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Abstract

We propose fuzzy argumentation
frameworks as a conservative ex-
tension of traditional argumenta-
tion frameworks[6]. The fuzzy ap-
proach enriches the expressive power
of the classical argumentation model
by allowing to represent the relative
strength of the attack relationships
between arguments, as well as the
degree to which arguments are ac-
cepted. Furthermore, we explore the
relationship with fuzzy answer set
programming, more in particular the
correspondence between the stable
extensions of a fuzzy argumentation
framework and the fuzzy models of
an associated program.

Keywords: Fuzzy argumentation
frameworks, fuzzy answer set pro-
gramming, query expansion.

1 Introduction

The challenge of understanding argumenta-
tion and its role in human reasoning has been
addressed by many researchers in different
fields, including philosophy, logic, and AI. A
formal theory of argumentation has been pro-
posed in a seminal article by Dung[6]. This
theory is based on the idea that a state-
ment (argument) is believable if it can be
defended successfully against contesting ar-
guments. Thus, the theory considers so-
called argumentation frameworks that model

the interactions between different arguments,
while abstracting from the meaning or inter-
nal structure of an argument. Within a given
framework of interacting arguments, there
might be one, or more, sets of conclusions,
called extensions, that are deemed collectively
acceptable.

In human argumentation however, in many
cases, not all attacks have equal strength.
For example, in a murder trial, the argument
“her fingerprints are on the murder weapon”
is a stronger attack on the premise “the ac-
cused is innocent” than the argument that
“she was the last person to see the victim
alive”. Furthermore, statements like “the ac-
cused is innocent” and “the accused did not
have a good relationship with the victim” may
hold to, and hence may be deemed accept-
able to, a certain extent only, as opposed to
being either accepted or not. In the present
paper, we therefore introduce fuzzy argumen-
tation frameworks as a conservative extension
of [6]’s notion. Probabilistic and possibilis-
tic (with some fuzziness) approaches were al-
ready proposed in e.g. [9] and [4]. Advan-
tages of our fuzzy approach include the possi-
bility to represent the relative strength of the
(attack) relationships between arguments and
a more sophisticated approach to extensions:
being fuzzy sets of arguments, an extension
may commit only to a certain degree to the
acceptance of a certain argument, thus weak-
ening any (unanswered) attacks on it.

Already in [6], a strong link between non-
monotonic reasoning formalisms and argu-
mentation frameworks was presented. E.g.
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the stable model semantics for logic programs
naturally maps to argumentation frameworks
where an argument constitutes a derivation
in the program. In the present paper, we take
a different approach: we show how the fuzzy
models of a program constructed from a fuzzy
argumentation framework correspond to the
stable extensions of the framework.

The rest of the paper is organised as follows:
to introduce the notation used in the paper,
in Section 2 we recall some preliminaries re.
fuzzy logic. Next we introduce fuzzy argu-
mentation frameworks by providing the basic
definitions and properties (Section 3) as well
as a sample application (Section 4). The re-
lationship with fuzzy answer set programs is
established in Section 5 and Section 6 con-
cludes.

Due to space restrictions, all proofs have
been omitted. They can be obtained
from http://tinf2.vub.ac.be/~dvermeir/
papers/faf-full.pdf.

2 Preliminaries

Throughout this paper, membership values
are taken from a complete lattice called a
truth lattice, i.e. a partially ordered set (L,≤L
) where every subset of L has a greatest lower
bound (inf) and a least upper bound (sup).
Where the order is clear from the context, we
refer to the lattice as L instead of (L,≤L).
In addition we use 0L and 1L, or 0 and 1 if
L is understood, to denote the smallest and
greatest element of L, respectively. The tradi-
tional logical operations of negation, conjunc-
tion, disjunction, and implication are general-
ized to logical operators acting on truth values
of L in the usual way, i.e. a negator on L is
any anti-monotonic L → L mapping ∼ satis-
fying ∼ 0L = 1L and ∼ 1L = 0L. A negator is
involutive iff ∀x ∈ L ·∼∼ x = x. A triangular
norm (short: t-norm), on L is any monotone
(in both arguments), commutative and asso-
ciative L2 → L (infix) operator f satisfying
∀x ∈ L·1L f x = x. Intuitively, a t-norm cor-
responds to conjunction. A implicator  on
L is any L2 → L (infix) operator  satisfy-
ing 0L  0L = 1L, and ∀x ∈ L · 1L  x = x.

