Fuzzy Argumentation Frameworks

Jeroen Janssen Dept. of Computer Science Vrije Universiteit Brussel Pleinlaan 2 1050 Brussel, Belgium jeroen.janssen@vub.ac.be Martine De Cock Dept. of Appl. Math. and Computer Science Ghent University Krijgslaan 281 (S9) 9000 Gent, Belgium martine.decock@ugent.be

Dirk Vermeir

Dept. of Computer Science Vrije Universiteit Brussel Pleinlaan 2 1050 Brussel, Belgium dvermeir@vub.ac.be

Abstract

We propose fuzzy argumentation frameworks as a conservative extension of traditional argumentation frameworks[6]. The fuzzy approach enriches the expressive power of the classical argumentation model by allowing to represent the relative strength of the attack relationships between arguments, as well as the degree to which arguments are accepted. Furthermore, we explore the relationship with fuzzy answer set programming, more in particular the correspondence between the stable extensions of a fuzzy argumentation framework and the fuzzy models of an associated program.

Keywords: Fuzzy argumentation frameworks, fuzzy answer set programming, query expansion.

1 Introduction

The challenge of understanding argumentation and its role in human reasoning has been addressed by many researchers in different fields, including philosophy, logic, and AI. A formal theory of argumentation has been proposed in a seminal article by Dung[6]. This theory is based on the idea that a statement (argument) is believable if it can be *defended* successfully against contesting arguments. Thus, the theory considers socalled *argumentation frameworks* that model the interactions between different arguments, while abstracting from the meaning or internal structure of an argument. Within a given framework of interacting arguments, there might be one, or more, sets of conclusions, called *extensions*, that are deemed collectively acceptable.

In human argumentation however, in many cases, not all attacks have equal strength. For example, in a murder trial, the argument "her fingerprints are on the murder weapon" is a stronger attack on the premise "the accused is innocent" than the argument that "she was the last person to see the victim alive". Furthermore, statements like "the accused is innocent" and "the accused did not have a good relationship with the victim" may hold to, and hence may be deemed acceptable to, a certain extent only, as opposed to being either accepted or not. In the present paper, we therefore introduce *fuzzy argumen*tation frameworks as a conservative extension of [6]'s notion. Probabilistic and possibilistic (with some fuzziness) approaches were already proposed in e.g. [9] and [4]. Advantages of our fuzzy approach include the possibility to represent the relative strength of the (attack) relationships between arguments and a more sophisticated approach to extensions: being fuzzy sets of arguments, an extension may commit only to a certain degree to the acceptance of a certain argument, thus weakening any (unanswered) attacks on it.

Already in [6], a strong link between nonmonotonic reasoning formalisms and argumentation frameworks was presented. E.g.

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU'08, pp. 513–520 Torremolinos (Málaga), June 22–27, 2008 the stable model semantics for logic programs naturally maps to argumentation frameworks where an argument constitutes a derivation in the program. In the present paper, we take a different approach: we show how the fuzzy models of a program constructed from a fuzzy argumentation framework correspond to the stable extensions of the framework.

The rest of the paper is organised as follows: to introduce the notation used in the paper, in Section 2 we recall some preliminaries re. fuzzy logic. Next we introduce fuzzy argumentation frameworks by providing the basic definitions and properties (Section 3) as well as a sample application (Section 4). The relationship with fuzzy answer set programs is established in Section 5 and Section 6 concludes.

Due to space restrictions, all proofs have been omitted. They can be obtained from http://tinf2.vub.ac.be/~dvermeir/ papers/faf-full.pdf.

2 Preliminaries

Throughout this paper, membership values are taken from a complete lattice called a truth lattice, i.e. a partially ordered set $(\mathcal{L}, \leq_{\mathcal{L}})$) where every subset of \mathcal{L} has a greatest lower bound (inf) and a least upper bound (sup). Where the order is clear from the context, we refer to the lattice as \mathcal{L} instead of $(\mathcal{L}, \leq_{\mathcal{L}})$. In addition we use $0_{\mathcal{L}}$ and $1_{\mathcal{L}}$, or 0 and 1 if ${\mathcal L}$ is understood, to denote the smallest and greatest element of \mathcal{L} , respectively. The traditional logical operations of negation, conjunction, disjunction, and implication are generalized to logical operators acting on truth values of \mathcal{L} in the usual way, i.e. a *negator* on \mathcal{L} is any anti-monotonic $\mathcal{L} \to \mathcal{L}$ mapping \sim satisfying $\sim 0_{\mathcal{L}} = 1_{\mathcal{L}}$ and $\sim 1_{\mathcal{L}} = 0_{\mathcal{L}}$. A negator is involutive iff $\forall x \in \mathcal{L} \cdot \sim x = x$. A triangular *norm* (short: t-norm), on \mathcal{L} is any monotone (in both arguments), commutative and associative $\mathcal{L}^2 \to \mathcal{L}$ (infix) operator \land satisfying $\forall x \in \mathcal{L} \cdot 1_{\mathcal{L}} \land x = x$. Intuitively, a t-norm corresponds to conjunction. A *implicator* \rightsquigarrow on \mathcal{L} is any $\mathcal{L}^2 \to \mathcal{L}$ (infix) operator \rightsquigarrow satisfying $0_{\mathcal{L}} \rightsquigarrow 0_{\mathcal{L}} = 1_{\mathcal{L}}$, and $\forall x \in \mathcal{L} \cdot 1_{\mathcal{L}} \rightsquigarrow x = x$.

