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Abstract 

Medical Risk Stratification (MRS) 
models capture the relationships 
between modifiable and 
unmodifiable factors to help us 
understand how various risk 
factors jointly contribute to the 
likelihood of contracting a disease 
in the future. While multiple MRS 
models exist for diseases like 
cardiovascular disease (CVD) and 
diabetes, these models often 
conflict with one another when 
applied to real-world populations 
outside their original study groups.  
In this paper we examine the 
conflict between public MRS 
models of CVD and diabetes and 
quantify the disagreement using 
both simulated and real-world 
populations.  A process to resolve 
these conflicts is presented and the 
resulting improvement in 
predictive power is quantified 
through Bayesian Posterior 
Probability (BPP) analysis of a 
population prior to disease onset.  
By producing improved MRS 
models, we provide valuable 
knowledge to those charged with 
improving the health of 
populations under their care. 

 

Keywords: Medical risk stratification, 
neural networks, genetic algorithms, 
public risk model disagreement, Bayesian 
posterior probability. 

 

1. Introduction 
A large body of work exists to support the 
medical risk stratification (MRS) of 
individuals in a population.  These MRS 
models cover diverse issues such as 
diabetes, cardiovascular disease, stroke, 
various kinds of cancers, depression, 
suicide, and eating disorders - to name 
only a few.    Health promotion programs 
sponsored by corporations and public 
entities are beginning to leverage these 
models on a large scale to assess the 
overall health of their respective 
populations.  This is made possible by 
low-cost computing platforms of 
increasing power and by the increasing 
depth of historical data in data warehouses 
available to health promotion programs.  
Corporations are studying results from 
these models to gain insight into ways to 
improve the health of their workforce.  
Along the way, the initiatives of these 
individual corporate and public entities 
also have a broad, positive impact on the 
community.  Corporately sponsored 
programs for active employees affect 
retired employees as well as the 
dependents and spouses of both employees 
and retirees.  As an example, for every 
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active employee participating in the 
Caterpillar® Healthy Balance® health 
promotion program in the Peoria area, 
there are about four additional persons 
engaged by the Healthy Balance program 
that are not on the current payroll.  When 
combined, this equates to about 20% of 
the general Peoria-area population. 

Broadly, MRS models are based on two 
types of data. 
 

• Single factor studies – A large number 
of studies have been done to measure 
the influence of a single factor on 
chronic diseases.  One recent example 
studied the influence of post-
menopausal hormones on 
cardiovascular disease (CVD) and 
found an important relationship that 
ended a long-running trial when 
significant risks were discovered [1].  
One challenge of such studies is to 
isolate the effect of uncontrolled 
factors on the experimental results.  As 
a result, relatively little knowledge is 
gained about the interactions among 
factors. 

• Population derivative studies – Many 
famous studies on chronic diseases 
examine a broad range of factors over 
time in well-bounded populations.  For 
instance, the Framingham Heart Study 
continues to track the history of the 
residents of Framingham, 
Massachusetts, USA and their 
incidence rate of CVD over a period of 
more than 50 years [2].  By studying a 
larger population, many factors can be 
extracted and examined, including the 
discovery of interactions among 
factors.  One disadvantage of these 
studies is that they often reflect the 
population bias in the sample.  In the 
Framingham case, the study population 

has relatively few non-Caucasian 
persons and few female patients.  This 
limits the conclusions that can be 
drawn from such a population. 

 

2. Study Data and Information 
Privacy 

Two diseases of interest to the Healthy 
Balance program’s population are CVD 
and diabetes.  Several public models exist 
to stratify the risk for both diseases.  Using 
information from self-survey forms 
provided by participants, medical claims 
history, prescription drug benefit payments 
and general demographic information we 
can extract the specific input variables 
required by public MRS models for many 
individual cases.  Collectively these 
produce the population’s risk profile. 

One challenge in this process is 
maintaining data privacy.  Both Caterpillar 
in general and the Healthy Balance 
program in particular have strict data 
privacy requirements [3].  To comply with 
these policies, we enforce the following 
processes. 

 

• All data streams have personally 
identifiable information removed.  
Such information is replaced by a 
unique code to allow alignment across 
data systems. This unique code is not 
used in any other system at Caterpillar. 

