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Abstract 

Fraud in telecommunications services or 

financial transactions is a major problem 
as it impacts from 1% to 3% of the 

revenues. This is in most cases a customer 

specific behavior that companies need to 
detect in order to minimize it. Detecting 

specific types of behavior as soon as it 

happens is critical, and to that purpose 

companies deploy sophisticated detection 

systems. The biggest challenge to fraud 

detection systems is accurately predict in 

near real time that a customer is a 

fraudster or that is service is being used in 

fraudulent way. As this may happen to 

any customer at any time it is mandatory 
to monitor the entire customer base – 

sometimes several million customers 

making several transactions per day. 

Optimizing the detection process is 

therefore critical. To model and analyze 

the problem Finite State Automata and 

Markov Chains were used. To solve the 

optimization problem Dynamic 

Programming and Stochastic Hill Climber 
algorithms were chosen. 

Keywords: Fraud, telecommunications, detection, 

optimization. 

1     Introduction 

This paper proposes a new method for a fraud 

detection process in telecommunications. Most 

fraud systems have two distinct processes, 

continuous data integration and aggregation 

process and a fraud detection process. In the first 

process data from several systems has to be 

integrated and correlated. This data is generated by 

N network platforms that have to be transferred 

into a central platform for processing. This 

happens as soon as data is available.  

In the data integration process, for each customer a 

set of ready to use data is generated and stored. 

This is an incremental process that glues customer 

demographic and state, customer history data (e.g. 

how long he’s been a customer, debt default 

incidents, historical consumptions), usage data 

(e.g. average usage for several periods, types of 

usage, geography of usage – includes both long 

term and very short term views) and sometimes 

more complex indicators (e.g. traffic fingerprints, 

transaction dispersion. Detailed transaction and 

event data is also stored to allow for future detailed 

analysis. 

The fraud detection process can be repeated at pre-

defined intervals or as soon as a previous round 

ends. In each round all customers (or at least active 

customers) should be checked. Checking a 

customer requires performing a set of tests on the 

previously generated information. The results of 

these tests may indicate some probable problems 

(several types of problem may be detected). These 

detected problems can then be further analyzed. 

Usually this second level of testing requires more 

complex processing, sometimes very complex and 

detailed analysis of traffic data that may take some 

time. These tests are usually more accurate but the 

time it takes to perform them makes it impossible 

to check every customer in that way. The results of 

these tests can then dismiss the problem, confirm it 

(at least assign a stronger probability) or point into 

another direction that may require further testing. 

The outcome of the detection process may be a 

fraud alarm. These alarms will be analyzed by a 

fraud analyst and may prove to be real or false. 
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There’s a high reward to detection of real alarm, a 

high cost of not detecting a fraud situation but also 

a penalty for triggering false alarms as this may 

lead to loss of revenue or even to the loss of the 

customer. The alarm accuracy usually takes 

several days to check. 

In this paper the chosen approach to the detection 

process is distinct from what is traditionally used. 

In traditional methods the tests are executed 

following a specific sequence and the decision is 

taken upon the results of those tests. In this 

approach we sometimes decide not to do some 

tests randomly with a specific probability that is 

obtained from the test quality analysis. This allows 

the system to be optimized using probabilities of 

the tests generating true positive and false positive 

results. In the traditional approach the fact that 

tests may generate false positive results is left for 

the final analysis case and the huge numbers of 

false positives that are generated in those fraud 

detection systems are one of the main reasons for 

fraud detection process failure. 

2     Concrete case 

The following case will only focus on the fraud 

detection process, assuming data integration is 

already done. This particular fraud detection 

system allows 8 types of tests to be performed on 

customer data. From the 8 available tests, 3 are 

instantaneous and 5 take some time to complete. 

Each test has only positive or negative result. 

The instantaneous tests use only pre-computed 

data and are always performed before all other 

tests. These tests check whether: 

• T0 – Is a recent customer? Checks if the 

customer is not sufficiently known by the 

operator, no history exists to access is 

behavior. Unknown customers or recent 

customers pose increased risks to the operator.  

• T1 – High diversity of use? Checks the usage 

behavior of the customer (the type of services 

used, calls made, list of destinations). A large 

diversity of usage or destinations may indicate 

a non personal use of the services, for instance 

selling of calls to several persons by the 

customer without intention of paying for it.  

