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Abstract

A new ensemble scheme is pro-
posed for classifying high dimen-
sional data, which exploits depen-
dence between data complexity, de-
termining how difficult to classify a
given dataset, and classification er-
ror. As a classification task, gene ex-
pression based cancer classification
is studied, with a k-nearest neighbor
as a base classifier. Experiments car-
ried out on five datasets show the
importance of taking into account
dataset complexity when construct-
ing ensembles of nearest neighbors.

Keywords: Machine Learning,
Classification, Ensembles of Classi-
fiers, Bioinformatics, Gene Expres-
sion.

1 Introduction

When classifying high dimensional data,
many algorithms tend to demonstrate a sim-
ilar performance, e.g. in terms of error rate,
thus leading to uncertainty which algorithm
to prefer over others. This uncertainty can be
efficiently exploited by first running several
algorithms in parallel on a dataset and then
combining their predictions by voting, which
is termed as an ensemble of classifiers in the
literature [7].

In this paper, we study a particular type of
high dimensional data: gene expression lev-
els which are used for discrimination between

normal and cancer specimens or between dif-
ferent types of cancer. However, the classi-
fication task is not easy since there are typi-
cally thousands of expression levels versus few
dozens of cases. In addition, expression levels
are noisy due to the complex procedures and
technologies involved in the measurements of
gene expression levels, thus causing ambiguity
in classification.

As a classifier, a k-nearest neighbor (k-NN)
was chosen because it performed well for can-
cer classification, compared to more sophis-
ticated classifiers [5]. Besides, it is a simple
method that has a single parameter (the num-
ber of nearest neighbors) to be pre-defined,
given that the distance metric is Euclidean.
k-NNs are known to be insensitive to small
perturbations of training data. Hence, k-NNs
seem to be difficult to combine into a highly
accurate ensemble because of the lack of diver-
sity in predictions of individual k-NNs. One
solution is to associate each k-NN with its
own feature subset. The most straightforward
and probably fastest approach is to randomly
sample subsets from the original features [2].
It is appropriate if one is only interested in the
performance figures, regardless of the features
used to achieve them1. Another approach is
to apply feature selection. However, gene ex-
pression datasets often do not have a sepa-
rate test set to check generalization of a clas-
sifier, which can easily introduce the selection

1For cancer classification, genes relevant to cancer
or its suppression are highly sought. Hence, selected
features are required to meet two goals: to provide
good discrimination between classes and to be mean-
ingful for further biological analysis.
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bias when relying on the wrapper (classifier
based) models for feature selection. Besides,
many feature selection algorithms are time-
consuming, given many thousands of features.

Thus, with random feature sampling, the un-
certainty about whether we picked right fea-
tures for cancer classification is high. To lower
this uncertainty while keeping the computa-
tional cost of feature selection low, we pro-
pose a novel approach based on the estima-
tion of data complexity to construct a classi-
fier ensemble. Using the copula method [8, 13]
for exploring dependence or concordance rela-
tions in multivariate data, we found that it is
possible to roughly predict classification per-
formance on the basis of dataset complexity.
According to our findings, low (high) com-
plexity is associated with small (large) classifi-
cation error. Hence, selecting feature subsets
of low complexity implies accurate predictions
of individual k-NNs, which, in turn, leads to
an accurate k-NN ensemble.

2 Gene expression datasets

Five gene expression datasets whose charac-
teristics are summarized in Table 1 are em-
ployed in this work. Numbers in brackets in
the last column are the number of normal and
cancer cases, respectively. SAGE 1 and SAGE
2 datasets contain multiple cancer types that
were treated as a single type. Colon and
Prostate datasets include one type of can-
cer as indicated in the name of each dataset.
Brain dataset (also known as Dataset B) con-
tains 34 medulloblastoma cases, 9 of which are
desmoplastic and 25 are classic. Preprocess-
ing if necessary was based on the procedure
from the original article (see the second col-
umn in Table 1).

