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Abstract

This work describes a new method-
ology for fuzzy system modeling
focused on maximizing the inter-
pretability while keeping high ac-
curacy. In order to get a good
interpretability-accuracy trade-off,
it considers the combination of both
expert knowledge and knowledge ex-
tracted from data. Both types of
knowledge are represented using the
fuzzy logic formalism, in the form of
linguistic variables and rules. The
integration process is made carefully
at both levels variables and rules,
avoiding contradictions and/or re-
dundancies. Results obtained in a
well-known benchmark classification
problem show the methodology abil-
ity to generate highly interpretable
knowledge bases with a good accu-
racy, comparable to that achieved by
other methods.

Keywords: Linguistic fuzzy model-
ing, interpretability-accuracy trade-
off, expert-data integration.

1 Introduction

The interpretability, also called understand-
ability, comprehensibility, intelligibility, or
transparency, of fuzzy rule-based systems
(FRBSs) is of prime importance. It is a desir-
able property for lots of applications, but it is
an essential requirement for those with high

human interaction such as decision support
systems in medicine, robotics, etc.

The simplest way to get interpretable FRBSs
consists in building them from expert knowl-
edge. A domain expert is able to provide
us with a global view of the system behav-
ior, describing the most influential variables
and using them in a few basic rules. How-
ever, dealing with complex systems the ex-
pert knowledge is not enough. The interac-
tion among many variables is difficult to for-
malize by an expert. Fortunately, systems can
also be built using induced knowledge, i.e.,
knowledge extracted from experimental data
which are likely to give a good image of inter-
action between variables.

Since expert and induced knowledge convey
complementary information (expert knowl-
edge is usually general while induced knowl-
edge is quite specific according to the available
data) their combination seems a good choice.
For instance, Browne et al. [7] explain how to
fuse human knowledge-elicitation and data-
mining in an industrial plant. The expert-
data integration has been also used to yield
clinical prediction rules in medical applica-
tions [17]. When integrating expert and in-
duced knowledge there are two main policies:

• FETD: First Expert, Then Data.
Build an expert knowledge base (KB),
and then complete it using the knowledge
extracted from experimental data.

• FDTE: First Data, Then Expert.
Build an induced KB, and then look for
an expert able to evaluate and refine it.
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Anyhow, beyond these two main options,
there are infinitely many intermediate solu-
tions which should be implemented as itera-
tive procedures, where expert and data are
integrated all along the process. Neverthe-
less, as far as we know there isn’t a formal
methodology explaining how to make such in-
tegration. Therefore, authors of this contribu-
tion have made a great effort in the last years
to formalize a new methodology, in order to
build FRBSs combining both expert and data
while maximizing the interpretability of the fi-
nal model. The entire process is made up of
several blocks which have been already pre-
sented in other publications. The goal of this
work is to give an overview of the full method-
ology [1], describing both the general frame-
work and one of its possible implementations.
Notice that it can be seen as a dynamic puzzle
that comprises interchangeable pieces. Thus,
depending on the selected pieces as well as on
their internal carrying out, several implemen-
tations of the methodology are feasible.

The rest of the paper is structured as fol-
lows. Section 2 describes the new methodol-
ogy. Section 3 explains the experiments made
and the obtained results. Finally, section 4
offers some conclusions.

2 An overview of HILK

This contribution proposes a new method-
ology for building Highly Interpretable
Linguistic Knowledge (HILK) bases on the
fuzzy logic formalism.

The starting point is the cooperation frame-
work introduced by Guillaume and Mag-
dalena [13]. They proposed a general frame-
work that includes two hierarchical steps. The
first one was thoroughly described in the ini-
tial proposal; it consists in building a com-
mon fuzzy input space according to both data
and expert knowledge. The second step, the
integration of expert and induced fuzzy rule
bases, was only introduced and it remained
an open problem.

This work gives a global overview of the
new proposed methodology, from the initial
ideas sketched by Guillaume and Magdalena

to their final development and test, extending
the original proposal with new ideas and func-
tionalities. The whole process is depicted in
the figure 1. The global structure (partition
and rule levels) has been enhanced adding
a third level dedicated to improve the fi-
nal accuracy-interpretability trade-off. No-
tice that the figure distinguishes between ex-
pert and data domains. Moreover, the entire
process is carried out under expert supervi-
sion, keeping in mind the interpretability re-
quirement, and following the FETD (first col-
lecting expert knowledge and then adding in-
duced one) policy at every level.

The rest of this section gives a few details
about the three main blocks included in the
proposal: Partition Design, Rule Integration,
and KB Improvement.