• T2 – High usage? Checks if the customer is 

making too many calls, especially to high 

value destinations (international calls, roaming 

calls). This is a fast check because only the 

number of calls, total duration and a simple 

value estimate (based on destination type) is 

used (this value can be computed as calls 

arrive).  

• The more complex tests, those that require 

additional data to be used or external systems 

to be called are: 

• T3 – Credit check - Checks whether the credit 

limit of the customer is the appropriate by 

using its invoice and payment history (if 

available), its demographic data and the 

history of that customer in internal and 

external lists (sometimes operators share lists 

of bad customer between themselves).  

• T4 – Traffic Pattern – Checks whether the 

usage is a typical fraudster usage. Fraudsters 

tend to have very high numbers of calls of 

very high value, like international destination 

calls (especially to uncommon destinations), 

roaming calls, added value services or content 

usages.  

• T5 - Automated caller - Checks if the type of 

use is typical of automated systems. Unlike 

humans, machines are capable of doing huge 

amounts of calls (hundreds) to very diverse 

destinations. Usually a person makes most of 

its calls to just a few destinations. Machines 

don’t receive calls. Automated systems are 

used to reroute traffic through less expensive 

channels (and operators lose the difference) or 

to resell traffic that is never paid. 

• T6 - External agencies – Checks if the 

customer is in any of the external credit 

agencies bad payment lists or in the central 

bank credit denial or credit incidents list. 

These inquires take a long time and cost 

money. 

• T7 – Check list of Fraudsters? Checks whether 

the customer has a similar fingerprint to an 

already known fraudster. These fingerprints 

are usually obtained by using the call 

destinations and call usage characteristics and 

generating a very high dimension vector. This 
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vector has then to be compared to the 

fingerprints of known fraudsters.  

The detection process applies the 3 initial tests to 

each customer; this takes only a minimal 

processing time (a few milliseconds) since data is 

already computed. Those tests will allow the 

system to identify potential risks that will be used 

to decide if additional optional tests are to be 

made: 

• If all 3 tests are negative then no further 

checking is required and is not a fraudster. 

• If T0 is positive then the customer is not well 

known to the operator – recent customers 

require a credit analysis – then T3 should be 

performed. 

• If T0 and T1 are positive then the customer 

might be an over spending customer – credit 

limits for recent customers should be tighter – 

then T4 should be performed.  

• If T2 is positive then this is potentially a false 

customer, a machine redirecting traffic – then 

T5 should be performed. 

Thus the system will have to decide whether to 

make the test or not based not only on the rules but 

also on a probability. Even if a test should be made 

there will be a probability of the system deciding 

not to make it. This may lead to a fraudster not 

being detected in this detection run. Probably it 

will be detected later. The rules for performing the 

last optional tests are: 

• T6 should only be performed if T3 is positive. 

• T7 should only be performed if T4 is negative. 

• T6 or T7 are only evaluated after T3, T4 and 

T5 complete 

Finally, if any of T4, T5, T6 or T7 is positive the 

customer is classified as a fraudster.  

Each test has a failure probability. This means that 

each test can indicate to a potential fraudster when 

the customer is OK or say it is OK when it is not. 

Once the potential fraudsters are identified, an 

investigation has to be made by fraud analysts. The 

analysts may take some actions on the customer. 

Naturally this is quite expensive not only because 

of the time and resources needed but also because 

some of actions may result in customer 

dissatisfaction if applied to OK customers. 

Therefore, the system must avoid generating false 

positives.  

In this new approach we consider that system 

should optimize the probabilities of performing 

each of the optional tests in order to improve its 

detection rate of fraudsters and reducing false 

positives. This maximization should take account 

of the gains and losses of the process. 

Over time the results of the analysis by fraud 

analysts and the behavior of the customer (not 

paying its debts) will identify real fraudsters. Once 

a fraudster is detected it will be blocked. If a 

customer is identified as a fraudster and the 

analysis clear him, then the customer gets back to 

the detection system. Figure 1 provides a block 

diagram of the overall detection process. 

Figure 1: Overall detection process. 

Process gains and losses must be considered: 

• GFD – the average losses due to a fraudster – 

the avoided loss when a fraudster is detected. 

• CFF – the average cost of analyzing a false 

positive and the potential cost of customer 

dissatisfaction. 

• CDD – the cost of missing a fraudster in the 

run.  

The following will also be considered: 

• PF – probability that a customer is a fraudster. 

• Pfn – probability of detecting false negatives. 

• Pfp – probability of detecting false positives. 

• Ptp – probability of detecting true positives. 