Moreover,  must be decreasing in its first
argument and increasing in its second. The
residual implicator of a t-norm f is defined
by x  y = sup {λ ∈ L | xf λ ≤L y}, while
a t-conorm g and a negator ∼ induce an S-
implicator defined by x y =∼ xg y.

In this paper, we will mostly assume that
truth lattices are finite. E.g. finite subsets of
[0, 1] such as {0.0, 0.1, . . . , 0.9, 1.0} are used
frequently. Well-known fuzzy logical opera-
tors include the minimum t-norm x fm y =
min(x, y), its residual implicator x m y = 1
if x ≤ y, and x  m y = y otherwise, as
well as the corresponding S-implicator x s,m

y = max(1 − x, y). The  Lukasiewicz t-norm
xfl y = max(x+y−1, 0) induces the residual
implicator x l y = min(1− x+ y, 1), which
is also an S-implicator. For negation, often
the standard negator ∼s x = 1− x is used.

A fuzzy set A over some (ordinary) set X and
a truth lattice L is an X → L mapping. We
use F(X), where L is understood, to denote
the set of all fuzzy sets over X. We sometimes
use the notation xl to denote that A(x) = l.
The support of a fuzzy set A is defined by
supp(A) = {x | A(x) > 0L}. Fuzzy set inter-
section is defined by (A∩B)(x) = A(x)fB(x),
the use of a specific t-norm can be denoted
with a subscript, e.g. (A∩mB)(x) = A(x)fm
B(x). Fuzzy set inclusion is also defined as
usual by A ⊆L B, or A ⊆ B if L is under-
stood, iff ∀x ∈ X ·A(x) ≤L B(x). A fuzzy re-
lation over X is a fuzzy set over X ×X.

3 Fuzzy Argumentation
Frameworks

An argumentation framework[6] consists of a
set of arguments, some of which attack each
other. Intuitively, an extension of such a
framework represents a position, i.e. a set of
arguments a rational agent may subscribe to,
that can be defended against attacks.

Definition 1 An argumentation framework
( af for short) is a tuple 〈A, 6→ 〉 where A
is a set of arguments and 6→ ⊆ A × A is
a binary attack relation between arguments.
When a1 6→ a2, we say that the argument a1
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attacks the argument a2. The notation is ex-
tended to sets in the obvious way: i.e. for b an
argument, and A and B sets of arguments,
A 6→ b iff ∃a ∈ A · a 6→ b, while b 6→ A iff
∃a ∈ A ·b 6→ a, and A 6→ B iff ∃b ∈ B ·A 6→ b.

Definition 2 Let 〈A, 6→ 〉 be an af. A set
A ⊆ A is conflict-free if no argument in A
attacks an argument in A, i.e. ¬(A 6→ A).
A conflict-free set A is an admissible exten-
sion if it defends itself against all attacks,
i.e. ∀b 6→ A · A 6→ b. A preferred extension
is a maximal (w.r.t. ⊆) admissible exten-
sion. A stable extension is a preferred ex-
tension A that attacks all external arguments,
i.e. ∀b 6∈ A ·A 6→ b.

Example 1 [7] The argumentation frame-
work 〈{porsche, volvo, safe, sporty}, R〉, where
R contains porsche 6→ volvo, volvo 6→
porsche, safe 6→ sporty, safe 6→ porsche,
sporty 6→ safe, and sporty 6→ volvo, rep-
resents a discussion between a wife and
her husband about buying a car. There
are two stable extensions: {sporty , porsche}
and {safe, volvo}. Note that, on its own,
e.g. {safe} is already admissible (but not pre-
ferred).

Example 2 The af 〈{red , pink , blue}, R〉,
where R contains red 6→ pink, pink 6→ red,
red 6→ blue, blue 6→ red, pink 6→ blue, and
blue 6→ pink, represents a discussion about
the colour of a certain sweater in the context
of a school uniform policy. There are three
stable extensions: {red}, {pink}, and {blue}.