2.1 Partition design

The readability of fuzzy partitioning is a pre-
requisite to build interpretable FRBSs. The
use of linguistic variables favors the readabil-
ity. However, linguistic constraints must be
superimposed to the fuzzy partition defini-
tion in order to ensure their interpretability.
In consequence, each system variable is de-
scribed by a set of linguistic terms, modeled
as fuzzy sets that form Strong Fuzzy Parti-
tions (SFPs) [21]. This kind of partition satis-
fies all the semantic constraints (distinguisha-
bility, normalization, coverage, overlapping,
etc.) demanded to be interpretable [9, 11].

The goal of this first block is to define the
most influential variables, by means of such
SFPs according to both expert knowledge and
knowledge extracted from experimental data.
Firstly, the expert can provide complete or
partial information about the linguistic vari-
ables (Expert Contribution), and then the def-
inition can be completed with information ex-
tracted from data (Induced Partitions). Of
course, for a given variable, maximum infor-
mation from the expert, in membership func-
tion definition, is desirable (but not always
available). The integration is made at three
levels:

• Range. On the one hand, the expert

Proceedings of IPMU’08 683



Linguistic variables

Linguistic rules

Expert
Knowledge

Experimental
Data

Expert
Contribution

Induced
Partitions

Expert
Rules

Induced
Rules

Partition
Design

Semantics

Granularity

Range

Consistency
Analysis

Completeness
Verification

Knowledge Base
Improvement

Rule
Integration

Optimization
Process

Simplification
Process

Figure 1: The whole proposed modeling process.

defines the universe of discourse (domain
of interest and physical range). On the
other hand, data range is automatically
derived from the data distribution. Note
that the interest range must be included
into the physical one to be coherent. Fur-
thermore, if data range differs signifi-
cantly from the domain of interest given
by the expert, the data set will not help
to solve the problem.

• Granularity. How to find the best-
suited number of linguistic terms (la-
bels)? The first option consists in select-
ing the number of terms the experts need
to express their reasoning. In case they
are not very confident regarding the gran-

ularity, a default number (for instance
five or seven) is proposed. Notice that
this number will be used for building the
initial fuzzy partitions, but it is likely to
be reduced by the simplification process
that will take place later, after rule inte-
gration.

• Semantics. Each label is characterized
by a prototype, modal point, i.e., the
most significant value of the fuzzy set
center. This information can also be ex-
tracted from experimental data1. Once
an agreement on the number of terms is

1In fact, generating fuzzy partitions from data
involves defining the most appropriate shapes for
the membership functions, determining the optimum
number of linguistic terms in the fuzzy partitions,
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reached, the final check is only seman-
tic; it is limited to the modal point posi-
tions in the universe of discourse, in re-
lation with their associated semantic la-
bels: Are they possible prototypes ac-
cording to expert knowledge? Are the
differences with the expert-defined modal
points acceptable?

The result of this first stage is the definition of
a common universe for each of the variables
involved in the problem, according to both
expert knowledge and data distribution.

2.2 Rule base definition and

integration

Once the fuzzy partitions have been designed,
they can be used to define fuzzy rules. The
considered rules were introduced by Mamdani
[18] and they are of the form:

If Xa is A
i
a

︸ ︷︷ ︸

P artial P remise Pa

AND . . . AND Xz is A
j
z

︸ ︷︷ ︸

P artial P remise Pz
︸ ︷︷ ︸

P remise

Then Y is C
n

︸ ︷︷ ︸

Conclusion

This is a Disjunctive Normal Form (DNF),
a disjunction of conjunctions: Rule premises
are made up of tuples (input variable, linguis-
tic term) where Xa is the name of the input
variable a, while Ai

a
represents the label i of

such variable. Notice that the absence of an
input in a rule means that variable is not con-
sidered in the evaluation of that rule.

First, the expert is invited to make a de-
scription of the system behavior, expressing
his/her system knowledge as linguistic rules
(Expert Rules). In addition, rules can be in-
duced from data2 (Induced Rules). Then, the
second integration phase (Rule Integration)

and/or locating the fuzzy sets into the universe of dis-
course. Many algorithms can be found in the special-
ized literature, for example: Hierarchical Fuzzy Parti-
tioning (HFP) [12], and K-means [15].

2The process of generating rules from data is called
rule induction. It aims to produce general statements
from partial observations. Many methods are avail-
able in the literature [11, 16], but we are only inter-
ested in those ones which generate rules sharing the
same fuzzy sets, for instance: Fuzzy Decision Trees
(FDT) [6, 19], and Wang and Mendel (WM) [22].

is carried out. Thanks to the common uni-
verse previously defined both types of rules
use the same linguistic terms defined by the
same fuzzy sets. In consequence, rule com-
parison can be done at the linguistic level.
However, since inconsistency and redundancy
may appear during the integration of hetero-
geneous rule bases (composed of expert and
induced rules), this integration stage must be
made carefully, regarding the most important
rule base (RB) features:

• Consistency Analysis. The goal is to
detect potential conflicting rules [13] by
means of a linguistic analysis. Then, a
specific handling for these situations is
proposed [1].

