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Abstract 

Landing on planets is always a 
challenging task due to the distance, 
communication delays, and hostile 
environments found. In this paper we 
present a dynamic ranking algorithm, 
based on a hybrid aggregation operator, 
for selecting the best site for landing. 
The proposed algorithm uses feedback 
historical information from previous 
iterations to ensure a reinforcement 
behavior in the decision process.  

Keywords: aggregation operators, dynamic 
ranking algorithm, hazard maps. 

1     Introduction 

Past planetary lander missions tended to focus 
on pre-qualified landing sites, which implied a 
smooth terrain with little risk and few geologic 
features [4]. Landing on planets is always a 
challenging task due to the distance and hostile 
environments found. Improving the landing site 
selection process implies greater onboard 
autonomy, due to communication time delays 
and data volume involved.   

ASTRIUM Space Transportation has been 
consistently improving the hazard avoidance 
techniques for on-board piloting autonomy [2, 4] 
(denoted piloting function). Hazard avoidance 
includes three separate critical functions [2, 4]: 
hazard mapping that estimates ground features 
based on an imaging sensor data (camera or 
Lidar); site selection that chooses a suitable 
landing site based on available hazard maps, 
mission, propulsion and guidance constraints; 

and a robust guidance to reach the selected 
target.  

In this work our inputs are hazard maps of 
dimensions 512x512 pixels that provide 
assessments of terrain features and trajectory 
constraints. From these maps we have to select 
the best site (pixel x, y in the aggregated map). 

Since the selection of a suitable landing site is a 
critical task for any planetary mission success, 
the motivation for this work is to build a fuzzy 
multiple attribute decision-making process to 
select the best site. Specifically, in this paper we 
focus on the second step of a fuzzy multiple 
attribute (or criteria) decision-making process, 
the ranking of alternatives with respect to the 
global aggregated degree of satisfaction [6].For 
this purpose we present a dynamic algorithm for 
landing site ranking, taking into account past 
historical data from previous iterations, during 
the piloting function.  

The proposed dynamic ranking algorithm uses a 
hybrid aggregation operator, based on ideas 
from the uninorm aggregation operator [3, 9], 
for combining past and present data because it 
ensures a full reinforcement behavior [1, 10].  If 
we encounter a collection of high values we 
want that the resulting aggregation value to be 
more positive than any of the individual values. 
On the other hand, if we encounter a collection 
of low values we want that resulting aggregation 
value to be more discriminative than any 
individual values. The first concept is called 
upward reinforcement and the second concept is 
called downward reinforcement. Most 
aggregation/ranking methods are only either 
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upward (e.g. Hamacher and Dubois & Prade 
union operators [5, 11]) or downward methods 
(e.g. Hamacher and Dubois & Prade intersection 
operators [5, 11]). When we combine these two 
concepts we achieve what is called full 
reinforcement behavior [8], and our hybrid 
operator and the uninorm operator belong to this 
category. 

This paper is organized as follows. This first 
section presents the context for the development 
of the dynamic ranking algorithm. The second 
section presents a brief overview of the 
aggregation operators used in this work. The 
third section presents the proposed dynamic 
ranking algorithm. The fourth section presents 
an example on how the algorithm works and 
finally the fifth section presents the conclusions. 

 

2     Aggregation operators 
In this section we first present a brief overview 
of the uninorm operator [9], which is the basis 
of our hybrid operator, for the proposed 
dynamic ranking algorithm. Second, we discuss 
the hybrid reinforcement operator that is suitable 
for use in our dynamic algorithm. 

2.1  Uninorm operator & hybrid 
reinforcement operator 
T-norms and S-norms (or t-conorms) play an 
important role in fuzzy logic [1, 11] in 
generalizing the “And” and “Or” operators, but 
neither allows a compensatory behavior. For 
instance, t-norms do not allow low values to be 
compensated by high values and s-norms do not 
allow high values to be compensated by low 
values [1]. 

The uninorm aggregation operator is the result 
of the unification of both t-norm and s-norms, 
studied and presented by Yager, Fodor and 
Rybalov [3]. One of the main characteristics of 
this operator is the consideration of a neutral 
element, anywhere in the interval ]0, 1[. 

Definition (Yager and Rybalov [9]): A Uninorm 
operator R is a mapping [ ] [ ] [ ]1,01,01,0: →×R  

having the following properties: 

(1)  Commutativity ; ),(),( baRbaR =

(2)  Monotonicity (increasing) 

  dbcadcRbaR ≤≤≤  and  if ),,(),( ; 

(3)  Associativity ; )),,(()),(,( cbaRRcbRaR =

 (4) There exists some element , called 
the neutral element, such that for all 

[ ]1,0∈e
[ ]1,0∈e , 

aeaR =),( .  