All three arguments in Example 2 are conflict-
ing. However, the argument that the sweater
is red (e.g. as raised by a teacher) and the
argument that the sweater is pink (e.g. as
claimed by the school principal) are not con-
flicting to a very high degree, because for a
light shade of red one person might call it
pink, while another might still prefer to call it
red. Suppose that the school policy demands
for a blue uniform. Both the teacher’s and
the school principal’s argument strongly at-
tack the argument that the sweater conforms
to the school policy (e.g. as claimed by the
student). To harvest the best arguments to

attack the student’s argument, it is there-
fore desirable to be able to include both the
teacher’s and the school principal’s argument
in the extension to a high degree. Indeed the
latter two attack each other only to a small
degree, hence, intuitively, committing to them
both to a relatively high degree does not sig-
nificantly violate the conflict-freeness of the
extension.

To allow this kind of expressivity, we ex-
tend the classical argumentation model in two
ways: (1) by allowing the attack relation to be
a fuzzy relation over the set of arguments, we
can represent the degree to which arguments
attack each other, and (2) by allowing an ex-
tension to be a fuzzy set over the set of ar-
guments, we can model that some arguments
are accepted to a higher degree than others.
In the following definition, we formalize these
intuitions by extending 6→ to cover fuzzy sets
of arguments. A fuzzy argumentation frame-
work consists of a set of arguments, some of
which attack each other to a certain degree.

Definition 3 A fuzzy argumentation frame-
work ( faf for short) is a tuple 〈A, 6→〉 where
A is a set of arguments and 6→ is a fuzzy
relation over A. For b an argument, and
A and B fuzzy sets of arguments, we de-
fine the degree to which A attacks b as A 6→
b = supa∈A(A(a)f (a 6→ b)), and the de-
gree to which b attacks A as b 6→ A =
supa∈A(A(a)f (b 6→ a)). Furthermore, the
degree to which A attacks B is given by A 6→
B = supb∈A(B(b)f (A 6→ b)).

According to Definition 3, the strength of an
attack A 6→ b does not only depend on the
strength of an attack a 6→ b, where a is an
argument supported by A, but also on the de-
gree A(a) to which A supports a: the stronger
the presence of a in A, the stronger the at-
tacks from A through a. On the other hand,
if an argument b is only present to a marginal
degree in B, it should be clear that attacking
b does not greatly contribute to the “global”
attack on B.

Example 3 Let 〈A, 6→〉 be a faf where A
contains all arguments that appear in two po-
sition papers A and B. Since a position pa-
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per does not support each of its arguments in
equal measure, the papers are best represented
by fuzzy sets A,B ∈ F(A). Now suppose that
there are two arguments a, b ∈ A such that
a 6→ 0.9b, i.e. a strongly attacks b. On the
other hand, a is supported by A but not by B
while b is not supported by A and only weakly
by B, i.e. b represents only a minor aspect of
B. E.g. A(a) = 0.9, B(a) = 0, while A(b) = 0
and B(b) = 0.1.

Then, although in supporting a, A attacks b
strongly, i.e. (using the minimum as t-norm
in Definition 3) A 6→ 0.9b, this attack does not
noticeably affect B’s position as a whole since
it contributes only 0.1 to A 6→ B.

Intuitively, an extension of a fuzzy argumen-
tation framework is a fuzzy set A such that
for each a in A, A(a) represents the de-
gree to which a rational agent accepts argu-
ment a. Definition 4 provides more flexibility
than Definition 2 in three aspects: (1) while
in classical argumentation frameworks exten-
sions are required to be entirely conflict-free,
in the fuzzy approach they are allowed to con-
tain minor internal attacks, (2) an admissible
extension of a fuzzy argumentation framework
only needs to defend itself well enough against
all attacks, and (3), likewise, a stable exten-
sion only needs to sufficiently attack all exter-
nal arguments, in other words, any argument
that is to a high degree outside of the exten-
sion should be strongly attacked by it.

Definition 4 Let 〈A, 6→〉 be a faf. A fuzzy
set A over A is x-conflict-free, x ∈ L,
iff (∼ (A 6→ A)) ≥ x. A fuzzy set
A is a y-admissible extension if it defends
itself well enough against all attacks, i.e.
infb∈A((b 6→ A) (A 6→ b)) ≥ y. A y-
preferred extension, y ∈ L, is a maximal
(w.r.t. ⊆ over fuzzy sets) y-admissible exten-
sion. A z-stable extension, z ∈ L, is a fuzzy
set A that sufficiently attacks all external ar-
guments, i.e. infb∈A(∼ A(b) (A 6→ b)) ≥ z.