• Completeness Verification. Accord-
ing to [11], Completeness means that for
any possible input vector, at least one
rule is fired, there is no inference break-
ing. Merging two heterogeneous RBs
may yield a unique RB able to manage
areas where no knowledge was available
in one of the original rule sets [1].

2.3 Knowledge base improvement

After rule integration, the entire KB is con-
sistent and fully operative. The matter now
is to evaluate and, if it is possible, to enhance
its interpretability-accuracy trade-off. Hence,
the first step consists in defining quality in-
dices for measuring both properties [3]. Then,
two procedures are run with the aim of get-
ting better trade-off:

• Simplification Process [4]. The inter-
pretability is increased without losing ei-
ther consistency or accuracy, by reducing
the number of rules, the premises by rule,
and the number of labels, with a con-
trolled loss of accuracy. The objective is
to design incomplete, more general, rules
while checking consistency and avoiding
redundancy in the final RB. Building
general rules (as expert rules usually are)
makes the system more robust and more
interpretable.
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• Optimization Process [2]. The accu-
racy gets better while keeping high inter-
pretability. The procedure will not mod-
ify the linguistic description of variables
and rules. It only affects the fuzzy par-
titions, becoming a membership function
tuning constrained in order to maintain
the SFP property. Many optimization
strategies are possible, for instance Ge-
netic Tuning [8].

3 Experimentation

As explained in previous section, many im-
plementations of HILK are feasible depend-
ing on the blocks selected from the entire
architecture. In addition, lots of algorithms
can be used to develop each block. This sec-
tion illustrates how to apply HILK on a well-
known benchmark classification problem, the
Wisconsin Breast Cancer Database (WBCD),
freely available from the UCI (University of
California, Irvine) machine-learning reposi-
tory3. It consists of 683 samples (incomplete
patterns with missing values are not taken
into consideration) that involve 9 features ob-
tained from fine needle aspirates, for two can-
cer states (benign or malignant). Hence, it is
made up of 9 inputs and 1 output (2 classes).

Notice that expert knowledge about this prob-
lem is limited to the names of input variables
and output classes. In consequence, these ex-
periments are focused on the automatic gen-
eration of KBs from data, allowing a fair com-
parison with other popular methodologies like
Naive Bayes (NB) [14] and C4.5 [20].

3.1 Description of the experiments

The experimentation is outlined as follows.
Firstly, all variables involved in the problem
are defined, setting a global semantics. Sec-
ondly, two different rule bases (RB1 and RB2)
are induced. RB1 is made up of a small
number of general rules while RB2 includes
a larger number of specific rules. Then, both
rule bases are merged becoming a unique one.
Finally, KB interpretability (Simplification) is

3www.ics.uci.edu/˜mlearn/MLSummary.html

improved. Notice that this implementation of
HILK disregards two blocks of the full archi-
tecture: Completeness Verification and Opti-
mization Process.

Regarding the fuzzy partitioning we have gen-
erated SFPs of different sizes (3, 5 or 7 la-
bels) and different types: HFP [12], K-means
[15], and regular (uniform fuzzy partition de-
fined in the range derived from the data dis-
tribution). Furthermore, with respect to rule
definition two rule induction algorithms were
considered: FDT [6, 19], and WM [22]. More-
over, the induction of the second rule set
(RB2) can be obtained with either data selec-
tion (DS) or not. DS consists in generating
a new reduced training set by removing from
the whole one the samples managed by RB1.
Notice that an item is considered as managed
by a rule if its firestrength is higher than a
threshold (set to 0.6, in this case).

Finally, bootstrapping was chosen as evalua-
tion methodology because it can be used not
only for estimating generalization error but
also for estimating confidence bounds [10].
Although there are more sophisticated boot-
strap methods, we have used one of the sim-
plest ones. If we could repeat the same ex-
periment thousands of times, then we could
characterize it perfectly. However, this is not
possible because each run of the experiment
takes a long time. Therefore, we decided to
repeat each experiment 30 times. Each time,
the full data set is randomly divided, taking
the 75% of samples as training set and the
remainder as test set. Then, both training
and test sets are used to build a KB. Thus,
we got 30 KBs characterized by their qual-
ity indices. The bootstrap method consists
in taking randomly 30 of these indices (the
same index can be taken several times) and
compute the average value. This procedure
is repeated 1000 times. As a result, we es-
timate, in an inferential way, what we would
obtain if the experiments were repeated 1000
times. Finally, the 1000 inferred values are
ranked in decreasing order. After removing
the 25 highest values and the 25 lowest ones,
the maximum and minimum values of the re-
mainder determine the confidence bounds of
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Figure 2: WBCD training Pareto front.

the experiment. Hence, it can be guaranteed
that the 95% of times the experiment is re-
peated, the quality indices will be included
into the confidence bounds.