• Measurements are reported in 
aggregate form only.  This ensures that 
individual records – which are already 
made anonymous – are further 
obscured. 

• Aggregates are not reported if the 
sample size drops below 50.  This 
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prevents very small aggregates from 
becoming personally identifiable. 

• All access to the data requires 
authentication and is logged regularly. 

 

3. Measuring Disagreement in 
Public MRS Models 

MRS models for the same disease or 
condition can disagree in the following 
ways. 

Variable list disagreement – Different 
factors may have been considered between 
two or more models of the same disease.  
Variable list disagreement can be detected 
easily by inspection 

Variable sensitivity disagreement – If two 
or more models use the same variable as 
input, they may disagree on its risk 
contribution.  Knowledge of the 
underlying mathematics of the model is 
required to detect this type of 
disagreement. 

Variable interaction disagreement – If two 
or more models have two or more 
variables in common, the interaction may 
affect the risk stratification sensitivity in 
different ways.  This type of disagreement 
can be extremely difficult to detect, 
especially in complex models. 

Variable substitution disagreement - As 
with any large, real-world data stream 
there will be missing values.  When 
missing values occur, we substitute a 
condition that will produce a lowered 
response in the risk score1.  The same 

                                                 
1 We choose to bias our variable substitutions to 
produce lowered scores because of the “first do no 
harm” philosophy in medicine.  This may seem 
counterintuitive at first.  Someone who believes 
they are at high risk may engage in medical tests 

substitution is used for both models 
whenever the variable lists overlap.  In 
cases where the substitution affects one 
model but not the other, we also substitute 
a value that produces a lower score.  This 
disagreement cannot be avoided in an 
experiment using real-world data, but it 
can be avoided when using simulated data. 
 

Table 1 catalogs the pairs of models 
studied to demonstrate these types of 
disagreement.  Variable list disagreement 
is illustrated in Tables 2 and 3.  The public 
MRS models do not always use the same 
scoring system.  For instance, the HSPH 
CVD model ranks risk on a scale of -65 to 
130 for our test population while the 
AHA/NIH CVD model of the same 
disease ranks risk on a scale of 0 to 50 for 
that same population.  We evaluate results 
on a full-scale reading percentage (FSR%) 
basis, in which the minimum risk is 
assigned a score of 0% and the maximum 
risk is assigned a score of 100%.  Since 
each member of the pair of models for 
each disease are ostensibly models of the 
same disease, we expect that the resulting 
risk scores would be highly correlated on 
an FSR% basis. 

 

In our first set of experiments, we drove 
the pairs of public risk models with 
simulated population data.  In this case, we 
eliminate the bias from variable 
substitution disagreement by ensuring that 
the simulated population has no missing 

                                                                      
or procedures that are unwarranted based on the 
known data.  These tests and procedures have real, 
measurable risks.  Overall, our goal is to 
recommend action when the evidence supports it 
and to withhold our action recommendation when 
the evidence is unclear or missing. 
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values2.  The results of our simulations are 
shown in Figures 1 and 2.  As these 
figures illustrate, our simulated 
populations generate results with 
significant disagreement. 

In our second set of experiments, we drove 
the same pairs of models with a sample of 
real-world data from the Healthy Balance 
program’s population.  This random 
sample used approximately 10% of the 
available data in our data warehouses.  
Persons already diagnosed as positive for 
either disease were ignored and are not 
included in our results for that model.  
Variable substitution rules described 
previously were applied.  The resulting 
disagreement is shown in Figures 3 and 4.  
These results reinforce our observations 
from the simulated population. 

Finally to eliminate any possible effect of 
sample bias in the aforementioned results 
with the real-world population data, we 
applied all of the case data in the data 
warehouse to the respective public risk 
models while observing the rules 
described in the second set of experiments.  
The resulting disagreement is shown in 
Figures 5 and 6. 

In all three experiments – simulated 
populations, sampled real-world 
populations, and complete real-world 
populations – we discover significant 
differences in the risk stratification of 
CVD and diabetes among public MRS 
models.  A summary of these differences 
is contained in Table 4. 