Example 4 Assume that we replace the af
in Example 2 by a faf where the fuzzy attack
relation is given by red 6→0.1 pink, pink 6→0.1

red, red 6→1 blue, blue 6→1 red, pink 6→1 blue,
and blue 6→1 pink. We consider the fuzzy set

A = {pink0.8, red0.7}, in other words we ac-
cept that the sweater has a colour between pink
and red.

To evaluate the conflict-freeness of A, we de-
termine the degree to which there are internal
attacks in A. Using the minimum t-norm we
obtain that (cfr. Definition 3) A 6→ pink = 0.1
and A 6→ red = 0.1, hence A 6→ A =
0.1, which indicates a minor level of conflict
among the accepted arguments. Using the
standard negator we obtain ∼ (A 6→ A) = 0.9,
hence A is 0.9-conflict-free. Note that when
using the  Lukasiewicz t-norm, which is inher-
ently more tolerant to minor inconsistencies,
we would obtain that A 6→ pink = 0 and
A 6→ red = 0, hence that A is 1-conflict-free.
Because of limited space, in the rest of this
example we only consider the  Lukasiewicz t-
norm and its residual implicator.

Next we verify how well A defends itself
against all attacks. Since pink 6→ A = 0
and red 6→ A = 0, the only real attack on
A comes from the argument that the sweater
is blue, namely blue 6→ A = 0.8. However,
from A 6→ blue = 0.8 and the previously
mentioned attack values, it is clear that A
strikes back with equal force on all attacking
arguments. Since for any residual implica-
tor a 6→ A  A 6→ a equals 1 as soon as
a 6→ A ≤ A 6→ a, we obtain that A is 1-
admissible. It is however not a 1-preferred
set, since {pink0.8, red0.8} is a superset of A
which is also 1-admissible.

As for the stability, ∼ A(pink)  A 6→
pink = 0.2  0 = 0.8, ∼ A(red)  A 6→
red = 0.3  0 = 0.7 and ∼ A(blue)  A 6→
blue = 1  0.8 = 0.8. By which we can con-
clude that A is a 0.7-stable extension. Note
that A does not have a perfect score for sta-
bility because, among other things, A neither
fully supports nor opposes the argument that
the sweater is red.

It is straightforward to verify that fafs repre-
sent a conservative extension of the classical
notion.

Theorem 1 Let F = 〈A, 6→ 〉 be a af and let
Ff = 〈A, 6→f 〉 be the fuzzy version over {0, 1}
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of F with a 6→1
f b iff a 6→ b. Then the set

of stable extensions of F coincides with the
set of supports of the 1-conflict-free 1-stable
extensions of Ff .

The following theorems describe some of the
effects of accepting more or less arguments
(or accepting them to a higher or a lower de-
gree). The extended attack relation is mono-
tone w.r.t. fuzzy set inclusion, i.e. accepting
more arguments does not decrease the power
to attack.

Theorem 2 Let 〈A, 6→〉 be a faf and B ⊆
A ∈ F(A). Then ∀a ∈ A ·B 6→ a ≤ A 6→ a.

Furthermore, z-stability is monotone with re-
spect to fuzzy set inclusion. This might come
as a surprise since it is not true in the boolean
case, but it is due to the fact that z-stability is
independent of the degree of conflict-freeness.

Theorem 3 Let 〈A, 6→〉 be a faf and B ⊆
A ∈ F(A). Then if B is a z-stable extension,
so is A.

For x-conflict-freeness, we obtain anti-
monotonicity: adding more arguments, re-
sults in more conflicts, so conflict-freeness de-
creases.

Theorem 4 Let 〈A, 6→〉 be a faf and let B ⊆
A ∈ F(A). Then if A is x-conflict-free, so is
B.

