
Optimizing a Fraud Detection Process
1

Nuno Homem

TULisbon – Instituto Superior Tecnico

INESC-ID

R. Alves Redol 9, 1000-029 Lisboa

Portugal

nuno_homem@hotmail.com

 Joao Paulo Carvalho

TULisbon – Instituto Superior Tecnico

INESC-ID

R. Alves Redol 9, 1000-029 Lisboa

Portugal

joao.carvalho@inesc-id.pt

1 This work was supported in part by the FCT - Portuguese Foundation for Science and Technology under project

PTDC/EEA-ELC/66259/2006

Abstract

Fraud in telecommunications services or

financial transactions is a major problem
as it impacts from 1% to 3% of the

revenues. This is in most cases a customer

specific behavior that companies need to
detect in order to minimize it. Detecting

specific types of behavior as soon as it

happens is critical, and to that purpose

companies deploy sophisticated detection

systems. The biggest challenge to fraud

detection systems is accurately predict in

near real time that a customer is a

fraudster or that is service is being used in

fraudulent way. As this may happen to

any customer at any time it is mandatory
to monitor the entire customer base –

sometimes several million customers

making several transactions per day.

Optimizing the detection process is

therefore critical. To model and analyze

the problem Finite State Automata and

Markov Chains were used. To solve the

optimization problem Dynamic

Programming and Stochastic Hill Climber
algorithms were chosen.

Keywords: Fraud, telecommunications, detection,

optimization.

1 Introduction

This paper proposes a new method for a fraud

detection process in telecommunications. Most

fraud systems have two distinct processes,

continuous data integration and aggregation

process and a fraud detection process. In the first

process data from several systems has to be

integrated and correlated. This data is generated by

N network platforms that have to be transferred

into a central platform for processing. This

happens as soon as data is available.

In the data integration process, for each customer a

set of ready to use data is generated and stored.

This is an incremental process that glues customer

demographic and state, customer history data (e.g.

how long he’s been a customer, debt default

incidents, historical consumptions), usage data

(e.g. average usage for several periods, types of

usage, geography of usage – includes both long

term and very short term views) and sometimes

more complex indicators (e.g. traffic fingerprints,

transaction dispersion. Detailed transaction and

event data is also stored to allow for future detailed

analysis.

The fraud detection process can be repeated at pre-

defined intervals or as soon as a previous round

ends. In each round all customers (or at least active

customers) should be checked. Checking a

customer requires performing a set of tests on the

previously generated information. The results of

these tests may indicate some probable problems

(several types of problem may be detected). These

detected problems can then be further analyzed.

Usually this second level of testing requires more

complex processing, sometimes very complex and

detailed analysis of traffic data that may take some

time. These tests are usually more accurate but the

time it takes to perform them makes it impossible

to check every customer in that way. The results of

these tests can then dismiss the problem, confirm it

(at least assign a stronger probability) or point into

another direction that may require further testing.

The outcome of the detection process may be a

fraud alarm. These alarms will be analyzed by a

fraud analyst and may prove to be real or false.

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 583–590

Torremolinos (Málaga), June 22–27, 2008

There’s a high reward to detection of real alarm, a

high cost of not detecting a fraud situation but also

a penalty for triggering false alarms as this may

lead to loss of revenue or even to the loss of the

customer. The alarm accuracy usually takes

several days to check.

In this paper the chosen approach to the detection

process is distinct from what is traditionally used.

In traditional methods the tests are executed

following a specific sequence and the decision is

taken upon the results of those tests. In this

approach we sometimes decide not to do some

tests randomly with a specific probability that is

obtained from the test quality analysis. This allows

the system to be optimized using probabilities of

the tests generating true positive and false positive

results. In the traditional approach the fact that

tests may generate false positive results is left for

the final analysis case and the huge numbers of

false positives that are generated in those fraud

detection systems are one of the main reasons for

fraud detection process failure.

2 Concrete case

The following case will only focus on the fraud

detection process, assuming data integration is

already done. This particular fraud detection

system allows 8 types of tests to be performed on

customer data. From the 8 available tests, 3 are

instantaneous and 5 take some time to complete.

Each test has only positive or negative result.

The instantaneous tests use only pre-computed

data and are always performed before all other

tests. These tests check whether:

• T0 – Is a recent customer? Checks if the

customer is not sufficiently known by the

operator, no history exists to access is

behavior. Unknown customers or recent

customers pose increased risks to the operator.