3.2 Results and discussion

As result of the experimentation we get 36
different solutions and characterize each of
them using bootstrapping. The best solu-
tions, those non-dominated by other ones,
form Pareto fronts like the ones plotted in
figures 2 (training) and 3 (test). The inter-
pretability index (vertical axis) is plotted ver-
sus the accuracy one (horizontal axis). Each
Pareto solution is represented with a cross and
framed by a rectangular box. The cross repre-
sents the average value while the rectangle de-
termines the confidence area. A bold line em-
phasizes those solutions which appear in both
training and test Pareto fronts at the same
time. For comparison purpose, these graphics
include two additional rectangle areas which
represent the confidence areas for NB (dash
line) and C4.5 (dot and dash line) methods.

The caption of the figures gives a name to
each Pareto solution. That name describes
the options involved in the generation of the

KB. For instance, 3-RP-CL-WM-DS-FDT-
CA-S, that produces simultaneously a good
accuracy-interpretability trade-off regarding
training and test, can be understood as fol-
lows. Firstly, regular partitions with three la-
bels (3-RP) are built for each variable. Sec-
ondly, clustering techniques are applied in or-
der to generate a small training set made up
of cluster centroids which is used as training
set by WM (CL-WM) in order to generate
RB1. Then, a data selection process is used
for generating a second training set which is
used as training set by FDT (DS-FDT) in the
generation of RB2. Then, the consistency of
the entire KB (RB1 + RB2) is checked (CA).
Finally, a simplification process (S) is applied
to increase interpretability keeping accuracy
and consistency.

To sum up, C4.5 gets high accuracy with re-
spect to both training and test patterns. Of
course, its interpretability is very poor. By
the way, NB gets a robust solution with ac-
curacy slightly higher than 96% over train-
ing and test, but its interpretability is ex-
tremely poor. Our methodology yields a set
of highly interpretable and robust solutions
with accuracy between 92% and 96% regard-
ing both patterns. They produce accuracy

Proceedings of IPMU’08 687



0.9 0.92 0.94 0.96 0.98 1

0

0.2

0.4

0.6

0.8

1

WBCD − test

In
te

rp
re

ta
bi

lit
y

Accuracy

1

2 3
4

5

67 8

mean                      (confidence area (95%))
1 −> 3−RP−CL−FDT−DS−WM−CA−S
2 −> 3−RP−CL−WM−DS−WM−CA−S
3 −> 3−RP−CL−WM−DS−FDT−CA−S
4 −> 3−RP−CL−FDT−DS−FDT−CA−S
5 −> 3−BP−CL−FDT−DS−FDT−CA−S
6 −> 3−RP−FDT−S
7 −> 3−BP−FDT−S
8 −> 3−RP−FDT
C4.5
Naive Bayes

Figure 3: WBCD test Pareto front.

slightly lower than C4.5 with respect to train-
ing. However, C4.5 accuracy strongly de-
creases regarding test while our solutions keep
almost the same accuracy in both cases.

4 Conclusions

This paper presents a new methodology
(HILK) for building KBs with a good balance
between accuracy and interpretability.

Two kinds of knowledge, expert knowledge
and knowledge extracted from data are con-
sidered. However, regarding the evaluation
of our methodology, it has been tested in a
benchmark classification problem where the
expert knowledge is quite reduced. As expert
rules are not available, we have made the in-
tegration of two induced RBs generated us-
ing different induction techniques. The pro-
posed approach leads not only to a good
trade-off between accuracy and interpretabil-
ity but also to a simultaneous improvement
of both in some cases, where the final KB is
more compact and transparent, but also more
accurate than the initial one. Obtained re-
sults prove that the integration of two dif-
ferent rule bases can yield better accuracy-
interpretability trade-off than the use of only

one. In consequence, we can draw next con-
clusion: HILK can also be successfully applied
even if there is not expert knowledge available
relative to the problem under consideration.

Finally, notice that these experiments only
show a small part of HILK power. They only
regard induced knowledge, for an easy com-
parison with automatic methods, while our
methodology is thought for solving problems
where both expert knowledge and experimen-
tal data are available, and KB interpretability
is of prime importance. It has been success-
fully applied in robotics for diagnosis of mo-
tion problems [5].
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