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Abstract

Image segmentation is an important
research area in image analysis and
its applications to medical and bio-
logical imaging. In particular, effec-
tive segmentation methods play an
essential role in the analysis, clas-
sification, and quantification of bio-
images for prognosis and preventive
treatment. Different segmentation
methods based on different crite-
ria of optimality often give differ-
ent results. This paper introduces
a new strategy for modeling image
spatial information in the setting of
the fuzzy c-means algorithm for seg-
menting bio-images that are inher-
ently fuzzy. The experimental re-
sults have shown the superior perfor-
mance of the new method over some
popular models for the segmentation
of cell puncta.
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1 Introduction

The inherent difficulty we often encounter in
image segmentation is that there are many
background pixels that have similar values as
those which belong to the object or vice versa.
These pixels are usually found in the proxim-
ity of the boundaries between the background
and the object. These phenomena are par-

ticularly common in many bioimaging prob-
lems [1]. As a result, these images produce a
vague valley in the histograms, which makes it
a challenging task for any threshold-based im-
age segmentation methods. There have been
numerous attempts for developing segmenta-
tion methods for handling different types of
images. Many image segmentation methods
can be found in several literature reviews over
the last three decades [2]-[13]. Most general
approaches for image segmentation are based
on thresholding, cluster analysis, edge detec-
tion, region growing, and watershed methods.
However, a general agreement is that there is
no single segmentation method that can be
effectively applied to all types of images [7].
Thus, there arises a need for developing new
algorithms that may be used for different pur-
poses.

Among numerous image segmentation algo-
rithms, there exist many FCM-based methods
for image segmentation where the fuzzy ob-
jective function was modified to impose some
constraints to incorporate probabilistic mod-
eling, pixel spatial information or entropy [8]-
[12]. However, most of these methods were de-
signed to address problems in medical imag-
ing. Analysis of biological images such as flu-
orescence microscopic images requires differ-
ent approaches for effective segmentation of
cells. It has been realized that the segmen-
tation of bio-images, particularly cells, is ef-
fective only if the segmentation process can
appropriately model the behavior of the bio-
logical objects [14, 15, 16]. For high-content
and high-throughput screening, the analysis
also requires some fast algorithm for image
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segmentation that serves as a basis for feature
extraction and object classification to the de-
mand for down-stream study and practical de-
velopment such as hypothesis validation and
drug discovery.

In this paper, an image segmentation method
based on a spatial fuzzy objective criterion is
introduced in the setting of the Mahalanobis
distance where the covariance matrix is re-
placed with a spatial covariance matrix. The
incorporation of the spatial Mahalanobis dis-
tance in the objective function of the fuzzy
c-means (FCM) is to sharpen the fuzzy spa-
tial scattering effect on images. The mathe-
matical foundation is based on the theory of
regionalized variables [17]. A regionized vari-
able is defined as a random variable that is
distributed in space. The spatial variability
of the regionalized variables can be character-
ized by both random and structured aspects:
(1) they are considered to be erratic in rela-
tion to the surrounding variables, and (2) they
are spatially related with respect to the dis-
tance separating the variables. This spatial
structure is called the variogram which is a
geostatistical function that expresses the spa-
tial relation of the regionalized variables. This
conceptual framework is highly applicable to
image modeling where the pixel values can be
thought as being both random and spatially
related.

The rest of this paper is organized as follows.
Section 2 presents the formulation of a new
FCM-based image segmentation method us-
ing the concept of a spatial covariance em-
bedded in the Mahalanobis distance measure.
Section 3 illustrates and discusses the per-
formance of the proposed and other popular
image segmentation methods. Section 4 con-
cludes the research finding and suggests other
issues for future development.

2 Spatial Covariance based FCM
for Image Segmentation

Let Mfc be a fuzzy c-partition space, X be a
subset of the real p-dimensional vector space
Rp : X = {x1,x2, . . . ,xn} ⊂ Rp where xk =
(xk1, xk2, . . . , xkp) ∈ Rp. The fuzzy c-means

clustering is based on the minimization of the
fuzzy objective function Jm : Mfc × Rcp →
R+, which is defined as [18]

Jm(U,v,A) =
c∑

i=1

n∑
k=1

(uik)m(dik)2 (1)

where m is the fuzzy exponent, U ∈ Mfc,
v = (v1,v2, . . . ,vc) ∈ Rcp, and dik = ||xk −
vi||A = (xk − vi)TA(xk − vi) is any inner-
product norm metric induced on Rp by A.