• T1 – High diversity of use? Checks the usage

behavior of the customer (the type of services

used, calls made, list of destinations). A large

diversity of usage or destinations may indicate

a non personal use of the services, for instance

selling of calls to several persons by the

customer without intention of paying for it.

• T2 – High usage? Checks if the customer is

making too many calls, especially to high

value destinations (international calls, roaming

calls). This is a fast check because only the

number of calls, total duration and a simple

value estimate (based on destination type) is

used (this value can be computed as calls

arrive).

• The more complex tests, those that require

additional data to be used or external systems

to be called are:

• T3 – Credit check - Checks whether the credit

limit of the customer is the appropriate by

using its invoice and payment history (if

available), its demographic data and the

history of that customer in internal and

external lists (sometimes operators share lists

of bad customer between themselves).

• T4 – Traffic Pattern – Checks whether the

usage is a typical fraudster usage. Fraudsters

tend to have very high numbers of calls of

very high value, like international destination

calls (especially to uncommon destinations),

roaming calls, added value services or content

usages.

• T5 - Automated caller - Checks if the type of

use is typical of automated systems. Unlike

humans, machines are capable of doing huge

amounts of calls (hundreds) to very diverse

destinations. Usually a person makes most of

its calls to just a few destinations. Machines

don’t receive calls. Automated systems are

used to reroute traffic through less expensive

channels (and operators lose the difference) or

to resell traffic that is never paid.

• T6 - External agencies – Checks if the

customer is in any of the external credit

agencies bad payment lists or in the central

bank credit denial or credit incidents list.

These inquires take a long time and cost

money.

• T7 – Check list of Fraudsters? Checks whether

the customer has a similar fingerprint to an

already known fraudster. These fingerprints

are usually obtained by using the call

destinations and call usage characteristics and

generating a very high dimension vector. This

584 Proceedings of IPMU’08

vector has then to be compared to the

fingerprints of known fraudsters.

The detection process applies the 3 initial tests to

each customer; this takes only a minimal

processing time (a few milliseconds) since data is

already computed. Those tests will allow the

system to identify potential risks that will be used

to decide if additional optional tests are to be

made:

• If all 3 tests are negative then no further

checking is required and is not a fraudster.

• If T0 is positive then the customer is not well

known to the operator – recent customers

require a credit analysis – then T3 should be

performed.

• If T0 and T1 are positive then the customer

might be an over spending customer – credit

limits for recent customers should be tighter –

then T4 should be performed.

• If T2 is positive then this is potentially a false

customer, a machine redirecting traffic – then

T5 should be performed.

Thus the system will have to decide whether to

make the test or not based not only on the rules but

also on a probability. Even if a test should be made

there will be a probability of the system deciding

not to make it. This may lead to a fraudster not

being detected in this detection run. Probably it

will be detected later. The rules for performing the

last optional tests are:

• T6 should only be performed if T3 is positive.

• T7 should only be performed if T4 is negative.

• T6 or T7 are only evaluated after T3, T4 and

T5 complete

Finally, if any of T4, T5, T6 or T7 is positive the

customer is classified as a fraudster.

Each test has a failure probability. This means that

each test can indicate to a potential fraudster when

the customer is OK or say it is OK when it is not.

Once the potential fraudsters are identified, an

investigation has to be made by fraud analysts. The

analysts may take some actions on the customer.

Naturally this is quite expensive not only because

of the time and resources needed but also because

some of actions may result in customer

dissatisfaction if applied to OK customers.

Therefore, the system must avoid generating false

positives.

In this new approach we consider that system

should optimize the probabilities of performing

each of the optional tests in order to improve its

detection rate of fraudsters and reducing false

positives. This maximization should take account

of the gains and losses of the process.

Over time the results of the analysis by fraud

analysts and the behavior of the customer (not

paying its debts) will identify real fraudsters. Once

a fraudster is detected it will be blocked. If a

customer is identified as a fraudster and the

analysis clear him, then the customer gets back to

the detection system. Figure 1 provides a block

diagram of the overall detection process.

Figure 1: Overall detection process.

Process gains and losses must be considered:

• GFD – the average losses due to a fraudster –

the avoided loss when a fraudster is detected.

• CFF – the average cost of analyzing a false

positive and the potential cost of customer

dissatisfaction.

• CDD – the cost of missing a fraudster in the

run.

The following will also be considered:

• PF – probability that a customer is a fraudster.