The system decides the probabilities of making 

tests T3, T4, T5, T6 and T7 (pT3, pT4, pT5, pT6 

and pT7 respectively). Detection process is 

repeated for each customer every day. 
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3     Detection system representation 

The detection system can be represented by a 

Finite State Automata (FSA) [2] [1]. Since the 

tests in can be grouped, the states can represent the 

several tests being performed at the same time.  

For example, T34 means that T3 and T4 can be 

done simultaneously. Figure 2 represents the FSA 
of the detection algorithm. The FSA evolves from 

top to bottom in sequence. 

 

Figure 2: Detection algorithm FSA. 

Marked states are tangible states, unmarked states 

are vanishing states (only immediate transitions 

enabled): 

• States labeled T represents test performed. 

• States labeled R represents results of the initial 

tests. 

• States labeled A represents choices of complex 

tests to perform (before randomly selecting 

which are to be in reality made). 

• The OK state means that a customer is not a 

fraudster and the Fraudster state identifies the 

customer as a fraudster. 

Let Tj be the set of tests. Consider pj as the 

probability of test Tj giving a positive result. We 

will consider all tests independent, i.e., not 

correlated. 

From this FSA and by applying the transition 

probabilities to each link we can obtain the 

corresponding Markov Chain (MC)[2]. This MC 

can be further simplified by eliminating the 

transient states. Figure 3 shows the simplified 

Detection FSA. 

 
Figure 3: Simplified detection FSA. 

The probabilities and times for each transition (L) 

in this MC are show in Table 1. 

Table 1: Transition probabilities table. 

L pL 

Initial 

State 

Final 

State 

Probability = fx 

Start OK (1-p0).(1-p1).(1-p2)+(1-p0).p1.(1-

p2)+(1-p0).(1-p1).p2+(1-pT3). p0.(1-
p1).(1-p2)+(1-pT3).(1-pT4). p0.p1.(1-

p2)+(1-pT3).(1-pT5). p0.(1-

p1).p2+(1-pT5). (1-p0).p1.p2+(1-
pT3).(1-pT4).(1-pT5). p0.p1.p2 

f1 

Start T3 pT3. p0.(1-p1).(1-p2)+pT3.(1-pT4). 

p0.p1.(1-p2)+pT3.(1-pT5). p0.(1-

p1).p2+pT3.(1-pT4).(1-pT5). p0.p1.p2 

f2 

Start T34 pT3.pT4. p0.p1.(1-p2)+pT3.pT4.(1-
pT5). p0.p1.p2 

f3 

Start T345 pT3.pT4.pT5. p0.p1.p2 f4 

Start T35 pT3.pT5. p0.(1-p1).p2+pT3.(1-

pT4).pT5. p0.p1.p2 

f5 

Start T4 (1-pT3).pT4. p0.p1.(1-p2)+(1-

pT3).pT4.(1-pT5). p0.p1.p2 

f6 

Start T45 (1-pT3).pT4.pT5. p0.p1.p2 f7 

Start T5 (1-pT3).pT5. p0.(1-p1).p2+pT5. (1-
p0).p1.p2+(1-pT3).(1-pT4).pT5. 

p0.p1.p2 

f8 

T3 OK (1-p3)+(1-pT6). p3 f9 

T3 T6 pT6. p3 f10 

T34 Fraudster p4 f11 

T34 OK (1-pT7). (1-p4).(1-p3)+(1-pT6).(1-

pT7). (1-p4).p3 

f12 

T34 T6 pT6.(1-pT7). (1-p4).p3 f13 

T34 T67 pT6.pT7. (1-p4).p3 f14 

T34 T7 pT7. (1-p4).(1-p3)+pT7.(1-pT6). (1-

p4).p3 

f15 

T345 Fraudster p4+p5-p4.p5 f16 
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T345 OK (1-pT7). (1-p3).(1-p4).(1-p5)+(1-

pT6).(1-pT7). p3.(1-p4).(1-p5) 

f17 

T345 T67 pT6.pT7. p3.(1-p4).(1-p5) f19 

T345 T6 pT6.(1-pT7). p3.(1-p4).(1-p5) f18 

T345 T7 pT7. (1-p3).(1-p4).(1-p5)+pT7.(1-
pT6). p3.(1-p4).(1-p5) 