Using the Mahalanobis distance, (dik)2 is de-
fined as

(dik)2 = (xk − vi)TC−1
i (xk − vi) (2)

where C−1
i is the inverse of the sample covari-

ance matrix of the data points in vi.

The purpose is to introduce the spatial covari-
ance matrix in (2), that is

(dik)2 = (xk − vi)TC(h)−1
i (xk − vi) (3)

where C(h)−1
i is the inverse of the spatial co-

variance matrix of the data points in vi, and
h is a lag variable that spatially separates the
data points in vi.

The determination of the spatial covariance
C(h) can be obtained using the theory of re-
gionalized variables and discussed as follows.

In the context of image analysis, pixels can
be modeled as regionalized variables [17] de-
veloped in geostatistics [19] in the sense that
their values are random and they are spatially
related. By such hypothesis, the variogram
[17, 19] of an image is a function which ex-
presses the spatial correlation of the region-
alized variables of the image. In probabilis-
tic notation, the image variogram, denoted as
2γ(h), can be defined as the expected value
of the image intensities spatially distributed
apart with a distance h:

2γ(h) = E{[xi − xj ]2}, hij = h (4)

where xi and xj are the intensity values of the
pixels located at positions i and j of the image
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respectively, and h is the spatial distance that
separates xi and xj . The values of h can be
taken in any directions in a discrete image.
In this study, h takes the integer values in
the horizontal and vertical directions of the
image.

The semi-variogram, denoted as γ(h), is
therefore half of the variogram. The exper-
imental semi-variogram for lag distance h is
defined as the average squared difference of
values separated by h:

γ(h) =
1

2N(h)

∑
(i,j)|hij=h

(xi − xj)2 (5)

where N(h) is the total number of data pairs
separated by the distance h.

The behavior of the semi-variogram can be
graphically illustrated by the theoretical semi-
variogram using the spherical or the Matheron
model which is defined as [19]

γ(h) =

{
s

[
1.5h

r − 0.5(h
r )3

]
: h ≤ r

s : h > r
(6)

where r and s are called the range and the sill
of the semi-variogram, respectively.

Figure 1 shows the spherical semi-variogram
model defined in (6). When h = 0, two
samples are taken at the same position and
the difference between the two must be zero.
When h > 0, the two samples move a dis-
tance apart and some positive difference be-
tween the two values can be expected. As the
samples move further apart, the differences
should increase accordingly. Ideally when the
distance becomes very large and reaches r, the
sample values become independent of one an-
other. The semi-variogram γ(h) will then be-
come constant at s as the result of the calcu-
lation of the difference between the pairs of
independent samples.

The properties of the semi-variogram can be
further explored by again letting h be the dis-
tance between two variables xi and xj , and
by an assumption that the random variables
in the random function model has the same
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Figure 1: Example of a semi-variogram – the
spherical model with s = 1 and r = 20

mean µ and variance σ2. These two proper-
ties show the relationship between the semi-
variogram and the covariance by the following
derivation [19]:

γ(h) =
1
2
E{[xi − xj ]2}

=
1
2
E{x2

i }+
1
2
E{xj}2 − E{xixj}

= E{x2} − E{xixj}
= [E{x2} − µ2]− [E{xixj} − µ2]
= σ2 − Cij (7)

where Cij is the spatial covariance of xi and
xj .

The spatial covariance, C(h), can be deter-
mined by [19]

C(h) =
1

N(h)

∑
(i,j)|hij=h

(xixj)−(µ−hµ+h) (8)

where µ−h and µ+h are the means of all the
data values whose spatial locations are −h
and +h away from other data points, respec-
tively:

µ−h =
1

N(h)

∑
i|hij=h

xi (9)

µ+h =
1

N(h)

∑
j|hij=h

xj (10)
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Figure 2: Original image

Figure 3: Segmentation by Otsu thresholding

Figure 4: Segmentation by Sobel edge

Figure 5: Segmentation by ED-FCM
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Figure 6: Segmentation by MD-FCM

Figure 7: Segmentation by SMD-FCM

An alternative and more popular equation for
calculating the spatial covariance is

C(h) =
1

N(h)

∑
(i,j)|hij=h

(xixj)− (
1
n

n∑
k=1

xk)2

(11)
where n is the total number of data points.
In (8) the emphasis is on the product of the
two different lag means; whereas in (11) the
central term is the square of the mean of all
the data values.