Another important characteristic of the uninorm 
operator is its full-reinforcement behavior [5]. 
This means that if we have a collection of high 
values we want the resulting aggregation value 
to be more positive than any of the individual 
values. On the other hand, if we encounter a 
collection of low values we want the resulting 
aggregation value to be more discriminative 
than any of the individual values. 

2.2. Hybrid reinforcement operator 
For our case study we need an aggregation 
operator with the full reinforcement 
characteristics of uninorm operator, but 
combined with an averaging compensatory 
operator, such as the OWA[7], in the 
interval [ ] [ ] [ ]] [ηηηη ,01,1,,0 ×∪× . This is 
the interval outside the solution space of t-norms 
and s-norms, since these are bounded by the 
neutral element η . 

For this purpose we present a hybrid 
reinforcement operator U, which is a mapping 
[ ] [ ] [ ]1,01,01,0 →× , 
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where:  

η  is a neutral element; 

T represents any t-norm intersection operator[5]; 
S represents any s-norm union operator [5]; 
OWA represents Yager´s OWA operator [7]. 
 

As we can observe this operator does not fulfill 
all properties of uninorm operators because it 
does not satisfy the associativity condition. The 
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reason for this hybrid algorithm is the need for 
an operator with an averaging compensatory 
nature, outside the t-norms and s-norms interval. 
In addition, since each iteration just aggregates 
historical and rating values there are no 
associative problems. All other properties of 
uninorm operators are satisfied, by this hybrid 
version, on . [ ] [ ]1,01,0 ×

3. Dynamic ranking algorithm 
The dynamic ranking algorithm discussed in this 
section assumes that we already determined the 
aggregated rating for each possible alternative 
site of iteration k, as can be observed in Figure 
1.  

Our dynamic ranking algorithm uses the hybrid 
reinforcement operator U, defined in section 2.2, 
for combining the historical information (Hn-1) 
and current rating value (Rn). We use this 
operator for four reasons: a) it has a full 
reinforcement capability; b) it has a full 
compensatory nature; c) takes into consideration 
the order of elements; d) using the Hamacher 
operators [11] for T-norm and S-norm we 
achieve a synergy between arguments. This 
combination of operators is what we are looking 
for in our adaptable and dynamic decision 
process based on historical data. 

The ranking process at iteration n, is computed 
using the following rationale: 

• If a site belongs to the historic set it means 
that at earlier iterations it had good rating 
values. Hence, if the current iteration has a 
high rating value (i.e. its value is greater 
than the neutral element) we want to 
increase its value, otherwise we want to 
penalize its value. 

• If a site does not belong to the historic set 
we do not have any past information about 
the site. Hence, we give the benefit of doubt, 
i.e., in the current iteration we give the same 
value as the rating value. 

Our dynamic ranking algorithm works as 
follows. Consider  (historic rating value of a 
site Sij that belongs to historic Hn-1) and  
(current rating value of the same site Sij). The 
dynamic ranking algorithm of site Sij, at iteration 
n, is computed as follows: 
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Where the neutral element η  is a parameter 
which influences the quantity of upward or 
downward reinforcement operations. In our case 
we use quantiles for neutral element because 
with a high quantile we ensure the majority of 
values fall before the bounded quantile value, 
hence more downward reinforcement 
operations. Using a lower quantile we ensure 
more upward reinforcement operations in the 
final aggregation.  

For S-norm and T-norm (SH, TH) we use the 
following Hamacher operator formulas [5]:  
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In our case study we use a low value for 
parameter α because we want to benefit or 
penalize the rating values smoothly instead of 
using aggressive aggregation behaviour.  

For the OWA aggregation operator we use the 
following formulation: 

[ ]0;1ba,and1 where
),min(),max(),(
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The weights for the OWA aggregation operator 
(  and ) will have in consideration that 
giving more weight to lower values will 
decrease the aggregation value; this is what we 
are looking to avoid selecting sites with lower 
rating values. 

1w 2w

Finally, we proceed to order the ranked 
aggregated values decreasingly. From this 
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ordered list we select the next list of historic 
values. At each iteration n we select k best 
ranked sites, and, depending on the altitude from 
the planet the historical set size varies.  For 
example, for an altitude of around 1000 meters 
from the soil we would select several hundred 
sites, while for lower altitudes we select tenth’s. 
Hence, the historical data set for the next 
iteration will contain k possible sites with good 
chances of being selected again.  

With this ranking procedure, it can happen that 
the best choice of alternative is not the highest 
regarding its rating value, in the respective 
iteration. This situation is due to the use of 
historical feedback information and the behavior 
of the hybrid reinforcement operator in the 
computation of the dynamic ranking algorithm. 
We want to select sites that proved to be good 
for a certain period of time! 

In summary, the general decision making 
process, including the dynamic ranking 
algorithm is depicted in Figure 1. 

 

Rating
Process

Rn

Hazard 
maps
& Other 
input 
data

H n-1

Ranking
Process

K best 
ranked 
sites

New 
iteration

Data 
preparation

More 
Images?

