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Abstract

Asian options are path-dependent
and have payoffs which depend on
the average price over a fixed pe-
riod leading up to the maturity
date. This option is of interest and
important for thinly-traded assets
since price manipulation is prohib-
ited, and both the investor and is-
suer may enjoy a certain degree of
protection from the caprice of the
market. There are several nice re-
sults for the average options with
different approaches. In this paper,
we consider to propose a more gen-
eral weight instead of usual simple
average, for which it may be possi-
ble to control the weights in the light
of unexpected situation incurred. In
particular, we focus on strike Asian
option with weighted average of as-
set prices.
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Weighted average Asian options,
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1 Introduction

For the study of European option pricing
problems F.Black, M.Scholes and R.Merton
made a major breakthrough in the past and
the Black-Scholes model is still used in vari-
ous situations, since the idea of options can be
easily applied for, in particular, many prob-
lems related to finance. Asian options are

fully path-dependent and have payoffs which
depend on the average price of the underly-
ing asset over a fixed period leading up to the
maturity date. This option is of interest and
important for thinly-traded assets since price
manipulation is prohibited, and both the in-
vestor and issuer may enjoy a certain degree
of protection from the caprice of the mar-
ket. Since no general analytical solution for
the price of the average option is known, a
variety of techniques have been developed to
analyze average options. There is historically
enormous literature devoted to work of this
type of options. Among them Bergman(1981)
studies average rate options but only consid-
ers options with a zero strike price. Kemna
and Vorst(1990,1992) propose a Monte Carlo
methodology which employs the correspond-
ing geometric option as a control variable.
Carverhill and Clewlow(1990) use the Fourier
Transformation to evaluate numerically the
necessary convolutions of density functions.
Ruttiens(1990) and Vorst(1990) employing
the solution to the corresponding geometric
average problem improves the speed of calcu-
lation. On the other hand, Levy(1992) pro-
poses a more accurate method which relies on
the assumption that the distribution of sum
of log normal variables is itself well approxi-
mated at least to a first order by the log nor-
mal. Also, the author assumes that the val-
uation of average option becomes possible for
typical range of volatility experienced. The
idea of such options are of particular interest
and importance for thinly-traded assets since
price manipulation is inhibited. This option is
in general considered path dependent options
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for which the payoff at maturity date depends
on the history of the prices the underlying as-
set takes.

In this paper, we consider to propose a more
general weight instead of usual simple aver-
age, for which it may be possible to control
the weights in the light of unexpected situa-
tion incurred. In particular, we focus on strike
option for weighted average of asset prices,
providing numerical examples.

2 SIMPLE AVERAGE OPTION

We first assume that a perfect security market
which is open continuously, offers a constant
riskless interest rate to borrowers and lenders,
in which no transaction costs and /or taxes
are incurred. Let the underlying asset price
at time follow the geometric Brownian motion
process

dS(t) = µS(t)dt + σS(t)dW (t),

where dW (t) stands for a Wiener process
which has a normal distribution with the
mean 0 the variance dt, µ is the drift param-
eter and σ is the volatility parameter.

The standard partial differential equation for
the option price C can be derived by hedging
arguments([10],[11]):

Ct +
1
2
σ2S2Css + r(SCs − C) = 0

where Ct, Cs and Css are the first order par-
tial derivatives with respect to t and S and
Css a second order partial derivative with re-
spect to S.

For t ∈ [T0, T ] consider the variable A(t) as

A(t) =
1

t− T0

∫ t

T0

S(τ)dτ

where T is the maturity date. Then A(t) is de-
fined as the part of the final average up to time
t and the payoff on the call option can be ex-
pressed as Max (A(t)−K, 0), where K is the
exercise price of the average option. Kemna
and Vorst derive the expression for the value
of the average option

C(S(t), A(t), t) = e−r(T−t)×
E# [Max (A(t)−K, 0)]

with appropriate boundary conditions, where
E# indicates the conditional expectation with
respect to S(t), A(t) and t.

In this paper, we are concerned with an aver-
age strike option. Average strike call options
may guarantee that the average price paid for
an asset in frequent trading over a period of
time is not greater than the final price. Thus,
we have

C(S(t), A(t), t) = e−r(T−t)×
E# [Max (S(t)−A(t), 0)]

Also, log value of S(τ) after τ period passed
is expressed as

lnS(τ) = ln S(T0) + (r − 1/2σ2)τ + σW (τ)

where σW (τ) ∼ N(0, σ2τ).

If asset prices are taken as just simple aver-
age its variation the asset possesses are almost
lost. Therefore, we consider a more general
weighted average rather than the simple aver-
age.