• Pfn – probability of detecting false negatives.

• Pfp – probability of detecting false positives.

• Ptp – probability of detecting true positives.

The system decides the probabilities of making

tests T3, T4, T5, T6 and T7 (pT3, pT4, pT5, pT6

and pT7 respectively). Detection process is

repeated for each customer every day.

Proceedings of IPMU’08 585

3 Detection system representation

The detection system can be represented by a

Finite State Automata (FSA) [2] [1]. Since the

tests in can be grouped, the states can represent the

several tests being performed at the same time.

For example, T34 means that T3 and T4 can be

done simultaneously. Figure 2 represents the FSA
of the detection algorithm. The FSA evolves from

top to bottom in sequence.

Figure 2: Detection algorithm FSA.

Marked states are tangible states, unmarked states

are vanishing states (only immediate transitions

enabled):

• States labeled T represents test performed.

• States labeled R represents results of the initial

tests.

• States labeled A represents choices of complex

tests to perform (before randomly selecting

which are to be in reality made).

• The OK state means that a customer is not a

fraudster and the Fraudster state identifies the

customer as a fraudster.

Let Tj be the set of tests. Consider pj as the

probability of test Tj giving a positive result. We

will consider all tests independent, i.e., not

correlated.

From this FSA and by applying the transition

probabilities to each link we can obtain the

corresponding Markov Chain (MC)[2]. This MC

can be further simplified by eliminating the

transient states. Figure 3 shows the simplified

Detection FSA.

Figure 3: Simplified detection FSA.

The probabilities and times for each transition (L)

in this MC are show in Table 1.

Table 1: Transition probabilities table.

L pL

Initial

State

Final

State

Probability = fx

Start OK (1-p0).(1-p1).(1-p2)+(1-p0).p1.(1-

p2)+(1-p0).(1-p1).p2+(1-pT3). p0.(1-
p1).(1-p2)+(1-pT3).(1-pT4). p0.p1.(1-

p2)+(1-pT3).(1-pT5). p0.(1-

p1).p2+(1-pT5). (1-p0).p1.p2+(1-
pT3).(1-pT4).(1-pT5). p0.p1.p2

f1

Start T3 pT3. p0.(1-p1).(1-p2)+pT3.(1-pT4).

p0.p1.(1-p2)+pT3.(1-pT5). p0.(1-

p1).p2+pT3.(1-pT4).(1-pT5). p0.p1.p2

f2

Start T34 pT3.pT4. p0.p1.(1-p2)+pT3.pT4.(1-
pT5). p0.p1.p2

f3

Start T345 pT3.pT4.pT5. p0.p1.p2 f4

Start T35 pT3.pT5. p0.(1-p1).p2+pT3.(1-

pT4).pT5. p0.p1.p2

f5

Start T4 (1-pT3).pT4. p0.p1.(1-p2)+(1-

pT3).pT4.(1-pT5). p0.p1.p2

f6

Start T45 (1-pT3).pT4.pT5. p0.p1.p2 f7

Start T5 (1-pT3).pT5. p0.(1-p1).p2+pT5. (1-
p0).p1.p2+(1-pT3).(1-pT4).pT5.

p0.p1.p2

f8

T3 OK (1-p3)+(1-pT6). p3 f9

T3 T6 pT6. p3 f10

T34 Fraudster p4 f11

T34 OK (1-pT7). (1-p4).(1-p3)+(1-pT6).(1-

pT7). (1-p4).p3

f12

T34 T6 pT6.(1-pT7). (1-p4).p3 f13

T34 T67 pT6.pT7. (1-p4).p3 f14

T34 T7 pT7. (1-p4).(1-p3)+pT7.(1-pT6). (1-

p4).p3

f15

T345 Fraudster p4+p5-p4.p5 f16

586 Proceedings of IPMU’08

T345 OK (1-pT7). (1-p3).(1-p4).(1-p5)+(1-

pT6).(1-pT7). p3.(1-p4).(1-p5)

f17

T345 T67 pT6.pT7. p3.(1-p4).(1-p5) f19

T345 T6 pT6.(1-pT7). p3.(1-p4).(1-p5) f18

T345 T7 pT7. (1-p3).(1-p4).(1-p5)+pT7.(1-
pT6). p3.(1-p4).(1-p5)