Moreover, \rightsquigarrow must be decreasing in its first argument and increasing in its second. The *residual implicator* of a t-norm \land is defined by $x \rightsquigarrow y = \sup \{\lambda \in \mathcal{L} \mid x \land \lambda \leq_{\mathcal{L}} y\}$, while a t-conorm \curlyvee and a negator \sim induce an Simplicator defined by $x \rightsquigarrow y = \sim x \curlyvee y$.

In this paper, we will mostly assume that truth lattices are finite. E.g. finite subsets of [0,1] such as $\{0.0, 0.1, \ldots, 0.9, 1.0\}$ are used frequently. Well-known fuzzy logical operators include the *minimum t-norm* $x \downarrow_m y =$ $\min(x, y)$, its residual implicator $x \rightsquigarrow_m y = 1$ if $x \leq y$, and $x \rightsquigarrow_m y = y$ otherwise, as well as the corresponding S-implicator $x \rightsquigarrow_{s,m} y =$ $\max(1 - x, y)$. The Lukasiewicz t-norm $x \downarrow_l y = \max(x + y - 1, 0)$ induces the residual implicator $x \rightsquigarrow_l y = \min(1 - x + y, 1)$, which is also an S-implicator. For negation, often the standard negator $\sim_s x = 1 - x$ is used.

A fuzzy set A over some (ordinary) set X and a truth lattice \mathcal{L} is an $X \to \mathcal{L}$ mapping. We use $\mathcal{F}(X)$, where \mathcal{L} is understood, to denote the set of all fuzzy sets over X. We sometimes use the notation x^l to denote that A(x) = l. The support of a fuzzy set A is defined by $supp(A) = \{x \mid A(x) > 0_{\mathcal{L}}\}$. Fuzzy set intersection is defined by $(A \cap B)(x) = A(x) \land B(x)$, the use of a specific t-norm can be denoted with a subscript, e.g. $(A \cap_m B)(x) = A(x) \land_m$ B(x). Fuzzy set inclusion is also defined as usual by $A \subseteq_{\mathcal{L}} B$, or $A \subseteq B$ if \mathcal{L} is understood, iff $\forall x \in X \cdot A(x) \leq_{\mathcal{L}} B(x)$. A fuzzy relation over X is a fuzzy set over $X \times X$.

3 Fuzzy Argumentation Frameworks

An argumentation framework[6] consists of a set of *arguments*, some of which *attack* each other. Intuitively, an *extension* of such a framework represents a position, i.e. a set of arguments a rational agent may subscribe to, that can be defended against attacks.

Definition 1 An argumentation framework (AF for short) is a tuple $\langle \mathcal{A}, \neq \rangle$ where \mathcal{A} is a set of arguments and $\neq \subseteq \mathcal{A} \times \mathcal{A}$ is a binary attack relation between arguments. When $a_1 \neq a_2$, we say that the argument a_1 attacks the argument a_2 . The notation is extended to sets in the obvious way: i.e. for b an argument, and A and B sets of arguments, $A \neq b$ iff $\exists a \in A \cdot a \neq b$, while $b \neq A$ iff $\exists a \in A \cdot b \neq a$, and $A \neq B$ iff $\exists b \in B \cdot A \neq b$.

Definition 2 Let $\langle \mathcal{A}, \neq \rangle$ be an AF. A set $A \subseteq \mathcal{A}$ is conflict-free if no argument in A attacks an argument in A, i.e. $\neg(A \neq A)$. A conflict-free set A is an admissible extension if it defends itself against all attacks, i.e. $\forall b \neq A \cdot A \neq b$. A preferred extension is a maximal (w.r.t. \subseteq) admissible extension. A stable extension is a preferred extension A that attacks all external arguments, i.e. $\forall b \notin A \cdot A \neq b$.