3 WEIGHTED AVERAGE
STRIKE ASIAN OPTION

We want to propose a more general way, in
which weighted average rather than the sim-
ple average to be able to control its variation
is considered. In this study, we find a way to
obtain the weighted sums of prices which de-
pend on each asset price S(Ti) at time Ti. Let
the weight at Ti be Wi. Denote by Ti = ih for
i = 1, 2, · · ·, N where h = (T − T0)/N .

Then define the weighted average, for 1 <
m < N

A(Tm) =
m∑

i=1

WiS(Ti) with
m∑

i=1

Wi = 1,

Wi > 0, i = 1, 2, · · ·, N .
Thus, the weighted average strike Asian op-
tions are characterized by the payoff function
at time Tm, which are given by Max(S(Tm)−
A(Tm), 0) for a call and Max(A(Tm) −
S(Tm), 0) for a put option. Over a fixed con-
tract date to the maturity date Tm we con-
sider the following weighted average defined
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below

A(Tm) =
m∑

i=1

(1 + ah)i∑N
k=1 (1 + ah)k

S (Ti) , (1)

−∞ < a < ∞
In this expression a variable a to control the
weights is incorporated and hence it may cope
with more different situations incurred by un-
derlying asset. But the expression above is
not suitable since each asset price S(T i) is
assumed to be log normally distributed and
hence A(Tm) is a weighted sum of lognormally
distributed. Then, A(Tm) is no longer log-
normally distributed. Therefore, for a possi-
ble way to develop an approximation another
type of weighted average option needs to be
considered.

The final payoff at maturity of a call option
on the arithmetic average is, denoting by CA

the values of the option,

CA = e−r(T−T0)×
E# [Max (S(Tm)−A(Tm), 0)] .

Finally, the value of arithmetic weighted av-
erage of (1) for continuous case is defined as

A(T ) =
∫ T

T0

eaτ∫ T
T0

easds
S (τ) dτ (2)

4 A PRICING FORMULA
BASED ON MOMENTS

If the conventional assumption of a geometric
diffusion is specified for the underlying price
process, as we have seen above, options in-
volving the arithmetic average may not have
closed-form solutions. Levy[6] proposes a
more accurate method which relies on the as-
sumption that the distribution of sum of log
normal variables is itself well approximated
at least to a first order by the lognormal. He
mentions that the valuation of average option
becomes possible for typical range of volatility
experienced. Turnbull and Wakeman[15] also
recognize the suitability of the log normal as
a first-order approximation. Thus, since first
and second moments for arithmetic weighted
average are possible to obtain we first define

a new variable which follows lognormal distri-
bution and corresponds up to first and second
moments of the arithmetic weighted average.
Then, option price obtained for such variable
defined is nothing but that for plain option
and hence Black-Scholes formula may be ap-
plicable.

Letting T0 be 0, the value of S(τ) after τ pe-
riod passed is expressed as

S (τ) = S(0)e(r− 1
2
σ2)τ+σW (τ)

where σW (τ) ∼ N
(
0, σ2τ

)
. We also found

the first moment of A (T ) as (2), and the ex-
pected value is easily obtained

E[A(T )] =
aS(0)

eaT − 1

(
e(r+a)T − 1

r + a

)
. (3)

Note: As a → 0 E[A(T )] → S(0)erT−1
rT .

Then, the second moment becomes

E
[
A (T )2

]
= 2

(
aS (0)
eaT − 1

)2

(
e(2(r+a)+σ2)T − 1

(2 (r + a) + σ2) (r + a + σ2)

− e(r+a)T − 1
(r + a) (r + a + σ2)

)
. (4)

Also, the expected value of the product of
S (T ) , A (T ) is

E[S(T )A(T )] =
aS(0)2erT (e(r+a+σ2)T − 1)

(eaT − 1)(r + a + σ2)
.

(5)
On the other hand, a new variable, X (T ) we
now introduce is defined to have the same
price as that of underlying asset after T pe-
riod passed. Assume σW (τ) ∼ N

(
0, σ2τ

)
.

Denoting rx, σx by drift rate and volatility
for the variable X (τ), respectively, define

X (τ) = S(0)e(rx− 1
2
σ2

x)τ+σxW (τ)

Then, the first and second moments for X (T )
can be obtained as

E [X (T )] = S(0)erxT

E
[
X (T )2

]
= S(0)2e(2rx+σ2

x)T .
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Also, the expected value of X(T ),Y (T ) is

E [X (T ) Y (T )] = S(0)2e(r+rx+ρsxσσx)T .