The determination of the spatial covariance
that can be used as a spatial description of the
fuzzy objective function has been discussed.
The FCM-based image segmentation can be
carried out based on the fuzzy membership
matrix U by simply assigning each pixel xk of
the image to class i if uik is maximum, that is

Assign xk to class i∗if i∗ = arg max
i

uik

3 Experiment

We tested the proposed method with real flu-
orescent images of peroxisomes contained in
cells whose boundaries are inherently fuzzy or
imprecise. A typical image is show in Figure
2. The discrimination and measurement of
fluorescent-labeled vesicles using microscopic
analysis of fixed cells presents a challenge for
biologists interested in quantifying the abun-
dance, size and distribution of such vesicles
in normal and abnormal cellular situations.
Good image segmentation results will allow
the precise quantification of changes to the
population of a major organelle, the perox-
isome, in cells from normal control patients
and from patients with a defect in peroxisome
biogenesis.

To compare the proposed method with some
other segmentation methods, we used Otsu
thresholding [20], Sobel edge detection [21],
the fuzzy c-mean algorithm using Euclidean
distance (ED-FCM), the fuzzy c-mean al-
gorithm using Mahalanobis distance (MD-
FCM), and the proposed fuzzy c-mean al-
gorithm using spatial Mahalanobis distance
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(SMD-FCM) to carry out the segmentation
of the same original image. The original im-
age of fluorescent puncta as shown in Figure
2 where the fluoresecence-stained background
between and along the boundaries of the spots
makes it a difficult task for extracting the cor-
rect sizes of the objects [1].

Figures 3, 4, 5, 6, and 7 show the segmenta-
tion results of the original image in Figures
2 obtained by Otsu thresholding, Sobel edge
detection, ED-FCM, MD-FCM, and the pro-
posed SMD-FCM methods, respectively. For
the SMD-FCM method, C(h) was taken using
a lag distance h=1 in both vertical and hori-
zontal directions. The fuzzy exponent m = 2
was used for all FCM-based methods.

There has been some effort attempted to
investigate the comparisons of different im-
age segmentation methods [22, 23]. Seg-
mentation results are considered favorable if
the segmented regions are homogeneous and
have smooth and spatially accurate bound-
aries [24]. In addition, the assessment of the
segmentation results of biological images are
particularly dependent on the experts when
classication does not involve [25]. Using this
guideline and by visual obervation of biol-
ogy experts, the results presented in all the
figures show that the proposed method pro-
vided the best segmentation. The proposed
SMD-FCM method could better recognize the
true boundaries of the objects than other
methods. Increasing order of over-segmented
results can be observed by using the ED-
FCM, MD-FCM, and Otsu. The ED-FCM
and MD-FCM yielded similar segmentation
results. Extraction of the cell puncta by Sobel
detection suffers from under-segmentation.

4 Conclusion

A FCM-based method using a spatial covari-
ance function for segmenting fuzzy bioimages
has been discussed. The comparative re-
sults have shown the promising application of
the proposed method to the segmentation of
cell puncta in low-contrast and fluorescent-
stained images. Effective segmentation of
such biological images helps life-science re-

searchers obtain useful imaging information
for downstream analysis including disease di-
agnosis, treatment, and new drug discovery.

What has been successful for the proposed
method is that the spatial covariance function
at short range, where h is small, is captured in
distance measure that in turn has effect on the
fuzzy membership functions. Noise effects for
various images under present study are similar
and mainly due to fluoresence staining. Thus,
this short-range spatial information has been
appropriately utilized to sharpen the impre-
cise boundary of the puncta (small objects),
where other methods do not address this mod-
eling problem. Incorporating fuzzy member-
ship grades into the spatial covariance func-
tion can be expected to yield better results.
As another issue, the use of the spatial co-
variance matrix as a condition for fuzzy shape
description [18] is worth considering.
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