f20

T4 Fraudster p4 f24

T4 OK (1-pT7). (1-p4) f25

T4 T7 pT7. (1-p4) f26

T45 Fraudster p4+p5-p4.p5 f27

T45 OK (1-pT7). (1-p4-p5+p4.p5) f28

T45 T7 pT7. (1-p4-p5+p4.p5) f29

T5 Fraudster p5 f30

T5 OK (1-p5) f31

T6 Fraudster p6 f32

T6 OK (1-p6) f33

T67 Fraudster p6+p7-p6.p7 f34

T67 OK (1-p6).(1-p7) f35

T7 Fraudster p7 f36

T7 OK (1-p7) f37

4 The full system representation

The full system includes the detection

component within the overall process. The

system encompasses the two distinct situations,

the customer being or not a fraudster. The

complete system can also be represented by a

FSA (Figure 4).

Using the simplified detection FSA to create the

full MC we obtain the transition probabilities

shown in Table 2.

Table 2: Reduced transition probabilities table.

L pL

Initial

State

Final

State

Probability

Start Fraudster f3.f11+f4.f16+f5.f21+f6.f24+f7.f27+f8.f30

+ f32.(f2.f10+f3.f13+f4.f18+f5.f23)+

f34.(f3.f14+f4.f19)+

f36.(f3.f15+f4.f20+f6.f26+f7.f29)

Start OK f1+f2.f9+f3.f12+f4.f17+f5.f22+f6.f25+f7.f2

8+f8.f31+

f33.(f2.f10+f3.f13+f4.f18+f5.f23)+

f35.(f3.f14+f4.f19)+

f37.(f3.f15+f4.f20+f6.f26+f7.f29)

This model can be used to solve the

optimization problem as it can be mapped

directly into a Discrete Time Markov Chain

(DTMC) in which:

• t0 – day 0

• t1 – beginning of the daily process, day 0

• t2 – daily process completed, day 0

• t2N+1 – beginning of the daily process for day

N

• t2N+2 – daily process completed for day N

We can consider that once the system reaches

the True Fraudster state no further evolution is

required.

T012

OK

R01R0 R02 R12 R012R1 R2

T3 T34 T4 T35 T5 T45 T345

True

OK

False

Fraudster

A6

T6

A7

T7

A67

T67

T012

Fraud

R01R0 R02 R12 R012R1 R2

T3 T34 T4 T35 T5 T45 T345

False

OK

True

Fraudster

A6

T6

A7

T7

A67

T67

Start

 Figure 4: Complete FSA model.

Proceedings of IPMU’08 587

5 Solving this problem

To solve this problem an optimization algorithm

is required to find the best decision probabilities

for pT3, pT4, pT5, pT6 and pT7 in order to

achieve best overall cost while ensuring the

required validation time. As parameters are

stochastic the algorithm will find the best

policies to solve the problem instead of a

concrete solution. A policy states the advised

action for each possible state.

As each test can give wrong results we have to

consider two possibilities, the customer being a

Fraudster and the customer being OK:

• P(T j is positive | Fraudster) = pjtp

• P(T j is negative | Fraudster) = pjfn

• P(T j is positive | OK) = pjfp

• P(T j is negative | OK) = pjtn

To calculate Pfn and Ptp we replace pj by pjtp in

the detection system probabilities model. To

calculate Pfp we replace pj by pjfp in the detection

system probabilities model. The initial

transitions from Start will have probability PF to

Fraud and (1- PF) to OK.

Each of the states in t2N+2 can be assigned a cost:

• True OK: 0;

• False Fraudster: CFF – the average cost of

analyzing a false positive and the potential

cost of customer dissatisfaction. This is

accounted every time the system fails an

incorrectly classifies the customer as

fraudster;

• False OK: CDD – the cost of not

detecting a real fraudster in this run. This is

accounted every time the system fails to

detect a fraudster;

• True Fraudster: GFD – the average losses

due to a fraudster – this is a reward and not

a cost as it is the gain generated by the

system when it detects a fraudster. This is

only accounted once.

The actions will be the values we assign to pT3,

pT4, pT5, pT6 and pT7.

In order to optimize our decision let us consider

the total expected discounted cost over an

infinite horizon for a DTMC given the initial

state i.

Vπ(i) = Eπ [Σk α
kC(Xk, uk)] (1)

We look for the policy π that minimizes cost:

V*
π(i) = min u € π [Vπ(i)] (2)

Where:

• Initial state i = X0;

• Policy π = {u0, u1,…, uk,…} over

infinite horizon;

• Discount rate 0 < α <1;

Costs are only relevant for instant t2N+2,

otherwise are 0. For simplicity sake let us

consider the index translation j = 2N+2. When

considering only those instants, nothing changes

in the system but notation is considerably

simplified.