These results along with (3),(4),(5) give the
expression

S(0)erxT =
aS(0)

eaT − 1

(
e(r+a)T − 1

r + a

)
.

From the above we obtain

rx =
1
T

ln

(
a

eaT − 1

(
e(r+a)T − 1

r + a

))
,

and for σx we have

S(0)2e(2rx+σ2
x)T = 2

(
aS(0)

eaT − 1

)2

(
e(2(r+a)+σ2)T − 1

(2 (r + a) + σ2) (r + a + σ2)

− e(r+a)T − 1
(r + a) (r + a + σ2)

)
.

Hence, we have

σx =

√
1
T

lnA− 2rx

where

A = 2
(

a

eaT − 1

)2

(
e(2(r+a)+σ2)T − 1

(2 (r + a) + σ2) (r + a + σ2)

− e(r+a)T − 1
(r + a) (r + a + σ2)

)
For ρsx

ρsx =
1

σσx

 1
T

ln

aerT
(
e(r+a+σ2)T − 1

)
(eaT − 1) (r + a + σ2)


−r − rx)

Therefore, the approximation formulae for
strike option of arithmetic weighted average
are described below,

C̃A = S(0)N (d1)− S(0)e(rx−r)T N (d2)

P̃A = −S(0)N (−d1) + S(0)e(rx−r)T N (−d2)
(6)

where

d1 =

(
r − rx + σ̄2/2

)
T

σ̄
√

T

d2 =

(
r − rx − σ̄2/2

)
T

σ̄
√

T

σ̄ =
√

σ2 + σ2
x − 2ρsxσσx

5 NUMERICAL EXAMPLE

Approximation forms for pricing of arithmetic
weighted average are showed when the weight
is allowed to vary. Let S(0)=100, non-risk
rate=0.5% volatility=20% and T=1year. It
is observed in Figure 1 that as a → +∞
the premium values for both call and put ap-
proach to 0 while the premium values be-
come close to the values of plain options,
call=8.19,put=7.699 respectively, with exer-
cise price S(0) as a → −∞.

As a → 0 the premium values approach
to the values of usual average strike option,
call=4.706, put=4.456, respectively.

Figure 1: Premiums for different weights

It is also observed from Figure 2 that the pre-
mium value for each different weight increases
linearly with the asset prices. The reason is
understood from the fact that figure are char-
acterized as average strike option having pay-
off of two variables, which is different from the
plain option with fixed exercise price. Under
the influence of the weights a the premium
values always become high as more weights
are placed on around contract date, while the
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premium values become small if relative im-
portance is moved to the date of maturity
date.

Figure 2: Premiums of call for different asset
　 prices

6 NUMERICAL
COMPUTATIONS

The performance of the analytical method is
examined and compared with the approxima-
tion method by Monte Carlo simulations.

Let S(0)=100, volatility=10%,20%,30%, non-
risk rate=0.5%, T=1year and N=50. Simula-
tion was performed 10000 times.
To perform numerical computation the period
[0, T ] is divided into n subintervals. Then, it is
distributed as a normal distribution with the
mean (r−σ2/2)T/n, variance σ2T/n. There-
fore, the random sequence S(T1), · · ·, S(Tn)
can be generated as follows

lnS(Ti) = ln S(Ti−1)+
(

r − 1
2
σ2

)
T

n
+σ

√
T

n
zi,

where zi is assumed to be drawn from the
standard normal distribution.

Then, with the form (1) the premium values
for the arithmetic weighted sums are obtained
by C̃A and P̃A.

C̃A = e−rT E#[Max (S(Tm)−A(Tm), 0)]

P̃A = e−rT E#[Max (A(Tm)− S(Tm), 0)]

Thus, by Monte Carlo simulation the values
of realizations of C̃A are calculated.

Table 1: Premium values (σ=10%)
a Monte Carlo Approximation

-30 4.17569 4.12331
-20 4.13079 4.06785
-10 3.92563 3.89721
0 2.37631 2.42370
10 0.86805 0.91642
20 0.57390 0.64308
30 0.44578 0.52325

Table 2: Premium values (σ=20%)
a Monte Carlo Approximation

-30 8.09412 7.98907
-20 7.99626 7.88266
-10 7.65032 7.55446
0 4.68927 4.70597
10 1.70827 1.80543
20 1.14697 1.27279
30 0.90823 1.037703

Table 3: Premium values (σ=30%)
a Monte Carlo Approximation

-30 12.01262 11.83785
-20 11.78060 11.68088
-10 11.36930 11.19539
0 6.90673 6.96221
10 2.53635 2.69032
20 1.71177 1.90104
30 1.33115 1.55136

First, Monte Carlo shows higher premium val-
ues than those of Approximation method as
long as the weights are negative and the op-
posite situation is observed for non-negative
weights.