4 Query Expansion

Query expansion is the process of expanding
keyword based queries with more terms, re-
lated to the intended meaning of the query,
to refine the search results. One option
is to use an available thesaurus such as
WordNet, expanding the query by adding
synonyms[14]. Related terms can also be
automatically discovered from the searchable
documents though, taking into account sta-
tistical information such as co-occurrences of
words in documents: the more frequently two
terms co-occur, the more they are assumed to
be related[15].

In either case, the thesaurus can be thought
of as being a (fuzzy) relation R over the set

X of terms. Note that R should be reflexive
(i.e. every term is obviously related to itself)
and symmetric (i.e. if we say that term a is
related to term b to a degree of p, obviously
we want that term b is related to term a in the
same degree). Transitivity is not necessarily
required, for reasons explained in [5]. From X
and R, a faf F can be generated such that the
conflict-free and stable extensions of F corre-
spond to optimal queries.

More in particular, we generate the faf F =
〈X, 6→〉 where a 6→ b =∼ (aR b). In other
words, the arguments of F correspond to
terms, and a term a attacks a term b to the
extent to which these terms are not related.
Note that, due to the symmetry of R, every
argument in X attacks each one of its attack-
ers to the same degree.

A set A ⊆ X is then highly conflict-free if ev-
ery term in A is related to all other terms in
A to a high degree, in other words A is a co-
herent query. Furthermore, A is highly stable
if it strongly attacks all external arguments,
i.e. a term can only be left out of the query to
the extent that it is not related to at least one
of the terms in the query. Together these re-
quirements fit our intuition about what an op-
timally expanded query should look like, i.e. a
query that has a high stability (refined with as
many terms as possible) and is highly conflict-
free (without losing the coherence). The fol-
lowing example illustrates the interplay be-
tween the conflict-freeness and the stability
requirements.

Table 1: Fuzzy Thesaurus from [5]
mac recipe computer apple fruit pie

mac 1 0 0.89 0.89 0 0.01
recipe 1 0.56 0.83 0.66 1
computer 1 0.94 0.44 0.44
apple 1 0.83 0.99
fruit 1 0.44
pie 1

Suppose we have a set of terms X =
{apple,fruit,mac,pie,recipe,computer} and a
fuzzy relation R over X, defined as in1 Ta-

1This automatically generated toy thesaurus is
taken from [5]. The fact that apple seems to co-occur
more frequently with mac than with fruit is due to
the bias towards computer related terms on the web.
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Table 2: Attack Relation
mac recipe computer apple fruit pie

mac 0 1 0.11 0.11 1 0.99
recipe 0 0.44 0.17 0.44 0
computer 0 0.06 0.66 0.66
apple 0 0.17 0.01
fruit 0 0.66
pie 0

ble 1 The corresponding attack relation, us-
ing the standard negator, is depicted in Ta-
ble 2. The user query that we aim to ex-
pand is Q1 = {apple, pie}. Independently of
the choice of t-norm in Definition 3, it holds
that Q1 6→ mac = 0.99, Q1 6→ recipe = 0.17,
Q1 6→ computer = 0.66, Q1 6→ apple = 0.01,
Q1 6→ fruit = 0.66 and Q1 6→ pie = 0.01.

The queryQ1 is highly conflict-free, namely to
degree 0.99 when using the standard negator,
since the strength of the attack apple 6→ pie
is almost neglectable. On the other hand, Q1

is only a 0.17-stable extension (independently
of the choice of negator and of the choice of
implicator in Definition 4). This unstability
is due to the term recipe being excluded from
the query without there being a good reason
to. Indeed, recipe is not strongly attacked
by any of the keywords from the query so, in
terms of stability, there is no reason not to
include it.

However, it is not possible to add more terms
to the query while keeping the original high
level of conflict-freeness. We therefore lower
our standards and look for expanded queries
that are 0.8-conflict-free. The only expanded
query that satisfies this condition is Q2 =
{apple, pie, recipe}, which is a 0.66-stable ex-
tension.