f20 

T4 Fraudster p4 f24 

T4 OK (1-pT7). (1-p4) f25 

T4 T7 pT7. (1-p4) f26 

T45 Fraudster p4+p5-p4.p5 f27 

T45 OK (1-pT7). (1-p4-p5+p4.p5) f28 

T45 T7 pT7. (1-p4-p5+p4.p5) f29 

T5 Fraudster p5 f30 

T5 OK (1-p5) f31 

T6 Fraudster p6 f32 

T6 OK (1-p6) f33 

T67 Fraudster p6+p7-p6.p7 f34 

T67 OK (1-p6).(1-p7) f35 

T7 Fraudster p7 f36 

T7 OK (1-p7) f37 

4     The full system representation 

The full system includes the detection 

component within the overall process. The 

system encompasses the two distinct situations, 

the customer being or not a fraudster. The 

complete system can also be represented by a 

FSA (Figure 4).  

Using the simplified detection FSA to create the 

full MC we obtain the transition probabilities 

shown in Table 2. 

Table 2: Reduced transition probabilities table. 

L pL 

Initial 

State 

Final 

State 

Probability 

Start Fraudster f3.f11+f4.f16+f5.f21+f6.f24+f7.f27+f8.f30

+ f32.(f2.f10+f3.f13+f4.f18+f5.f23)+ 

f34.(f3.f14+f4.f19)+ 

f36.(f3.f15+f4.f20+f6.f26+f7.f29) 

Start OK f1+f2.f9+f3.f12+f4.f17+f5.f22+f6.f25+f7.f2

8+f8.f31+ 

f33.(f2.f10+f3.f13+f4.f18+f5.f23)+ 

f35.(f3.f14+f4.f19)+ 

f37.(f3.f15+f4.f20+f6.f26+f7.f29) 

This model can be used to solve the 

optimization problem as it can be mapped 

directly into a Discrete Time Markov Chain 

(DTMC) in which: 

• t0 – day 0 

• t1 – beginning of the daily process, day 0 

• t2 – daily process completed, day 0 

• t2N+1 – beginning of the daily process for day 

N 

• t2N+2 – daily process completed for day N 

We can consider that once the system reaches 

the True Fraudster state no further evolution is 

required. 

T012

OK

R01R0 R02 R12 R012R1 R2

T3 T34 T4 T35 T5 T45 T345

True 

OK

False 

Fraudster

A6

T6

A7

T7

A67

T67

T012

Fraud

R01R0 R02 R12 R012R1 R2

T3 T34 T4 T35 T5 T45 T345

False 

OK

True 

Fraudster

A6

T6

A7

T7

A67

T67

Start

 

 Figure 4: Complete FSA model. 
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5     Solving this problem 

To solve this problem an optimization algorithm 

is required to find the best decision probabilities 

for pT3, pT4, pT5, pT6 and pT7 in order to 

achieve best overall cost while ensuring the 

required validation time. As parameters are 

stochastic the algorithm will find the best 

policies to solve the problem instead of a 

concrete solution. A policy states the advised 

action for each possible state.  

As each test can give wrong results we have to 

consider two possibilities, the customer being a 

Fraudster and the customer being OK: 

• P(T j is positive | Fraudster)  = pjtp 

• P(T j is negative | Fraudster) = pjfn 

• P(T j is positive | OK)      = pjfp 

• P(T j is negative | OK)      = pjtn 

To calculate Pfn and Ptp  we replace pj by pjtp in 

the detection system probabilities model. To 

calculate Pfp we replace pj by pjfp in the detection 

system probabilities model. The initial 

transitions from Start will have probability PF to 

Fraud and (1- PF) to OK.  

Each of the states in t2N+2 can be assigned a cost: 

• True OK:  0; 

• False Fraudster: CFF – the average cost of 

analyzing a false positive and the potential 

cost of customer dissatisfaction. This is 

accounted every time the system fails an 

incorrectly classifies the customer as 

fraudster; 

• False OK:   CDD – the cost of not 

detecting a real fraudster in this run. This is 

accounted every time the system fails to 

detect a fraudster; 

• True Fraudster: GFD – the average losses 

due to a fraudster – this is a reward and not 

a cost as it is the gain generated by the 

system when it detects a fraudster. This is 

only accounted once. 

The actions will be the values we assign to pT3, 

pT4, pT5, pT6 and pT7.  

In order to optimize our decision let us consider 

the total expected discounted cost over an 

infinite horizon for a DTMC given the initial 

state i.  