 

                                                 
2 Generating valid simulations of real human 
populations is very challenging and will be 
addressed in a later paper.   

 

 
 

4. Modeling Platform and 
Approach 

As has been described previously in [4, 5, 
6, 7], the PROCEED™ process is a recipe-
like approach applicable to a wide variety 
of artificial intelligence and data mining 
tasks.  While originally developed to solve 
challenging problems in manufacturing 
optimization, several concepts hold true 
between the manufacturing and medical 
applications. 
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Figure 1: Frequency Scatterplot - Public CVD Model Comparison
Simulated Patient Data, 3479 Undiagnosed Cases

Uniform Relative Scaling Applied (0% - 100% full-scale)
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 AHA/NIH CVD - Rescaled : HSPH CVD - Rescaled:  r2 = 0.0523

Figure 3: Frequency Scatterplot - Public CVD Model Comparison
2005 Patient Data, 8679 Undiagnosed Cases

Uniform Relative Scaling Applied (0% - 100% full-scale)
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Figure 4: Frequency Scatterplot - Public Diabetes Model Comparison
2005 Patient Data, 12842 Undiagnosed Cases

Uniform Relative Scaling Applied (0% - 100% full-scale)
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Figure 5: Frequency Scatterplot - Public CVD Model Comparison
2005 Patient Data, 91850 Undiagnosed Cases

Uniform Relative Scaling Applied (0% - 100% full-scale)
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Figure 6: Frequency Scatterplot - Public Diabetes Model Comparison
2005 Patient Data, 128876 Undiagnosed Cases

Uniform Relative Scaling Applied (0% - 100% full-scale)
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Figure 2: Frequency Scatterplot - Public Diabetes Model Comparison
Simulated Patient Data, 3479 Undiagnosed Cases

Uniform Relative Scaling Applied (0% - 100% full-scale)
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“First do no harm” is a key element of our 
operating philosophy.  The PROCEED 
modeling process is biased is such a way 
that it will either produce a high-quality 
model or deliver no model at all.  
Deploying an incorrect model engenders 
unacceptable risks in both environments.  
PROCEED embodies an expert system 
approach to artificial intelligence, guiding 
the user away from deployment of a 
potentially unqualified model. 

Both manufacturing and medicine produce 
massive quantities of data.  Organizing 
this data into information and 
subsequently extracting knowledge from it 
are extremely challenging due to the data 
volumes involved.  Discovering which 
variables matter most in a particular 
outcome requires careful detection of very 
high order interactions, most of which can 
not be discovered through conventional 
approaches like designed experiments.  
The Mahalanobis Distance Genetic 
Algorithm (MDGA) process [6] is 
particularly valuable in rapidly identifying 
potential variable combinations that relate 
to one another in complex ways. 

Finally, once a well-qualified model is 
discovered and validated we need to 
understand what actions to take to provide 
the most beneficial outcome.  Too often a 
naive approach is applied where 
recommendations take the form of an “all 
or nothing” proposition – change 
completely and without variation or don’t 
bother changing at all.  What we desire 
instead is a deeper understanding that 
identifies what must be controlled and at 
the same time considers what controls may 
be relaxed with little or no penalty.  From 
the standpoint of applying MRS models in 
public health environments, this translates 
to knowing where we should focus efforts 
and funding to drive population change 
and at the same time being aware of 

opportunities to reduce emphasis that will 
have little net benefit. 

 

5. Resolving Conflicts 
The process for resolving conflicts can be 
most easily described in two dimensions 
and is illustrated in Figure 7.  We know 
that the pairs of models agree along a line 
of slope 1.  That is, at certain points both 
models agree on a risk score when 
considered in FSR% terms.  Moving off 
this line, we can imagine circular arcs of 
equal risk passing though the strata.  At 
the extreme, one model may indicate 
100% FSR% and the other 0%, resulting 
in a radial FSR% of 100%.  In the extreme 
when both models indicate 100% FSR%, 
we calculate a radial FSR% of 141.42%.  
As needed, we can normalize this new 
radial space to a 0% - 100% FSR% scale 
as before.  Likewise other combinations 
along the continuum of pairs can be 
represented3. 

