithm to solve the
FSS problem following two different schemes:

• Single-step FSS: only one execution of
the EDA which takes the whole matrix
as input and directly generates a cluster
maximizing GAP.

• Multiple-step FSS: we can generate a
nested sequence of clusters (eq. 2) by se-
lecting/discarding, step by step, a frac-
tion of the remaining genes with an EDA
guided with the GAP function.

Both approaches provide good results as
shown in Section 4.1 1. To evaluate EDA per-
formance in comparison with other Evolution-
ary Algorithms, we also implemented a gener-
ational Genetic Algorithm (GA) with elitism
to perform the selection of genes into clusters

1The best results are obtained with Baker’s
stochastic universal sampling selection, |DSe

l−1| =
|Dl|/2, |Dl| = k · α/15 + 20 (see eq. 2), ]Iterations =
150 for the multiple-step approach and |Dl| = 200,
]Iterations = 200 for the single-step approach.
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maximizing GAP (GA-Clustering) 2. EDAs
showed overall better results than GA for this
problem as can be seen in Section 4.1.

3.2 EDA-Biclustering

We can extend the FSS problem we presented
in the previous section to the problem of bi-
clustering. To represent the solutions, each
individual is now coded as a binary string of
length n+m representing whether each gene
or sample is selected in the bicluster. We ap-
plied an UMDA algorithm to find the biclus-
ter with the highest GAP value following the
one-step scheme previously detailed 3. Re-
sults are shown in section 4.

4 Experimental Results and
Discussion

We test the proposed methods on two real
microarray datasets: the yeast cell cycle mi-
croarray data by Cho et al. [5] and the human
lymphoma data by Alizadeh et al. [2]. We
also implemented the Gene Shaving algorithm
and run it on the two datasets to perform a
comparison with the proposed methods 4. We
focus the comparison on the quality (GAP)
and size of obtained patterns.

We also analyze the biological significance of
these revealed patterns. For this end, we use
the Gene Ontology [8] and GO Term Finder
[3] to retrieve the most significant biological
processes associated to each cluster and bi-
cluster, extracting relevant and significant in-
sights from expression data. Particularly, we
compute the statistical significance of every
GO biological process in every group of genes,
calculating the associated p-value by using the
hypergeometric distribution and the Bonfer-
roni multiple-hypothesis correction [3].

2The best results are obtained with Baker’s
stochastic universal sampling selection, a crossover
operator which maintains the common values of
both parents and a BitFlip mutation operator.
Population size = k · α/15 + 20. Stop condition:
k · α · 12 + 500 calls to the fitness function reached.
Pcrossover = 0.9. Pmutation = 0.2.

3In this case, |Dl| = 300, ]Iterations = 300.
4Best results shown are obtained for α = 0.1.

4.1 Yeast dataset

Yeast dataset contains the expression levels
of 2879 yeast Saccharomyces cerevisiae genes
under 17 cell cycle conditions, covering ap-
proximately two full cell cycles [5].

Results comparison. Table 1 shows aver-
age GAP and size (number of genes) for 100
clusters obtained in ten executions of each al-
gorithm: Gene Shaving, GA-Clustering and
EDA-Clustering (with both multiple-step and
single-step schemes).

Table 1: Clustering results in yeast dataset.
Shown average GAP and size (with standard de-
viations in parenthesis) of obtained clusters.

Algorithm No. genes GAP
Gene Shaving 13.26 (10.33) 61.89 (23.87)
GA-Clustering 14.56 (4.01) 79.92 (3.8)

EDA-Clustering 15.3 (6.4) 81.87 (4.8)(multiple-step)
EDA-Clustering 35.53 (10.1) 72.64 (4.6)(single-step)

GA-Clustering and EDA-Clustering (both
single-step and multiple-step schemes) show
higher average GAP and size than Gene
Shaving. Based on a two tailed t-test, we
check that the improvements in terms of
GAP are statistically significant (p− value <
0.05) for GA-Clustering and EDA-Clustering
(multiple-step) with respect to the results ob-
tained by Gene Shaving. EDA-Clustering
(single-step) obtains good GAP values and
the largest clusters (the difference in terms
of cluster size is significant: p− value < 0.05
with respect to any other method). Figure 2
shows the GAP value and size of a subset of
the clusters obtained with each algorithm.

The proposed Biclustering algorithms outper-
form the above clustering results, as can be
seen in Table 2. Gene-&-Sample Shaving ob-
tains biclusters with higher GAP than Gene
Shaving (p − value < 0.01), thus obtain-
ing more detailed patterns of better qual-
ity. EDA Biclustering also outperforms both
EDA-Clustering algorithms in terms of GAP
(p − values < 0.01). Indeed, EDA Bicluster-
ing shows the best performance among all the
tested methods for this dataset.
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Figure 2: Scatter plot representing the GAP and
size of the clusters obtained with each algorithm.
For clarity, only the results of the first three ex-
ecutions (i.e. the first 30 clusters) are shown for
each algorithm.

Table 2: Biclustering results in yeast dataset.
Shown average GAP and size (with standard de-
viations in parenthesis) of obtained biclusters.