As the system is initially split in two based on

whether the customer is a fraudster or not, costs

can also be split between costs for those two

situations:

C(Xk, uk) = PF. C(Xk, uk)| Fraudster +

 (1- PF). C(Xk, uk)| OK (3)

Consider:

CF(Xk, uk) = C(Xk, uk)| Fraudster (4)

COk(Xk, uk) = C(Xk, uk)| OK (5)

Consider first the cost when the customer is OK.

For the first relevant moment cost is thus:

COk(X0, u0) = Pfp. CFF (6)

For all instants j:

COk(Xj, uj) = Pfp. CFF (7)

For the fraudsters, as no further costs will be

considered after the fraudster is detected, the

issue is just to compute the cost of not detecting

the fraudster until instant j:

CF (X0, u0) = Ptp. GFD + Pfn. CDD (8)

For instant 1, costs are only to consider if the

fraudster was not detected in instant 0, this

happens with probability Pfn:

CF(X1, u1) = Pfn.(Ptp. GFD + Pfn. CDD) (9)

588 Proceedings of IPMU’08

For all instants j:

CF(Xj, uj) = Pfn
j.(Ptp. GFD + Pfn. CDD) (10)

Now we can rewrite the cost function:

Vπ(i) = Eπ [Σj α
j.[PF.CF(Xj, uj)+(1-PF).COk(Xk, uk)]] (11)

Vπ(i) = Eπ [Σj α
j
 .[PF.Pfn

j
.(Ptp.GFD+Pfn. CDD)

 + (1-PF).Pfp.CFF]] (12)

Vπ(i) = Σj α
j
.[PF. Pfn

j
.(Ptp.GFD+Pfn. CDD)

 + (1- PF). Pfp. CFF]] (13)

We can analyze the consequences of reaching a

steady state for this system. This can be easily

reached by setting pT3, pT4, pT5, pT6 and pT7

to constant values after a given instant M. This

means that after that instant Pfn, Ptp and Pfp are

also constant over time and we can rewrite the

equation as:

Vπ(i) = Σj=0..M-1 α
j.[PF.Pfn

j.(Ptp.GFD+Pfn.CDD)+(1-PF).Pfp.CFF]

 +Σj=M..∞α
j.[PF.Pfn

j.(Ptp.GFD+Pfn.CDD)

 +(1-PF).Pfp.CFF] (14)

Vπ(i) = Σj=0..M-1 α
j.[PF.Pfn

j.(Ptp.GFD+Pfn.CDD)+(1-PF).Pfp.CFF]

 +[PF.(Ptp.GFD+Pfn.CDD)].Σj=M..∞α
j.Pfn

j

 +[(1-PF).Pfp.CFF].Σj=M..∞α
j. (15)

Vπ(i) = Σj=0..M-1 α
j.[PF.Pfn

j.(Ptp.GFD+Pfn.CDD)+(1-PF).Pfp.CFF]]

 +PF.(Ptp.GFD+Pfn.CDD).Pfn
M.αM/(1-α.Pfn)

 +[(1-PF).Pfp.CFF]. α
M/(1-α) (16)

This is an interesting expression as it allows

dynamic programming [1] to be used to solve

the problem. The initial decisions will contribute

at each step to the cost, and the remaining

decisions (after reaching the steady state) can be

computed in a single step.

A extreme situation would be to consider values

for pT3, pT4, pT5, pT6 and pT7 constant for all

instants. In this case we can rewrite the equation

as:

Vπ(i) = Σj α
j.[PF.Pfn

j.(Ptp.GFD+ Pfn.CDD)]

 + Σj α
j
.[(1-PF).Pfp.CFF]] (17)

Vπ(i) = PF.(Ptp.GFD + Pfn.CDD)/(1– α.Pfn)

 +(1-PF). Pfp.CFF /(1-α) (18)

6 Examples

6.1 Single decision problem

As an example let us analyze a case where only

one decision has to me made and pT3, pT4, pT5,

pT6 and pT7 remain constant for all instants.

Consider the probabilities presented in Table 3.

for each test.

Table 3: Test probabilities table.

