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Abstract

Our concern is crisis situations in-
volving propagating threats such as
toxic clouds, pandemics, contamina-
tion, flows or oil slicks. Emergency
planning may be then complex, and
decision-making support (DS) tools
based on risk criteria can be helpful.
The evaluation of quantitative risk
needs for a mathematical model taking
into account either the cost to pay if a
given point is contaminated (damage,
casualties...), either the associated
probability.
The present work proposes original
mathematical expressions for a recur-
sive implementation of the mid-term
predicted risk at each point of the
threatened area.
An application of the proposed risk
prediction model is shown on a danger-
ous cloud, with numerical results.
Keywords: Risk assessment, Markov
models, propagating phenomena,
NRBC (bio radio chemical nuclear)
threat, crisis management, disaster

1 Introduction

This paper addresses the need for risk assessment
in DS tools for crisis management in large
disasters involving a propagating danger. The
purpose of Quantitative Risk Assessment (QRA)
is explained in [2] [12]. The Risk Assessment
task aims at answering three possible questions:

identifying the possible dangerous events, their
probability and their cost.
The approach described below, addresses both
the 2nd and the 3rd questions by providing a
cost-probability risk (e.g. the expected number
of future casualties), using the probability that
the propagating phenomenon, which can be for
example a growing cloud, reaches one point
before a given delay. At each time t0 > 0, the
cloud’s geography is known exactly, for example
thanks to aerial or satellite imaging.
Markov models are well known to be represen-
tative of many phenomena and they are used in
many domains [16]. Their interest in comparison
to dynamical system models [15] is that they are
probabilistic, so they allow to take into account
the uncertainty of the systems. Based on Markov
models, consisting of comprehensive representa-
tions of possible chains of events, we are able to
compute, from the observation of the cloud at t0,
a cost-probability risk prediction for a future time
t0 + t. In the sequel, observation will be replaced
by a simulation based on a space-time Markov
modeling of the cloud’s propagation.
The proposed work provides a mid- and long-
term risk prediction model for each point of
the threatened area. It constructs maps of the
predicted cost-probability risk, based on the ge-
ography (location of population and assets) and
on a space-time Markov chain modeling of the
propagating phenomenon. From a simulation of
the current state of the propagation at time t0, the
risk is calculated at each point of the studied area
for each future time t recursively as a function of
the risk map at t − 1. The calculated risk can be
integrated on the overall area in order to show its
evolution as a function of future time; this curve
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can help the planning of the intervention. The
calculated risk can also be shown in a map that
can be used directly by planning tools.
These phenomena have been modeled precisely
as deterministic linear dynamic systems. The
Markov chain approach can be associated (by
fitting in average), and this allows taking into
account the probabilistic aspect of the risk.

2 Existing 2D Markov models and works

2.1 Markov chains

Here will be defined the Markov chains [13] [6],
which are one-dimension models for stochastic
processes. Let Ω = {a1, a2...aN} be a finite set
of the N possible values that can be taken by a
random variable x. One supposes that a probabil-
ity distribution Pr can be defined on Ωn, which
is the set of all possible n-length sequences in Ω
for a given integer n.

Definition 2.1. The probability Pr on is a
Markov chain as soon as it satisfies:

Pr(x1, x2...xn) = Pr(x1)
n∏

t=2

Pr(xt|xt−1)

The values taken by the random variable x
at each time t are called states. A Markov
chain is characterized by the triple (Ω, Q, P0)
where P0 = Pr(x1) is the so-called initial
probability and Q is the N × N transition
matrix, defined by Q = (qij )1≤i,j≤n where
qij = Pr(xt+1 = ai|xt = aj).

Definition 2.2. A Hidden Markov Model (HMM)
is a 5-uple (Ωx,Ωy, Q,K, P0) where (Ωx, Q, P0)
is a Markov chain, and the observation is a ran-
dom variable y taking values in Ωy and such taht
the Markov kernel of y given x is K.

A Markov kernel is the matrix of conditional
probabilities of the occurrence of one of the two
random variables given the other. In a HMM,
the internal states x of the Markov chain are not
known, except through the knowledge of y. To
estimate xt from an observed sequence yt, algo-
rithmes have been proposed such as the Baum-
Welch algorithm, the Viterbi algorithm [14].

An application of such HMMs has been proposed
to detect oil slicks in SAR images [10]. A one-
dimensional signal is first obtained from the im-
ages by a Peano scan, and then a 1D HMM iden-
tification is performed.