Adding more terms to query Q2 results in a
significant drop in conflict-freeness. Indeed,
the remaining terms mac, computer, and fruit
are under an attack with a strength of at
least 0.66 by at least one of the terms al-
ready in Q2, so including yet another term in
Q2 would leave the conflict-freeness at most
at 0.44. However, in the setting described
in this section, it is also possible to con-
sider weighted queries. For instance, one can
verify that, using the minimum t-norm, for
Q3 = {apple1, pie1, recipe1, fruit0.3} we ob-

tain that Q3 6→ mac = 1, Q3 6→ recipe = 0.3,
Q3 6→ computer = 0.66, Q3 6→ apple = 0.17,
Q3 6→ fruit = 0.66 and Q3 6→ pie = 0.3.
Hence, Q3 is 0.7-conflict-free, and, using the
residual or the S-implicator associated with
the minimum t-norm, Q3 is still a 0.66-stable
extension.

5 FAF and Fuzzy Answer Set
Programming

The answer set programming (ASP)
paradigm[2] has gained a lot of popu-
larity in the last years, due to its truly
declarative non-monotonic semantics. ASP
and fuzzy logic can be be combined into
the single framework of fuzzy answer set
programming to increase the flexibility and
hence the application potential of ASP. A
fuzzy answer set program[11], fasp for short,
is a finite set of rules2 of the form a ← α
with a an atom and α a set of literals, each
of which is either an atom or of the form
not a, a an atom, representing the “negation
as failure” of a.

A fuzzy interpretation of a fasp P is a map-
ping I : BP → L assigning a truth value from
the lattice L to each of the atoms appearing
in P . I is extended to literals by defining
I(not a) =∼ I(a) and to rules r: a ← α us-
ing I(α) = fl∈αI(l) and I(r) = I(α) I(a).

A fuzzy y-model, y ∈ L, of P is a fuzzy inter-
pretation I that satisfies Ap(P, I) ≥ y where
Ap is a function (aggregator) that takes as in-
put a program and an interpretation, yielding
a value denoting the degree in which I is a
model of P , based on the satisfaction of the
rules. A common aggregator is Ap(P, I) =
inf {I(r) | r ∈ P}, which considers the least
fulfilled rule to compute the degree to which
I is a model of P. Naturally, Ap should be in-
creasing whenever the degrees of satisfaction
I(r) of the rules in P are increasing.

We show that, under certain conditions, the
y-stable extensions of a faf F = 〈A, 6→〉 cor-

2In the present paper we do not consider negative
literals of the form ¬a, a an atom. In terms of [11],
this makes every interpretation 1-consistent. Also, we
do not consider constraints (rules with empty head).
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respond to the fuzzy y-models of a fasp ΠF

that can be constructed from F as follows:
intuitively, for each argument a ∈ A, ΠF will
contain exactly one rule ra introducing a. The
body of ra contains one literal not ba for each
b ∈ A such that (b 6→ a) > 0L. Each lit-
eral ba is itself defined through a single rule3

ba ← b, (b 6→ a).

Definition 5 For a faf F = 〈A, 6→〉, the as-
sociated fasp ΠF is defined by ΠF = Ra ∪Rb
where

Ra = {a← {not ba | (b 6→ a > 0L)} | a ∈ A}
Rb = {ba ← b, (b 6→ a) | (b 6→ a) > 0L}
Where we take min as the t-norm for aggre-
gating the body in Ra-rules and the t-norm
of the argumentation framework for the Rb-
rules.
The aggregator AΠF

is such that all rules from
Rb must evaluate to 1L, while for other rules,
the minimal degree of satisfaction is taken,
i.e.

AΠF
(ΠF , I) =

{
infra∈Ra(I(ra)) iff (α)
0L otherwise

where (α) ≡ ∀r ∈ Rb · I(r) = 1L.

The condition on r ∈ Rb guarantees that
I(ba) = b f b 6→ a for the implicator in theo-
rem 5.

Note that any argument a that is not attacked
will have a corresponding fact rule a← in Ra.

We show that y-stable extensions of F corre-
spond to certain fuzzy y-models of ΠF .

Theorem 5 Let F = 〈A, 6→〉 be a faf. If
 is a contrapositive implicator, x = y ⇒
x  y = 1, ∼ is an involutive negator and
∼ supx∈X(F (x)) = infx∈X(∼ F (x)), then for
any y ∈ L, X is a y-stable extension of F
iff X ′ = X ∪ {bqa | q = (X(b)f (b 6→ a))} is a
y-model of ΠF .