Table 1: Gene expression datasets.
Dataset Source # genes # cases
SAGE 1 [6] 822 74 (24,50)
Colon [1] 2000 62 (22,40)
Brain [9] 5893 34 (9,25)

SAGE 2 [6] 27679 90 (31,59)
Prostate [12] 12600 102 (52,50)

3 Dataset complexity

It is known that the performance of classifiers
is strongly data-dependent. To gain insight
into a supervised classification problem2, one
can adopt dataset complexity characteristics.
The goal of such characteristics is to provide
a score reflecting how well classes of the data
are separated. Given a set of features, the
data of each class are projected onto the di-
agonal linear discriminant axis by using only
these features (for details, see [4]). Projec-
tion coordinates then serve as input for the
Wilcoxon rank sum test for equal medians [15]
(the null hypothesis of this test is two medi-
ans are equal at the 5% level). Given a sam-
ple divided into two groups according to class
membership, all the observations are ranked
as if they were from a single sample and the
rank sum statistic W is computed as the sum
of the ranks (R1) in the smaller group3. The
value of the rank sum statistic, i.e. R1, is em-
ployed as a score characterizing separability
power of a given set of features. The higher
this score, the larger the overlap in projec-
tions of two classes (the closer two medians
to each other), i.e. the worse separation be-
tween classes. To compare scores coming from
different datasets, each score can be normal-
ized by the sum of all ranks, i.e. if N is the
sample size, then the sum of all ranks will be∑N

i=1 i = R1 +R2. Then the normalized score
is R1

R1+R2
and it lies between 0 and 1.

4 Bolstered resubstitution error

This is a low-variance and low-bias classifi-
cation error estimation proposed in [3]. Un-
like the cross-validation techniques reserving
a part of the original data for testing, it per-
mits to use the whole dataset. Since sample
size of gene expression datasets is very small
compared to the data dimensionality, using
all available data is an important positive fac-
tor. However, one should be aware of the ef-
fect of overfitting in this case. Braga-Neto
and Dougherty [3] avoided this pitfall by ran-
domly generating a number of artificial points

2Two-class problems are assumed.
3Let R2 be the sum of the ranks in the larger group.
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(cases) in the neighborhood of each training
point4. These artificial cases then act as a
test set and classification error on this set is
called bolstered. In this paper, we utilize the
bolstered variant of the conventional resubsti-
tution error known as bolstered resubstitution
error. For further details, see [3].

5 Dependence relation

Our main idea to build ensembles of k-NNs is
based on the hypothesis that the dataset com-
plexity and bolstered resubstitution error are
related. In other words, knowing the former
can roughly predict the latter5.

To verify our hypothesis, 10000 feature sub-
sets were randomly sampled for each dataset
(subset size ranged from 1 to 50) and both
complexity and bolstered resubstitution error
for 3-NN were computed. A typical result
of such simulation is shown in Figure 1 for
SAGE 2 dataset6 together with marginal his-
tograms for each variable. The dependence
between complexity and error is clearly de-
tectable in Figure 1, i.e. error increases (de-
creases) as complexity increases (decreases).
To form good k-NN ensembles, it is all im-
portant for us to know how accurate ensem-
ble members are. Rough estimation of the
expected accuracy can be thus gained from
the complexity.

To quantify this dependence, the rank correla-
tion coefficients Spearman’s ρ and Kendall’s
τ were computed (see Table 2) and the test
on positive correlation at the significance level
0.05 was done which confirmed the existence
of such correlation (all p-values were equal
to zero). The rank correlations measure the
degree to which large (small) values of one
random variable correspond to large (small)
values of another variable (concordance rela-
tions7 among variables). They are useful de-

4Braga-Neto and Dougherty recommended 10 arti-
ficial cases per each training case.

5We do not seek the regression-like dependence,
where each complexity value would associate one er-
ror value. It is more important for us to know how
changes in complexity affect changes in error.

6Plots for other datasets look similar and they are
omitted due to space limitation.

7However, definitions of these relations by ρ and
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Figure 1: (SAGE 2) Bivariate distribution of
normalized complexity and bolstered resub-
stitution error and univariate marginal his-
tograms.

scriptors in our case since high (low) complex-
ity implies that the data are difficult (easy)
to accurately classify, which, in turn, means
high (low) classification error. Unlike the lin-
ear correlation coefficient, ρ and τ are pre-
served under any monotonic (strictly increas-
ing) transformation of the underlying random
variables.

Table 2: Spearman’s ρ and Kendall’s τ .
Dataset τ ρ

SAGE 1 0.3100 0.4468
Colon 0.3446 0.4964
Brain 0.3991 0.5581

SAGE 2 0.4173 0.5864
Prostate 0.4288 0.6006

To deeply explore dependence relations, we
employed the copula method [8, 13]. Copu-
las are functions that describe dependencies
among variables and allow to model corre-
lated multivariate data by combining univari-
ate distributions. A copula is a multivari-
ate probability distribution, where each ran-
dom variable has a uniform marginal distri-
bution on the interval [0,1]. The dependence
between random variables is completely sep-
arated from the marginal distributions in the
sense that random variables can follow any

τ are different; hence, the difference in the absolute
values as observed in Table 2.
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marginal distributions, and still have the same
rank correlation. This is one of the main ap-
peals of copulas: they allow separation of de-
pendence and marginal distribution. Though
there are multivariate copulas, we will only
talk about bivariate ones since our depen-
dence relation includes two variables.