2.2 Markov random fields

A Markov random field (MRF) is a 2D Markov
model. The Markov condition is applied in the
space domain, i.e. to the pixel’s neighbors, in-
stead of the time domain [7]:

Definition 2.3. A Markov random filed is a bidi-
mensional stochastic process X(i, j) satisfying:

Pr
(
X(i, j)|X(k 6= i, l 6= j)

)
= Pr

(
X(i, j)|X(i + δx, j + δy

)
with δx, δy ∈ {−1; 0; +1}.

The MRF model is purely spatial, it still does not
take the time into account.

2.3 Other approach

A spatio-temporal model has been proposed for a
pandemics [4]. It uses a Gibbs model for the spa-
tial properties, which involves an energy between
neighbor pixels. The corresponding mathemati-
cal expression contains an exponential law, which
is complex to solve; the authors limited then their
study to the one-dimension case.

2.4 Novelty of the proposed approach

Various decision-support tools for disaster man-
agement are developed on the principle of the fine
modelling of a physical phenomenon associated
to a GIS [8], [5]. Few have been proposed in that
domain to provide to the decision-maker, in addi-
tion to the model, a quantitative risk measurement
[9], [15], [16].
The proposed space-time Markov model used
here for the propagating phenomenon is appar-
ented to a MRF. But the originality of this work is
in the associated computation of a risk criterion.

3 Principle of the proposed approach

The propagating phenomenon will be denoted as
a cloud for more clarity, but the idea will be
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exactly the same for any propagating dangerous
phenomenon.
The model used to describe the actual state of the
cloud ate each time, and to forecast its possible
future state, will be first described. Then, general
criteria for risk measurement will be reminded. In
the following, the algorithm for the measurement
of the risk criterion in the model will be given.

3.1 The propagation model

The time t is supposed to be sampled at a reg-
ular period that is chosen to be adapted to the
propagation speed. The model output is a two-
dimensional map representing the state of each
location, represented by a pixel in an image.
The space-time function c(M, t) expresses the
fact that the pixel located at point M is contami-
nated at time t. The idea is first to express c(M, t)
as a function of its neighbors in space and in time:

c(M, t) = f
({c(Vi, t− 1)/1 ≤ I ≤ 8})

where the points Vi are the M neighbors. At time
t = 0 the cloud covers one single pixel, and be-
tween each temporal period ]t, t + 1] it propa-
gates from one pixel to its neighbors following
the markovian rule described in table 1.

Figure 1: Influence of a next neighbour

Figure 2: Influence of a diagonal neighbour

Table 1: Probability of contamination from one
pixel to its neighbor

Contaminated Next Diagonal
at t− 1 neighbor neighbor
Scheme See fig. 1 See fig. 2

Probability to be
contaminated at t p p√

2

If there are several contaminated neighbors, their
influence on the current pixel are statistically in-

dependent. Thus the probability Pr(c) for the
current pixel to be contaminated at t is:

Pr(c) = 1− (1− p)N .(1− p√
2
)D (1)

where N is the number of contaminated next
neighbors, and D is the number of contaminated
diagonal neighbors. This is a space-time Markov
chain, since the probability for one pixel to be
contaminated at time t depends only on state
(contaminated or not) in its neighborhood: the
neighbor pixels (for the spatial point of view),
and the previous date (for the temporal point of
view). One can notice that p depends on the ratio
of the cloud velocity upon the chosen time period.
The latter must be short enough. Furthermore, the
propagation may be anisotropic if there is wind;
in that case one must introduce four values for p
(depending on the relative position of the neigh-
bor pixel). Such a model can be simulated with
random draws. An example is given in figure 5.

3.2 Fitting with a dynamical system model

Relationships between HHMs and Linear Dy-
namical Systems have been studied [11]. Fine
models exists for natural physical phenomena.
For example, one is proposed [9] [17] for oil
slicks; it involves differential equations. Physical
exact models do not take into account any random
components. In fact phenomena are deterministic
in average, which appears in large scale analysis.
They are affected by random aspects, which are
due to many factors, and assimilated as noise at a
signal processing point of view.
The Markov modelling takes the random aspect
into account. To be validated, it must have an av-
erage equal to the deterministic model. In the pro-
posed approach, the fitting between the two mod-
els will be obtained by adjusting the p parameter,
which is related to the propagation space.

3.3 The principle of risk measurement

The notion of risk [2] relies on the idea of cost,
which designates any prejudice, damage, or loss.
Depending on the application domains, this cost
can be of various natures: financial loss, human
losses (number of casualties), unavailability of
some resources or supply means... In fact the cost
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is often a combination of several of these aspects.
But in this work the resulting cost is supposed to
be a single random value.
The so-called QRA methodology (Quantitative
Risk Assessment) [12] is composed of phases
which aim at answering to the following ques-
tions:

• Qualitative analysis: What is likely to hap-
pen ? Here, the answer is: a given point,
which is now outside the cloud, may be con-
taminated at a future time and thus people
may die.