Note that the above equivalence concerns
fasp models, not answer sets where an-
swer sets are models that are free from

3Although program rules in [11] syntactically may
not contain constants from L, the semantics in [11]
easily supports such an extension using the “fuzzy in-
put literals” mechanism (Section 4 in [11]).

“assumptions”[11] and, in a sense, minimal
models. However, unlike with answer set pro-
gramming, minimality is not a desirable cri-
terion for argumentation frameworks as, in-
tuitively, one attempts to maximize the set of
arguments that can be defended against at-
tacks. The only limit on the size of an ex-
tension is the desire for conflict-freeness (see
also Theorems 3 and 4) which can be imposed
separately, as is done for y-models in [11].

6 Concluding Remarks

We’ve motivated and introduced fuzzy argu-
mentation frameworks as a conservative ex-
tension of the classical notion from [6] which
allows for more fine-grained knowledge repre-
sentation in terms of doubts (some degree of
conflict may be tolerated) and strength of at-
tacks, both absolute and with respect to the
degree of acceptance of the attacker and the
attacked. The strong connection with Fuzzy
Answer Set Programming[11] also provides a
practical implementation using dlvhex[10].
In future work, we intend to extend our ap-
proach to (applications of) bipolar argumen-
tation frameworks[3, 8, 12, 1]. We will also
investigate dialogical semantics, see e.g. [13],
for fuzzy argumentation frameworks.
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[4] C. I. Chesñevar, G. R. Simari, T. Alsinet,
and L. Godo. A logic programming
framework for possibilistic argumenta-
tion with vague knowledge. In AUAI
’04: Proceedings of the 20th conference
on Uncertainty in artificial intelligence,
pages 76–84, Arlington, Virginia, United
States, 2004. AUAI Press.

[5] M. De Cock, C. Cornelis, and E. Kerre.
Fuzzy rough sets: the forgotten step.
IEEE Transactions on Fuzzy Systems,
15(1):121–130, 2007.

[6] P. M. Dung. On the acceptability of ar-
guments and its fundamental role in non-
monotonic reasoning, logic programming
and n-person games. Artificial Intelli-
gence, 77(2):321–358, 1995.

[7] T. Gordon and N. Karacapilidis. The
zeno argumentation framework. In Pro-
ceedings of the biannual International
Conference on Formal and Applied Prac-
tical Reasoning (FAPR) workshop, 1996.

[8] N. Karacapilidis and D. Papadias. Com-
puter supported argumentation and col-
laborative decision making: the hermes
system. Information systems, 26(4):259–
277, 2001.

[9] J. Kohlas, D. Berzati, and R. Haenni.
Probabilistic argumentation systems and
abduction. Annals of Mathematics and
Artificial Intelligence, 34(1-3):177–195,
2002.

[10] D. Van Nieuwenborgh, M. De Cock, and
D. Vermeir. Computing fuzzy answer sets
using DLVHEX. In International Con-
ference on Logic Programming, 2007.

[11] D. Van Nieuwenborgh, M. De Cock, and
D. Vermeir. An introduction to fuzzy an-
swer set programming. Annals of Math-
ematics and Artificial Intelligence, 50(3-
4):363–388, 2007.

[12] B. Verheij. On the existence and mul-
tiplicity of extension in dialectical ar-
gumentation. In S. Benferhat and
E. Giunchiglia, editors, Proceedings of
the 9th International Workshop on Non-
Monotonic Reasoning (NMR2002), pages
416–425, 2002.

[13] D. Vermeir and H. Jakobovits. Dialec-
tic semantics for argumentation frame-
works. In Proceedings of the Seventh In-
ternational Conference on Artificial In-
telligence and Law, pages 53–62. Asso-
ciation for Computing Machinery, june
1999.

[14] E. M. Voorhees. Query expansion using
lexical-semantic relations. In Proceedings
of ACM SIGIR 1994 (17th Annual Inter-
national ACM SIGIR Conference on Re-
search and Development in Information
Retrieval), pages 61–69, 1994.

[15] J. Xu and W. B. Croft. Query expansion
using local and global document analysis.
In Proceedings of ACM SIGIR 1996 (19th
Annual International ACM SIGIR Con-
ference on Research and Development in
Information Retrieval), pages 4–11, 1996.

520 Proceedings of IPMU’08