Vπ(i) = Eπ [ Σk α
kC(Xk, uk)] (1) 

We look for the policy π that minimizes cost: 

V*
π(i) = min u € π [ Vπ(i) ]  (2) 

Where: 

• Initial state i  = X0; 

• Policy π = {u0, u1,…, uk,…} over 

infinite horizon;  

• Discount rate 0 < α <1; 

Costs are only relevant for instant t2N+2, 

otherwise are 0. For simplicity sake let us 

consider the index translation j = 2N+2. When 

considering only those instants, nothing changes 

in the system but notation is considerably 

simplified. 

As the system is initially split in two based on 

whether the customer is a fraudster or not, costs 

can also be split between costs for those two 

situations: 

C(Xk, uk) = PF. C(Xk, uk)| Fraudster +  

                   (1- PF). C(Xk, uk)| OK (3) 

Consider: 

CF(Xk, uk) = C(Xk, uk)| Fraudster  (4) 

COk(Xk, uk) = C(Xk, uk)| OK (5) 

Consider first the cost when the customer is OK. 

For the first relevant moment cost is thus: 

COk(X0, u0) = Pfp. CFF (6) 

For all instants j: 

COk(Xj, uj) = Pfp. CFF (7) 

For the fraudsters, as no further costs will be 

considered after the fraudster is detected, the 

issue is just to compute the cost of not detecting 

the fraudster until instant j: 

CF (X0, u0) = Ptp. GFD + Pfn. CDD (8) 

For instant 1, costs are only to consider if the 

fraudster was not detected in instant 0, this 

happens with probability Pfn: 

CF(X1, u1) = Pfn.(Ptp. GFD + Pfn. CDD)  (9) 
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For all instants j: 

CF(Xj, uj) = Pfn
j.( Ptp. GFD + Pfn. CDD)  (10) 

Now we can rewrite the cost function: 

Vπ(i) = Eπ [Σj α
j.[PF.CF(Xj, uj)+(1-PF).COk(Xk, uk)]]  (11) 

 

Vπ(i) = Eπ [Σj α
j
 .[PF.Pfn

j
.(Ptp.GFD+Pfn. CDD)  

                    + (1-PF).Pfp.CFF] ]  (12) 

 

Vπ(i) = Σj α
j
.[PF. Pfn

j
.(Ptp.GFD+Pfn. CDD)  

                    + (1- PF). Pfp. CFF] ]  (13) 

We can analyze the consequences of reaching a 

steady state for this system. This can be easily 

reached by setting pT3, pT4, pT5, pT6 and pT7 

to constant values after a given instant M. This 

means that after that instant Pfn, Ptp and Pfp are 

also constant over time and we can rewrite the 

equation as: 

Vπ(i) = Σj=0..M-1 α
j.[PF.Pfn

j.(Ptp.GFD+Pfn.CDD)+(1-PF).Pfp.CFF] 

                      +Σj=M..∞α
j.[PF.Pfn

j.(Ptp.GFD+Pfn.CDD)    

                      +(1-PF).Pfp.CFF]  (14) 

 

Vπ(i) = Σj=0..M-1 α
j.[PF.Pfn

j.(Ptp.GFD+Pfn.CDD)+(1-PF).Pfp.CFF] 

                      +[PF.(Ptp.GFD+Pfn.CDD)].Σj=M..∞α
j.Pfn

j 

                      +[(1-PF).Pfp.CFF].Σj=M..∞α
j.  (15) 

 

Vπ(i) = Σj=0..M-1 α
j.[PF.Pfn

j.(Ptp.GFD+Pfn.CDD)+(1-PF).Pfp.CFF]] 

                       +PF.(Ptp.GFD+Pfn.CDD).Pfn
M.αM/(1-α.Pfn) 

                        +[(1-PF).Pfp.CFF]. α
M/(1-α)  (16) 

This is an interesting expression as it allows 

dynamic programming [1] to be used to solve 

the problem. The initial decisions will contribute 

at each step to the cost, and the remaining 

decisions (after reaching the steady state) can be 

computed in a single step. 

A extreme situation would be to consider values 

for pT3, pT4, pT5, pT6 and pT7 constant for all 

instants. In this case we can rewrite the equation 

as: 

Vπ(i) = Σj α
j.[PF.Pfn

j.(Ptp.GFD+ Pfn.CDD) ] 

                  + Σj α
j
.[(1-PF).Pfp.CFF] ]  (17) 

 

Vπ(i) = PF.(Ptp.GFD + Pfn.CDD)/(1– α.Pfn) 

                     +(1-PF). Pfp.CFF /(1-α)  (18) 

6 Examples 

6.1 Single decision problem  

As an example let us analyze a case where only 

one decision has to me made and pT3, pT4, pT5, 

pT6 and pT7 remain constant for all instants. 