Sklar’s theorem [13] states that for a
given joint multivariate distribution function
H(x, y) = P (X ≤ x, Y ≤ y) and the rele-
vant marginal distributions F (x) = P (X ≤ x)
and G(y) = P (Y ≤ y), there exists a cop-
ula function C relating them, i.e. H(x, y) =
C(F (x), G(y)). If F and G are continuous,
the following formula is used to construct
copulas from the joint distribution functions:
C(u, v) = H(F−1(u), G−1(v)) [8], where U
and V are uniform random variables dis-
tributed between 0 and 1. That is, the typ-
ical copula-based analysis of multivariate (or
bivariate) data starts with the transformation
from the (X,Y ) domain to the (U, V ) domain,
and all manipulations with the data are then
done in the latter. Such a transformation
to the copula scale (unit square I2) can be
achieved through a kernel estimator of the cu-
mulative distribution function. After that the
copula function C(u, v) is generated accord-
ing to the appropriate definition for a certain
copula family.

In [10] it was shown that Spearman’s ρ and
Kendall’s τ can be expressed solely in terms
of the copula function as follows:

ρ = 12
∫ ∫

C(u, v)dudv − 3,

τ = 4
∫ ∫

C(u, v)dC(u, v) − 1,

where integration is over I2.

The integrals in these formulas can be inter-
preted as the expected value of the function
C(u, v) of uniform [0,1] random variables U
and V whose joint distribution function is C,
i.e.

ρ = 12E(UV )− 3, τ = 4E(C(u, v)) − 1.

As a consequence, ρ for a pair of continuous
random variable X and Y is identical to Pear-

son’s linear correlation coefficient for random
variables U = F (X) and V = G(Y ) [8].

In general, the choice of a particular copula
may be based on the observed data. Among
numerous copula families, we preferred the
Frank copula belonging to the Archimedean
family based on the visual look of plots and
for dependence in the tail. Besides, this cop-
ula type permits negative as well as posi-
tive dependence. We are particularly con-
cerned with lower tail dependence when low
complexity is associated with small classifica-
tion error as this forms the basis for ensem-
ble construction in our approach. The Frank
copula is a one-parameter (θ is a parameter,
θ ∈]−∞,+∞[\0) copula defined for uniform
variables U and V (both are defined over the
unit interval) as

Cθ(u, v) = −1
θ

ln

(
1 +

(e−θu − 1)(e−θv − 1)
e−θ − 1

)

with θ determining the degree of dependence
between the marginals (we set θ to Pearson’s
correlation coefficient between U and V so
that as θ increases, positive dependence also
increases).

Correlation coefficients measure the overall
strength of the association, but give no in-
formation about how that varies across the
distribution, e.g. in the tail. Hence, addi-
tional characteristics of dependence structure
are necessary. We checked and found that for
all the datasets in our study the following as-
sociations take place: quadrant dependence,
tail monotonicity, and stochastic monotonic-
ity [8]. They strengthen our hypothesis about
concordance of dataset complexity and bol-
stered resubstitution error.

6 Ensembles of classifiers

An ensemble of classifiers consists of several
classifiers (members) that make predictions
independently of each other. After that, these
predictions are combined together to produce
the final prediction. Though ensemble mem-
bers can belong to different types of algo-
rithms, because of our interest in k-NN classi-
fiers we choose only this algorithm. Moreover,
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the value of k is fixed to 3 for all ensemble
members8. As a combination technique, the
conventional majority vote was selected in or-
der to demonstrate that ensembles built with
our approach show good performance even
when employing simple non-trainable combin-
ers.

The main goal for any ensemble is to perform
better than its most accurate member9. It is
well known that an ensemble is able to outper-
form its best performing member if ensemble
members make mistakes on different cases so
that their predictions are uncorrelated and di-
verse as much as possible. On the other hand,
an ensemble must include a sufficient number
of accurate classifiers since if there are only
few good votes, they can be easily drowned
out among many bad votes, and as a result,
an ensemble can predict wrongly most of the
time.

So far many definitions of diversity were pro-
posed [7], but unfortunately the precise defi-
nition is still largely illusive. Because of this
fact, we decided not to follow any explicit def-
inition of diversity, but to introduce diversity
implicitly instead. Since we fixed the base
classifier and its parameter, one of the solu-
tions is to let each ensemble member to work
with its own feature subset.