Once the multiple models are converted 
into a single resolved score, we apply the 
PROCEED process to its prediction.  We 
include the superset of variables as 
potential inputs, then allow the PROCEED 
process to reduce the variables, model the 
relationships precisely and validate them 
through stochastic simulation.  The 
architecture of the resulting hybrid models 
for CVD and diabetes are shown in Table  
5.  Both are conventional multi-layer 
perceptron (MLP) models [8] with a single 
hidden layer.  Activation functions differ 
by layer and are also reflected in the table. 

                                                 
3 This approach can and has been scaled up to 
more than two dimensions, resulting in radii of 
hyperspheres aligning more than three models.  If 
the maximum FSR% of the contributing models is 
100%, then the maximum expected radial FSR% is 
(number of models * FSR%max

2)0.5.  Future papers 
will document these results. 
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All neurons in a particular layer have the 
same activation function 

6. Resolution quality 
How would one know if one MRS model 
is “better” than another?  The most direct 
approach is to observe which model best 
predicts disease onset.  Unfortunately most 
public MRS models produce relative 
scores, not absolute measures of risk.  We 
can resolve this by applying Bayesian 
Posterior Probability (BPP) [9] to the risk 
stratification results. 

BPP is defined as: 

when, 

 

where At is a positive diagnosis of the 
disease at the moment in time t and Xψ ,t 
is the score of that individual being greater 
than ψ at the moment in time t. 

The ψ  calculation is repeated to 
determine an alarm threshold specific to 
each MRS model, thereby allowing each 
model to determine it’s own cutoff for  

statistically significant high-risk 
populations.  We define n=2 for our 
purposes.  We then obtained the risk 
scores for the real-world population of the 
Healthy Balance program in 2004, and 
identified patients that became positive for 
either CVD or diabetes in 2005.  This  
satisfies the Bayesian requirement for 
three identifiable populations: 

tt AX |,ψ  - those positive given their score 
is above the threshold Xψ ,t 

tt AX |~,ψ  - those negative or undiagnosed 
given their score is above the threshold 
Xψ ,t 

tA  - those positive in the general 
population 

Figure 7: Radial Hybridizaion Example
Simulated Patient Data, 3479 Undiagnosed Cases

Uniform Relative Scaling Appl ied (0% - 100% full-scale)
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Figure 9 displays the BPP results for the 
pairs of public risk models and compares 
them to the resulting PROCEED hybrid 
model.  In both the CVD and diabetes 
cases the PROCEED-based hybrid 
outperforms the source public MRS 
models by a significant margin when 
tested on the complete Healthy Balance 
population.  
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Figure 9: Absolute Disease Risk Comparison
2005 Patient Data, Measuring Detection Capability 1 Year Prior to Disease Onset
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7. Conclusion & Future Work 
MRS models are highly useful public 
health management tools. However, 
disagreement in public MRS models is 
problematic for those tasked with 
investing limited funds and resources to 
support a large population.  By converting 
such models to a common FSR% basis 
then fitting models to radial strata of their 
intersections, we have increased the BPP 
of our identification and improved our 
ability to address high-risk persons who 
may contract CVD or diabetes in the 
future while they still have to opportunity 
to avoid such an outcome. 

More complex diseases, such as cancer, 
can have many manifestations and 
pathologies.  One part of our ongoing 
work includes combining models of 
similar but not identical pathologies to 
create effective yet more general models 
of these challenging conditions. 

As was discussed previously, we desire an 
intervention selection process that 
balances factors that require tighter control 
and increased emphasis with identification 
of those factors that can be relaxed with 
little or no penalty.  We must also consider 
the performance of MRS models and 
related recommendations over time.  In 
particular, we desire models that provide 
as much accuracy and precision as 
possible as early as possible before disease 
onset.  This would allow public health 
programs more time to act on their 
populations to further improve health.  
Solving the problems of making 
predictions and measuring MRS model 
predictive accuracy and precision over 
time will be discussed in a later paper. 

Finally, as data warehouses grow we gain 
the ability to calculate trajectories of risk 
over time.  To improve the effectiveness 
of our interventions we would like to 
identify both those at high risk now and 

also those whose trajectory indicates a 
rapid rise in risk that will eventually lead 
to an unpleasant outcome.  Work 
continues on these trajectory-based 
techniques. 
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