Consider the probabilities presented in Table 3. 

for each test. 

Table 3: Test probabilities table. 

Test Ptp Pfp 

T0 0.5 0.2 

T1 0.5 0.2 

T2 0.5 0.2 

T3 0.6 0.15 

T4 0.7 0.1 

T5 0.65 0.05 

T6 0.7 0.05 

T7 0.8 0.01 

Consider also the following values for the other 

variables: 

• PF  =  0.01 

• GFD  = -200.0 

• CDD  =  2.0 

• CFF   =  10.0 

• α =  0.9 

Since the solution space is huge (even 

considering 0.01 steps we could have to check 

1005 solutions) an optimization algorithm has to 

be used. In this case, due to its simplicity, the 

Stochastic Hill Climber algorithm was 

implemented [3]. The results were: 

Solution pT3 = 1.0 

Solution pT4 = 0.0 

Solution pT5 = 0.26 

Solution pT6 = 1.0 

Solution pT7 = 1.0 

 

Ptp = 0.2556,  Pfn = 0.7444 

Pfp = 0.0024,  Ptn = 0.9976 

 

Solution Cost = -1.2630 

 

Note that since pT4 is 0.0, pT7 is not relevant as 

this test is not performed. This can be observed 

in the solutions as the same result can be 

achieved with any other pT7 result. 

The optimization itself takes less than a second 

to complete. 
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 6.2 Multiple decision problem 

In this example we will consider the same 

parameters, but we assume that three decisions 

have to be made for days 0, 1 and 2 (which will 

be the final value). 

First we obtain the steady state solution for M = 

2. Then we can use dynamic programming [1] to 

determine the two other decisions for j = 0 and j 

= 1. 

Solution  

pT3[0] = 1.0, pT3[1] = 1.0,  pT3[2] = 0.94 

pT4[0] = 1.0, pT4[1] = 0.11, pT4[2] = 0.0 

pT5[0] = 1.0, pT5[1] = 1.0,  pT5[2] = 0.0 

pT6[0] = 1.0, pT6[1] = 1.0,  pT6[2] = 0.78 

pT7[0] = 1.0, pT7[1] = 0.75, pT7[2] = 0.63 

 

Solution Cost[0] = -0.8518 

Solution Cost[1] = -0.3741 

Solution Cost[2..∞] = -1.2630 

 

Overall Cost = -1,8449 

 

Once again pT7 in final step is not relevant as 

any value of pT7 leads to the same result. 

This clearly shows that more tests should be 

done in the beginning and that the probability of 

doing the tests should be reduced to minimize 

the false positives (as this cost is always 

incurred). It also shows that this more complex 

policy, with more decisions, leads to much 

better results than the simple decision one. 

7     Conclusions and Future Work 

This work shows how a fraud detection system 

can be modeled and analyzed in order to 

optimize the quality of its output. The approach 

used can easily be extended to more complex 

systems. Clearly, considering not only the tests 

dependency but also the test quality, results in 

better quality of fraud detection.  

The initial FSA model presents some interesting 

characteristics that can be seen in real life fraud 

systems; the multiple testing stages and 

cascaded decisions. Although the analytical 

complexity of such a detection system may 

prevent a closed expression to be extracted it is 

always possible to numerically compute the 

values – even if the tests are not independent as 

was assumed in this work. The overall reward 

model is not complex (although it might be 

more complex than this). 

As long as the staged test model is retained it 

would be easy to introduce a transfer matrix 

between stages. This could further increase the 

modeling power. 

From the results it is also obvious that the fraud 

analysis history of a given customer is also 

relevant to optimize the tests to be performed. 

This clearly shows that the very common 

practice of applying the same test battery for 

customers regardless of their previous test 

history is not advisable. 

Future work should consider correlated test 

results, test execution time (as this may also be a 

constraint) and variations to the overall cost and 

reward function. 

The inclusion of execution time constraints is 

also relevant as this may impact the decision at 

each step. This is motivated by the fact that all 

customers should be checked within a detection 

cycle and some tests may require more time or 

processing power than is available. 

Changes to the overall fraud detection process 

should also handle the possibility of a customer 

becoming a fraudster not at the beginning but 

later on (maybe due to theft of the mobile phone 

or financial difficulties of the customer itself). 
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