Feature subset selection can be done in two
ways: either applying a certain feature selec-
tion algorithm or a group of such algorithms,
or randomly sampling features from the origi-
nal feature set. As concluded in [11], for small
samples like those in this study, differences
in classification performance among feature
selection algorithms are less significant than
performance differences among the error esti-
mators used to implement these algorithms.
In other words, the way of how error is com-
puted has a larger influence on classification
accuracy than the choice of a feature selection
algorithm. Since bolstered resubstitution er-
ror is a low-bias, low-variance estimate of clas-
sification error, which is what is needed for

8In our opinion, k = 1 tends to lead to optimistic
estimation of bolstered resubstitution error.

9Otherwise, the extra computational cost is not
justified.

high dimensional gene expression data, we opt
for random feature selection. Figure 1 shows
that random feature selection leads to diver-
sity of prediction estimates since one complex-
ity value corresponds to several values of er-
ror. Given that it is difficult to carry out bi-
ological analysis of many genes, we restricted
the number of genes to be sampled to 50, i.e.
each ensemble member works with 1 to 50 ran-
domly selected genes.

Based on the above-mentioned, two ap-
proaches to form ensembles consisting of L
classifiers are explored:

1. Randomly select L feature subsets, one
subset per classifier, as described above.
Classify the data with each classifier and
combine votes.

2. Randomly select M > L (e.g. M = 100)
feature subsets and compute the dataset
complexity for each of them. Rank sub-
sets according to their complexity and se-
lect L least complex subsets while ignor-
ing the others. Classify the data with
each classifier and combine votes.

We will call the first approach conventional
to distinguish it from ours, which is the sec-
ond approach. The typical (and perhaps the
earliest) example of the former is [2]. As one
can see, the main difference between two ap-
proaches lies in the way of choosing feature
subsets. In the conventional approach, sub-
sets are chosen regardless of their classifica-
tion power. As a result, one may equally ex-
pect both very good and very bad base learner
predictions. In contrast, in our approach,
subsets are chosen based on the measure di-
rectly related to classification performance.
As lower complexity is associated with smaller
bolstered resubstitution error as shown in Sec-
tion 5, selection of the subsets of smaller com-
plexity implies more accurate classifiers in-
cluded into an ensemble. Since each ensemble
member works with only a small subset of all
features, such feature space decomposition is
akin to dividing a complex problem into sim-
pler subproblems. Thus, with our approach,
both diversity and accuracy requirements for
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ensembles are satisfied. Hence, we can expect
better average classification performance with
our approach compared to the conventional
approach.

7 Experiments

To generate ensembles, we set the number of
3-NNs (L) in the ensemble to be equal to 3,
5, 7, 9 and 11.

Tables 3-7 summarize the average bolstered
resubstitution error (over 100 runs) and its
standard deviation achieved with two ensem-
ble schemes. ‘C’ and ‘O’ stand for the conven-
tional and our approaches to ensemble con-
struction. It is clearly noticeable that both
the average error and its standard deviation
are much smaller for our approach.

Table 3: Average bolstered resubstitution er-
ror and its standard deviation for two ensem-
ble schemes (L = 3).

SAGE 1 C 0.141±0.025
O 0.119±0.016

Colon C 0.110±0.025
O 0.092±0.014

Brain C 0.129±0.035
O 0.081±0.022

SAGE 2 C 0.177±0.034
O 0.130±0.023

Prostate C 0.141±0.034
O 0.101±0.022

Table 4: Average bolstered resubstitution er-
ror and its standard deviation for two ensem-
ble schemes (L = 5).

SAGE 1 C 0.125±0.024
O 0.105±0.017

Colon C 0.091±0.019
O 0.077±0.012

Brain C 0.117±0.032
O 0.062±0.019

SAGE 2 C 0.160±0.040
O 0.113±0.022

Prostate C 0.111±0.026
O 0.078±0.016

Table 5: Average bolstered resubstitution er-
ror and its standard deviation for two ensem-
ble schemes (L = 7).

SAGE 1 C 0.119±0.021
O 0.098±0.014

Colon C 0.080±0.013
O 0.071±0.014

Brain C 0.101±0.031
O 0.054±0.017

SAGE 2 C 0.152±0.040
O 0.098±0.019

Prostate C 0.096±0.020
O 0.071±0.012

Table 6: Average bolstered resubstitution er-
ror and its standard deviation for two ensem-
ble schemes (L = 9).