Algorithm No.genes No.cols GAP
Gene & Sample 11.5(7.5) 4.7(2.7) 86.6(8.4)Shaving

EDA Bic. 25.1(4.4) 6.7(2.6) 88.8(4.1)

Biological interpretation of the results
Using GO Term Finder we can assign the GO
term with the lowest p-value to every obtained
group of genes. Significant biological signals
are revealed when we consider high-GAP and
low-p-value clusters/biclusters (see Figure 3).
Likewise we can validate our algorithms and
interpret the results to extract new and reli-
able biological knowledge. For example, Fig-
ure 3(a) confirms the correspondence between
the biological process DNA metabolism, which
is the one with the lowest p-value for this
cluster, and the expression behavior of the
genes belonging to the cluster, which are over-
expressed in samples 2-3 and 10-12. These
samples are associated to the S phase of cell
cycle, in which DNA replication takes place
[5].

Figure 4 shows the gene expression patterns
from two biclusters obtained with
Gene-&-Sample Shaving and EDA Bicluster-
ing whose genes are significantly associated to
DNA metabolism and mitotic cell cycle, re-
spectively. Since biclustering algorithms do
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Figure 3: Clusters obtained with EDA-
Clustering. 3(a) Single-step EDA-Clustering. GO
term: DNA metabolism (P-value: 1.8x10−13).
GAP:83.38 . Size:50 genes. 3(b) Multiple-step
EDA-Clustering. GO term: Sulfur metabolism
(P-value: 7.2x10−15). GAP:83.4 . Size:14 genes.

not require the genes to behave the same un-
der all the samples, obtained patterns show
higher quality and involve more genes than
clustering results.

4.2 Lymphoma dataset

Lymphoma dataset contains the expression
levels of 4026 genes under 96 human tissue
samples, which are classified into 9 types of
lymphoma and healthy tissues [2].

Biclustering algorithms are specially suitable
to analyze this dataset since it contains a large
number of heterogeneous conditions and there
might be genes showing similar behavior in
only a subset of the samples, i.e. some types
of lymphomas. Thus, we focus on the pro-
posed biclustering algorithms to carry out the
analysis of this dataset.
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Figure 4: 4(a) Bicluster significantly associ-
ated to DNA metabolism obtained with Gene-
&-Sample Shaving. P-value: 2x10−10. GAP:
92.9 . Size: 48 genes, 6 samples. 4(b) Bi-
cluster significantly associated to mitotic cell cy-
cle, obtained with EDA Biclustering. P-value:
5.35x10−5. GAP: 86.32 . Size: 30 genes, 12 sam-
ples.

Results comparison Table 3 shows aver-
age GAP and size of 500 biclusters obtained
in ten executions of the algorithms Gene-&-
Sample Shaving and EDA Biclustering. We
also show Gene Shaving results for compara-
tive purposes. The proposed biclustering al-
gorithms outperforms Gene Shaving results in
terms of GAP (p − value < 0.05), with sim-
ilar number of genes per group. They also
show very low GAP dispersion which proves
the robustness of these methods.

Biological interpretation of the results
Genes from the human Lymphoma dataset
are poorly annotated in GO. This lack of
knowledge makes the obtained groups of genes
poor significant from a biological point of
view. However, this dataset contains differ-

Table 3: Biclustering results in Lymphoma
dataset. Shown average GAP and size (with stan-
dard deviations in parenthesis) of obtained biclus-
ters. Gene Shaving results are also shown for com-
parative purposes.

Algorithm No.genes No.cols GAP
Gene Shaving 13.3(96.6) 96 52.1(17.3)

Gene & Sample 10.9(7.3) 14.9(14.2) 83.9(6.9)Shaving
EDA Bic. 30.2(6.6) 17.9(4.5) 68.6(8.3)

ent types of samples we know a priori [2].
Therefore, we may also consider whether the
obtained biclusters help to discriminate the
different types of samples.

In order to determine if our results fit this
classification, we compute the statistical sig-
nificance of each type of condition in every
bicluster. This leads us to extract promis-
ing conclusions. For example, Figure 5 shows
the expression levels of genes in a bicluster
obtained with EDA Biclustering which sig-
nificantly represents conditions from Chronic
lymphocytic leukaemia (CLL), with a cor-
rected p-value of 1.4x10−05. These expres-
sion profiles show that the genes belonging
to this bicluster are under-expressed in the
samples associated to this type of leukaemia
(samples numbered from 83 to 94) and the
same genes are over-expressed in conditions
representing the other types of tissues of the
dataset. Therefore, this bicluster represents
genes whose behavior helps to discriminate
CLL samples from the other healthy and can-
cerous tissues under consideration.

5 Conclusion

We have presented three new clustering and
biclustering methods for identifying max-
variance patterns in microarray data. The
proposed approaches use Principal Compo-
nents and Estimation of Distribution al-
gorithms for maximizing the GAP mea-
sure defined in the Gene Shaving algorithm.
Experimental results demonstrate that the
proposed approaches EDA-Clustering, EDA-
Biclustering and Gene-&-Sample Shaving
outperform Gene Shaving in terms of quality
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Figure 5: Bicluster obtained with EDA Biclus-
tering on the lymphoma dataset. The biclus-
ter contains 10 out of the 11 samples represent-
ing Chronic lymphocytic leukaemia (CLL) (sam-
ples from 84 to 94) (corrected p-value 1.4x10−5).
GAP: 90.22 . Size: 39 genes, 24 samples.

and size of obtained patterns. Moreover, we
validated the results from a biological point
of view using the Gene Ontology.

Further work is needed to integrate informa-
tion from different biological data sources,
such as gene expression matrices, biological
ontologies, biomedical literature and tran-
scription factors binding sites.
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