Y

N

Target site

Rating
Process

Rn

Hazard 
maps
& Other 
input 
data

Hazard 
maps
& Other 
input 
data

H n-1H n-1

Ranking
Process

K best 
ranked 
sites

New 
iteration

Data 
preparation

More 
Images?

Y

N

Target site  
Figure 1 - Site Selection Decision Process 

4 Illustrative case 
 

The goal of this case study is to provide the 
trajectory planning function with an adequate 
target-landing site. The site adequacy is 
evaluated with respect to a set of requirements: 
(1) the site should be safe in terms of maximum 
local slope, light level and terrain roughness; (2) 
the site should be reachable with the available 
fuel; (3) the site should be visible from the 
camera along the piloting function. 

The different hazard maps quantify each 
requirement and are given as inputs for our 
decision process (see Figure 1).  

The algorithm parameters were tuned to get a 
coherent behavior. The neutral element η  was 

set to a high quantile of Rn to obtain a small 
subset with high classifications. Then, we 
determined the α parameter for both Hamacher 
operators (SH and TH equations), and weights 
used for the OWA aggregation operator. In this 
paper we do not provide the exact parameter 
values for confidentiality reasons.  

After the rating process (see Figure 1), which 
aggregates all information provided in the 
hazard maps, we apply the dynamic algorithm 
(DR) to combine current rating values with past 
historic values. If there are more iterations 
(hazard maps) we update the historic set with 
the top best sites of the current iteration and the 
process repeats itself. 

Considering an illustrative example with only 12 
iterations and an historic size of 5 elements, the 
final results are now discussed. 

Table 1, depicts the “best” alternative site, 
selected in each of the 12 iterations. Each row 
includes the 2D coordinates (considering image 
map size 512x512), current rating value (rn), 
historic value (hn-1) and the obtained dynamic 
ranking value (DRn).  

 

Table 1 – Best result obtained for each iteration. 

Iter. 2D coord 
(meters) Rn Hn-1 nDR  

1 (244,243) 0.790 - 0.790 

2 (220,255) 0.789 0.77 0.824 

3 (227,248) 0.773 0.814 0.854 

4 (224,248) 0.774 0.849 0.88 

5 (224,249) 0.719 0.88 0.887 

6 (224,249) 0.775 0.887 0.908 

7 (224,249) 0.749 0.908 0.92 

8 (224,249) 0.78 0.92 0.937 

9 (224,249) 0.77 0.937 0.948 

10 (224,249) 0.762 0.948 0.955 

11 (224,249)  0.782 0.955 0.963 

12 (228,256) 0.766 0.898 0.912 

 

In Figure 2 we can observe the best 5 results in 
the final landing area image. The “best” ranked 
site of the last 12th iteration is marked with 1 and 
the next 4 best are also highlighted. 
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Figure 2 – Image of landing area. 

 

The details of the 5 best results, depicted in 
Figure 2, are presented in Table 2. 

Table 2 – 5 best ranked results after 12 
iterations. 

Iter_12     

Rn Hn-1 DRn 2D coord 

0.7659 0.8981 0.912 228 256

0.742 0.8911 0.8975 240 252

0.7599 0.8757 0.8904 235 253

0.7874 0.8343 0.8701 237 270

0.7437 0.8428 0.8533 239 251

 

Observing Table 2 we see that the results are 
ordered decreasingly and the “best” site, i.e. the 
site to be selected for re-targeting, corresponds 
to the last one depicted in Table 1. The “best” 
site to be selected clearly shows that it is well 
rated (r=0.7659), its historical value is the 
highest (h=0.8981) and the final result is the 
“best” in the list (DRn=0.912).  

It is interesting to note that although the result in 
line 4 (r=0.7874) has a better rating than the 
“best” one, since its historical value is low the 
final ranking value (DRn=0.8701) is 
substantially lower that the one achieved by the 
“best” site.  

Another interesting aspect of the ranking 
process with the dynamic algorithm is that most 
results kind of “converge” to the same region 
(see Figure 2) because of past historical 
information from other iterations.  

In summary, the “best” site result shows how the 
dynamic ranking algorithm reinforces the final 
classification with a good historical value. 

5  Conclusions      

This paper introduced a dynamic ranking 
algorithm for selecting sites for landing, which 
combines current sites ratings with historical 
information. The algorithm is applied to each 
iteration of the piloting function and the best-
ranked are selected for historic set of next 
iteration. At the end the best site is chosen as 
target landing.  

The dynamic algorithm uses a hybrid 
aggregation operator, which includes Hamacher 
intersection and union operators, as well as the 
averaging compensatory OWA operator. As 
future work we plan to compare the results 
obtained using the selected operators with other 
averaging compensatory operators, other S-
norms and T-norms operators, as well as other 
full reinforcement operators. 

An illustrative example with 12 iterations was 
used to discuss the site selection decision 
process. 
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