SAGE 1 C 0.110±0.018
O 0.094±0.014

Colon C 0.074±0.015
O 0.066±0.010

Brain C 0.092±0.027
O 0.047±0.016

SAGE 2 C 0.143±0.039
O 0.093±0.017

Prostate C 0.084±0.016
O 0.066±0.011

For comparison, we included experiments
with one filter-based feature selection algo-
rithm searching for the optimal set of genes
using a Markov blanket [14]. This algorithm
called RBF (redundancy-based filter), espe-
cially intended for gene expression data anal-
ysis, aims at elimination of redundant genes.
It is based on the fact that a gene can be safely
eliminated if there is a Markov blanket for it.
Because finding a Markov blanket is compu-
tationally demanding, the solution in [14] is
to approximate it so that the Markov blan-
ket always consists of one gene. All original
genes are first ranked based on the estimate
of how strongly a certain gene is correlated to
the class10. Then each gene is checked if it has
any approximate Markov blanket in the cur-
rent set. Table 8 lists the average bolstered

10We used entropy-based symmetrical uncertainty
for defining correlation.
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Table 7: Average bolstered resubstitution er-
ror and its standard deviation for two ensem-
ble schemes (L = 11).

SAGE 1 C 0.111±0.018
O 0.088±0.015

Colon C 0.068±0.013
O 0.064±0.010

Brain C 0.088±0.028
O 0.045±0.015

SAGE 2 C 0.151±0.043
O 0.089±0.016

Prostate C 0.076±0.014
O 0.063±0.010

resubstitution error and its standard devia-
tion computed over 100 runs when RBF was
applied to each dataset prior to 3-NN classi-
fication. The third column contains the num-
ber of genes retained after filtering.

Table 8: Average bolstered resubstitution er-
ror and its standard deviation when RBF was
applied before 3-NN classification (RBF+3-
NN).

Dataset RBF #genes
SAGE 1 0.199±0.011 12
Colon 0.107±0.010 3
Brain 0.055±0.010 6

SAGE 2 0.145±0.005 152
Prostate 0.117±0.008 2

It can be observed that our ensemble scheme
almost always outperforms RBF+3-NN, ex-
cept for Brain data11, which was easy to clas-
sify according to dataset complexity. In con-
trast, the conventional scheme was inferior to
RBF+3-NN on many more occasions, which
again confirms the superiority of our approach
to ensemble construction.

Finally, we computed the win-tie-loss count12

frequently employed in machine learning and
11L = 3, 5.
12Given two algorithms A and B, this characteristic

counts the number of times when algorithm A is more
accurate than algorithm B (win count), the number
of times when both algorithms demonstrate the same
error rate (tie count), and the number of times when
algorithm A is less accurate than algorithm B (loss
count).

data mining in order to determine if either
ensemble scheme is inferior to a single best
3-NN in the ensemble. The complete results
are reported elsewhere and here we only pro-
vide their brief summary compiled after 100
ensemble generations. The main result is that
both ensemble schemes are indeed superior
to a single best 3-NN in the ensemble on all
datasets for the most part. It was also ob-
served that on average, our approach yields
better results in the sense that its win (loss)
count is typically higher (lower) and the abso-
lute losses to a single best 3-NN are lower, too.
In contrast, the conventional ensemble gener-
ating approach sometimes shows spectacular
results, but it also suffers many defeats from a
single best 3-NN. That is, its results are more
uncertain (less predictable) since there is no
control over complexity of the selected feature
subsets and hence, if such ‘complex’ subsets
are selected, a single best 3-NN can render en-
semble efforts to further lower error fruitless.
With the explicit selection of the least com-
plex subsets, our approach is able to succeed
where the comparative approach failed.

8 Conclusion

We proposed a new ensemble generating
scheme using a 3-NN as the base classifier
and tested this scheme on gene expression
based cancer classification. Our approach
leads to lower bolstered resubstitution error
compared to the conventional ensemble ap-
proach, purely based on random selection of
features, and to the single best classifier in
the ensemble. In addition, our scheme out-
performs a 3-NN preceded by the RBF algo-
rithm [14], especially proposed to deal with
redundancy among genes.

Our approach springs from dependence be-
tween dataset complexity and bolstered re-
substitution error established through the
copula method. We found that there is pos-
itive dependence between complexity and er-
ror, where low (high) complexity corresponds
to small (large) error. Exploiting this fact,
it is possible to achieve more predictable and
therefore less uncertain results for cancer clas-
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sification.
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