• How likely is it to happen ? The answer is a
probability.

• If it happens, what can be the consequences
(cost) ? The cost here the cloud’s level of
severity.

The present work is concerned by these two last
aspects, which are summarized in the lines 2 and 3
of the table 2, by proposing a criterion and meth-
ods for the evaluation.

What may hap-
pen ?

Qualitative
analysis

How likely is it
to happen ?

Probability

What are the
consequences ?

Cost

Table 2: The three aspects of risk

The notion of risk can be summarized as an un-
certainty about a future possible cost to be paid.
The cost c is then considered as a random variable
whose probability density is p(c) (see an example
on figure 3). One will denote as Pr(.) the associ-
ated probability measure. Numerous risk criteria
have been proposed from that random varialbe, in
particular in the financial domain [1]. They can be
grouped in three categories that will be desribed
below: the average, the variability of the cost, and
the worst case. All the expressions are particu-
lar cases of partial centered momentums, which
are well-known under more general forms in the
financial domain (Stone and Fichburn risk mea-
sures [1]).

Figure 3: Probability density of cost

3.3.1 The average risk

The idea is to answer to the question: In average,
what will it cost ? [3]. In that category, there
is the cost average 2, that will be called EC risk
(Expected Cost Risk) and denoted as < c >:

< c >=
∫ +∞

−∞
c p(c)dc (2)

3.3.2 The cost variability

Here the risk is defined by the fact that the fu-
ture cost is rather impredictable. This uncertainty
on cost can be shown for example in the variance
σ2(c) 3:

σ2(c) =
∫ +∞

−∞
(c− < c >)2p(c)dc (3)

3.3.3 The worst case risk

Now one considers the probability that could oc-
cur the most dreaded case (for example a break-
down in an important engine, a fire, a death...).
It can correspond to one single situation or a set
of dreaded situation called risks. Their list is
then established during the qualitative risk anal-
ysis phase. They correspond to the max cost
cases, or more precisely to the occurrence of a
cost higher than a certain level c0 (see figure 4).

This notion of risk assessment implies a fine es-
timation of the probabilies Pr(cmax) or Pr(c ≥
c0), which depends on the knowledge of the appli-
cation domain: statistics, phenomena modeling.
What we can write is 4. In the financial domain,
this is the probability of ruin [1]:

Pr(c ≥ c0) =
∫ +∞

c0

p(c)dc (4)
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Figure 4: Probability for the cost c to be greater
than a threshold c0

The worst case probabilities can be weightened
by their corresponding cost Cmax and called cost-
probability (CP) risk:

CmaxPr(Cmax)

One can also calculate the CP risk by an integral:

R =
∫ +∞

c0

cp(c)dc

3.4 The proposed risk evaluation algorithm

The retained criterion for the overall risk mea-
surement is the expected cost, since one wants to
know what can be the cost (how many casualties
can be made) at a given place and at a given future
time. The first step is to calculate the probabil-
ity for the place to be contaminated at that time,
which is a worst case risk criterion.

3.4.1 Mid-term risk of contamination

One wants to forecast the risk for a given place to
be contaminated at a future time. The purpose is
to evaluate in particular the threat for the popula-
tion in the surrounding areas which have not yet
been contaminated by the cloud.
Given the cloud situation at t0, the mid-term risk
can be mathematically expressed thanks to the
Markov chain property given at 1. For a given
pixel M , let’s introduce b(M, t) which is the
probability that M is not contaminated (nc) at t
given that it was not contaminated at t− 1:

b(M, t) =
∏8

i=1

(
Pr(nc(Vi, t− 1))

+Pr(nc|c(Vi, t− 1).P r(c(Vi, t− 1))
)

where vi, i = 1...8 are the M neighbors. If we
introduce a(M, t) which is the probability that the
pixel is not contaminated at t, we get:

a(M, t) = a(M, t− 1).b(M, t)

and

b(M, t) =
∏

V ∈N (M)(p.a(V, t− 1) + 1− p)
×∏

V ∈D(M)

( p√
2
a(V, t− 1) + 1− p√

2

)
where N (M) and D(M) are the sets of M ’s next
and the diagonal neighbors respectively.
So, we showed in this section how to compute the
probability b(M, t) that the place M remains un-
contaminated. We obtein:

Pr(c(M, t)) = 1− b(M, t)