Test Ptp Pfp

T0 0.5 0.2

T1 0.5 0.2

T2 0.5 0.2

T3 0.6 0.15

T4 0.7 0.1

T5 0.65 0.05

T6 0.7 0.05

T7 0.8 0.01

Consider also the following values for the other

variables:

• PF = 0.01

• GFD = -200.0

• CDD = 2.0

• CFF = 10.0

• α = 0.9

Since the solution space is huge (even

considering 0.01 steps we could have to check

1005 solutions) an optimization algorithm has to

be used. In this case, due to its simplicity, the

Stochastic Hill Climber algorithm was

implemented [3]. The results were:

Solution pT3 = 1.0

Solution pT4 = 0.0

Solution pT5 = 0.26

Solution pT6 = 1.0

Solution pT7 = 1.0

Ptp = 0.2556, Pfn = 0.7444

Pfp = 0.0024, Ptn = 0.9976

Solution Cost = -1.2630

Note that since pT4 is 0.0, pT7 is not relevant as

this test is not performed. This can be observed

in the solutions as the same result can be

achieved with any other pT7 result.

The optimization itself takes less than a second

to complete.

Proceedings of IPMU’08 589

 6.2 Multiple decision problem

In this example we will consider the same

parameters, but we assume that three decisions

have to be made for days 0, 1 and 2 (which will

be the final value).

First we obtain the steady state solution for M =

2. Then we can use dynamic programming [1] to

determine the two other decisions for j = 0 and j

= 1.

Solution

pT3[0] = 1.0, pT3[1] = 1.0, pT3[2] = 0.94

pT4[0] = 1.0, pT4[1] = 0.11, pT4[2] = 0.0

pT5[0] = 1.0, pT5[1] = 1.0, pT5[2] = 0.0

pT6[0] = 1.0, pT6[1] = 1.0, pT6[2] = 0.78

pT7[0] = 1.0, pT7[1] = 0.75, pT7[2] = 0.63

Solution Cost[0] = -0.8518

Solution Cost[1] = -0.3741

Solution Cost[2..∞] = -1.2630

Overall Cost = -1,8449

Once again pT7 in final step is not relevant as

any value of pT7 leads to the same result.

This clearly shows that more tests should be

done in the beginning and that the probability of

doing the tests should be reduced to minimize

the false positives (as this cost is always

incurred). It also shows that this more complex

policy, with more decisions, leads to much

better results than the simple decision one.

7 Conclusions and Future Work

This work shows how a fraud detection system

can be modeled and analyzed in order to

optimize the quality of its output. The approach

used can easily be extended to more complex

systems. Clearly, considering not only the tests

dependency but also the test quality, results in

better quality of fraud detection.

The initial FSA model presents some interesting

characteristics that can be seen in real life fraud

systems; the multiple testing stages and

cascaded decisions. Although the analytical

complexity of such a detection system may

prevent a closed expression to be extracted it is

always possible to numerically compute the

values – even if the tests are not independent as

was assumed in this work. The overall reward

model is not complex (although it might be

more complex than this).

As long as the staged test model is retained it

would be easy to introduce a transfer matrix

between stages. This could further increase the

modeling power.

From the results it is also obvious that the fraud

analysis history of a given customer is also

relevant to optimize the tests to be performed.

This clearly shows that the very common

practice of applying the same test battery for

customers regardless of their previous test

history is not advisable.

Future work should consider correlated test

results, test execution time (as this may also be a

constraint) and variations to the overall cost and

reward function.

The inclusion of execution time constraints is

also relevant as this may impact the decision at

each step. This is motivated by the fact that all

customers should be checked within a detection

cycle and some tests may require more time or

processing power than is available.

Changes to the overall fraud detection process

should also handle the possibility of a customer

becoming a fraudster not at the beginning but

later on (maybe due to theft of the mobile phone

or financial difficulties of the customer itself).

References

[1] Bertsekas, Dimitri P. (1995), Dynamic

Programming and Optimal Control. Vol 1.

Athena Scientific.

[2] Cassandras, Christos G and Stéphane

Lafortune (1999). Introduction to Discrete

Event Systems. Kluwer Academic
Publishers. Boston.

[3] Russell, J. and Norvig, P. (2003), Artificial

Intelligence: A Modern Approach (2nd ed.),

Upper Saddle River, NJ: Prentice Hall, pp.

111-114

[4] Viswanadham, N. and Narahari, Y.(1992),

Performance Modeling of Automated

Manufacturing Systems. Information and

System Sciences Series. Prentice Hall.

590 Proceedings of IPMU’08