It is observed from Table1 through Ta-
ble3 that the differences of premium val-
ues between Monte Carlo and Approximation
method occur in most cases in the first deci-
mal place with σ=30% while they occur only
in the second decimal with σ=10%.

7 HEDGE RATIO

Issuers of options will not only be interested
in the price of options but they must also
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develop a fair understanding of the risks in-
volved. In particular, the hedge ratio includ-
ing other sensitivity parameters of call and
put options are of important and interest to
them. The analyses are able to assess how a
contract fit into the existing portfolio and to
what extent additional hedging is necessary.
We calculate the hedge ratio, ∆ for which the
approximation formulae of weighted average
are used. The derivatives of formulae devel-
oped in the previous sections are based on (6).
As expected, the delta for call and put options
are described, respectively, as

∂C̃A

∂S
= N (d1)− e(rx−r)T N (d2)

∂P̃A

∂S
= −N (−d1) + e(rx−r)T N (−d2)

Figure 3: Delta for different volatilities

Figure 4: Delta for different time periods

With increase of the relative weights on
around maturity date the values of delta be-
come small. Also, it is observed that delta
receives the most influence of σ at σ=40%
and the influence becomes low as σ becomes
small. For remaining period T when more
weights are placed on around contract date
the longer the period remains the higher the
delta value will be. Contrary to the above,
when more weights are placed on around ma-
turity date the longer the period remains the
less the value of delta will be.

8 CONCLUSION

A simple average option like Asian options, in
general, may cause to excessively lose its na-
ture of variation the underlying asset possess.
In the light of losing its variation, we pro-
posed a weighted average strike Asian option
in which more weights are placed on around
maturity date or contract date, making en-
able for dealing of variation of the underly-
ing asset. As a → +∞ weights are placed
more on around maturity date, and finally
the payoff becomes 0, while as a → −∞ the
weights on around contract date become large
so that call option is reduced to plain option,
Max(S(T )−S(0), 0) with exercise price S(0).
Also, concerning the valuation of strike Asian
option with weighted average Levy’s method
was applied for derivation of pricing formu-
lae. Since strike option involves two variables
for payoff the methods developed by Kemna
& Vorst and Vorst, which are often used for
rate options, were not used here.

References

[1] Kemna,A.G.D and A.C.F.(1990). Vorst,
A price method for options based on av-
erage asset values, Journal of Banking
and Finance, 14, 113-129.

[2] Vorst,T.(1992). Price and hedge ratios of
average exchange rate options, Interna-
tional Review of Financial Analysis, 1,
179-193.

[3] Vorst,T.(2001). New pricing of asian op-
tions, Working Paper.

606 Proceedings of IPMU’08



[4] Henderson(2004). Bounds for in-progress
floating-strike asian options using sym-
metry, JPrinceton University, ORFE and
Bendheim Center for Finance.

[5] Wilmott,P.,S.Howison and J. Dewynn
(1995). The mathematics of financial
derivatives, Cambridge University Press.

[6] Levy,E(1992). Pricing european average
rate currency options, Journal of Inter-
national Money and Finance, 11,474-491.

[7] Cox,J.C and S.A.Ross(1976). The valua-
tion of options for alternative stochastic
process, Journal Financial Economics,3,
145-166.

[8] Cox,J.C and M. Rubinstein(1985). Op-
tions markets, Prentice Hall.

[9] Jarrow,R.A and A.Rudd(1983). Option
pricing, Homewood, Illinois, Dow Jones-
Irwin.

[10] Black,F. and M.Scholes(1973). The pric-
ing of options and corporate liabilities,
Journal of Political Economics, 81, 637-
659.

[11] Merton. R. C. (1973). Theory of rational
option pricing, Bell Journal of Economics
and Management Science, 4, 141-183.

[12] Carverhill,A.P and L.J.Clewlow(1990).
Flexible convolution, Risk, 3, 25-29.

[13] Bergman,Y.Z.(1981). Pricing path-
dependent european options, Working
Paper, University of California, Berke-
ley,CA.

[14] Beckenbach,E.F and R.Bellman(1971).
Inequalities, Springer, Berlin.

[15] Turnbull and Wakeman(1991). A quick
algorithm for pricing european average,
Journal of Financial and Quantitative
Analysis, 26, 377-389.

Proceedings of IPMU’08 607