3.4.2 Including the local vulnerability

Let’s introduce a severity parameter G ∈ [0; 1]. G
is the probability of local damage, e.g. the prob-
ability that one person die during one time period
at one contaminated location. That means if at t
there are Nu(t) unharmed people there, the ex-
pected number of (new) casualties is GNu(M, t),
so when the cloud grows, the expected number of
remaining unharmed people is updated by

Nu(M, t0 + 1) = (1−G)Nu(M, t0) if c(M, t)

So, at a given pixel M , the number of people that
are expected to die at t0 + t is

r(M, t) = G < Nu(M, t−1) > Pr(c(M, t−1))

where < Nu(M, t− 1) > is the expected number
of unharmed people at t0 + t− 1:

< Nu(M, t− 1) >= Nu(M, t0)−R(M, t− 1)

Nu(M, t0) is the initial number of unharmed peo-
ple (at t0) and R(M, t) is the global EC risk (ex-
pected total number of casualties):

R(M, t) = R(M, t− 1) + r(M, t)

564 Proceedings of IPMU’08



.

The expected number of casualties can easily be
computed at each pixel, so we obtain a map as
shown at figure 9.

4 Results

The proposed algorithm has been implemented on
a simulation of a dangerous cloud.
An explosion takes place in an urban area, at time
t = 0 and all the local agencies fire brigade, am-
bulance and police receive the alert. The Police
warn the Fire Brigade about the risks of a dirty
bomb. The explosion is believed to have involved
a chemical release and a consequent dangerous
cloud starts to grow, threatening the population.
The figure 5 shows an example simulated with the
space-time Markov model described at 1.

Then, the Fire Brigade being the agency equipped
with suitable Protective equipment is responsible
for the initial incident assessment and the Crisis
Response Coordination Commander acts as a de-
cision maker to organize the threatened popula-
tion evacuation. Such an operation is not a trivial
matter, since people will not abandon their houses
if they do not have any serious reason to do so.
Furthermore, it raises traffic and logistic problems
that should be managed. Thus, it is necessary to
have a precise risk evaluation at one’s disposal as
a criterion to motivate such a decision.
One important data for the problem is the map of
the population density, as proposed in figure 6.

The computation of the risk with the proposed al-
gorithm provides the results showed at figures 7,
8, 10 and 9.

One can notice that this figure 9 is coherent with
the fact that the number of casualties increases
with the cloud’s surface, thus the threatened are
essentially located near the cloud’s periphery (see
figure 7), so they grow linearly.
Numerical results of the risk R(t) are shown in
our example at figure 8, and its integration over
the whole area (total number of people) is shown
at figure 10.

A curve like in figure 10 can be helpful to the
decision makers in emergency planning, since
it shows the number of potential casualties as
a function of the time they will spend to inter-

Figure 5: Cloud evolution as a function of time

Figure 6: Population density in the studied area
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Figure 7: Map of the short-term (t0 + 1) threat-
ened people for t0 = 50

Figure 8: Map of the long-term threatened people
(expected casualties risk at future time t = 30
given the known situation at t0 = 50)

Figure 9: Map of the population, the cloud and
the casualties for t0 = 50

Figure 10: Long-term risk of future casualties for
t0 = 50 and future time t = 30

vene. This information may be crucial in large-
scale disasters when another area is affected by
another cause of damage at the same time, but
the rescuing means are limited; particularly if the
curve like figure 10 is quite nonlinear, it helps
the decision-maker to know when he can wait and
when the emergency will be greater.

5 Conclusion

One of today’s worrying threats of crisis are prop-
agating contaminations (like toxic gas, rays, in-
fections...) that can be initiated accidentally or by
an attack. Disaster and emergency managers (the
Crisis Response Coordination Commander) and
all the stakeholders often need to make decisions
under uncertainty and complex situations. They
need a solid understanding of the situation sup-
ported by relevant risk assessment tools including
2D visualization.
The aim of QRA (quantitative risk assessment)
within a crisis response operation, is to determine
the probability that a given hazard will evolve, in-
cluding also its consequences. For this purpose
the cost-probability is the criterion used in this pa-
per to express the risk. A mathematical model for
the phenomenon is then necessary. However such
phenomena have often well-known deterministic
behaviour in average, they are subject to proba-
bilistic perturbations or unknown parameters; this
is why Markov models can be suited to them.
The proposed approach is then a new algorithm
for risk measurement in a space-time Markov
modeling of the contamination propagation, pro-
viding a mathematical expression of the cost-
probability short-term, mid-term and long-term
risk that can be computed recursively to visualize
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at each time a risk map of the threatened area. An
illustration is proposed on a simulated example.
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