Example 1 [7] The argumentation framework $\langle \{porsche, volvo, safe, sporty\}, R \rangle$, where R contains porsche $\not\rightarrow$ volvo, volvo $\not\rightarrow$ porsche, safe $\not\rightarrow$ sporty, safe $\not\rightarrow$ porsche, sporty $\not\rightarrow$ safe, and sporty $\not\rightarrow$ volvo, represents a discussion between a wife and her husband about buying a car. There are two stable extensions: {sporty, porsche} and {safe, volvo}. Note that, on its own, e.g. {safe} is already admissible (but not preferred).

Example 2 The AF $\langle \{red, pink, blue\}, R \rangle$, where R contains red $\not\rightarrow pink$, $pink \not\rightarrow red$, red $\not\rightarrow blue$, $blue \not\rightarrow red$, $pink \not\rightarrow blue$, and blue $\not\rightarrow pink$, represents a discussion about the colour of a certain sweater in the context of a school uniform policy. There are three stable extensions: $\{red\}, \{pink\}, and \{blue\}.$

All three arguments in Example 2 are conflicting. However, the argument that the sweater is red (e.g. as raised by a teacher) and the argument that the sweater is pink (e.g. as claimed by the school principal) are not conflicting to a very high degree, because for a light shade of red one person might call it pink, while another might still prefer to call it red. Suppose that the school policy demands for a blue uniform. Both the teacher's and the school principal's argument strongly attack the argument that the sweater conforms to the school policy (e.g. as claimed by the student). To harvest the best arguments to attack the student's argument, it is therefore desirable to be able to include both the teacher's and the school principal's argument in the extension to a high degree. Indeed the latter two attack each other only to a small degree, hence, intuitively, committing to them both to a relatively high degree does not significantly violate the conflict-freeness of the extension.

To allow this kind of expressivity, we extend the classical argumentation model in two ways: (1) by allowing the attack relation to be a fuzzy relation over the set of arguments, we can represent the degree to which arguments attack each other, and (2) by allowing an extension to be a fuzzy set over the set of arguments, we can model that some arguments are accepted to a higher degree than others. In the following definition, we formalize these intuitions by extending $\not\rightarrow$ to cover fuzzy sets of arguments. A fuzzy argumentation framework consists of a set of arguments, some of which attack each other to a certain degree.

Definition 3 A fuzzy argumentation framework (FAF for short) is a tuple $\langle \mathcal{A}, \not\rightarrow \rangle$ where \mathcal{A} is a set of arguments and $\not\rightarrow$ is a fuzzy relation over \mathcal{A} . For b an argument, and A and B fuzzy sets of arguments, we define the degree to which A attacks b as $A \not\rightarrow$ $b = \sup_{a \in \mathcal{A}} (A(a) \land (a \not\rightarrow b))$, and the degree to which b attacks A as $b \not\rightarrow A =$ $\sup_{a \in \mathcal{A}} (A(a) \land (b \not\rightarrow a))$. Furthermore, the degree to which A attacks B is given by $A \not\rightarrow$ $B = \sup_{b \in \mathcal{A}} (B(b) \land (A \not\rightarrow b))$.

According to Definition 3, the strength of an attack $A \not\rightarrow b$ does not only depend on the strength of an attack $a \not\rightarrow b$, where a is an argument supported by A, but also on the degree A(a) to which A supports a: the stronger the presence of a in A, the stronger the attacks from A through a. On the other hand, if an argument b is only present to a marginal degree in B, it should be clear that attacking b does not greatly contribute to the "global" attack on B.

Example 3 Let $\langle \mathcal{A}, \neq \rangle$ be a FAF where \mathcal{A} contains all arguments that appear in two position papers A and B. Since a position pa-

per does not support each of its arguments in equal measure, the papers are best represented by fuzzy sets $A, B \in \mathcal{F}(\mathcal{A})$. Now suppose that there are two arguments $a, b \in \mathcal{A}$ such that $a \neq 0.9b$, i.e. a strongly attacks b. On the other hand, a is supported by A but not by B while b is not supported by A and only weakly by B, i.e. b represents only a minor aspect of B. E.g. A(a) = 0.9, B(a) = 0, while A(b) = 0and B(b) = 0.1.

Then, although in supporting a, A attacks b strongly, i.e. (using the minimum as t-norm in Definition 3) $A \neq {}^{0.9}$ b, this attack does not noticeably affect B's position as a whole since it contributes only 0.1 to $A \neq B$.

Intuitively, an extension of a fuzzy argumentation framework is a fuzzy set A such that for each a in \mathcal{A} , A(a) represents the degree to which a rational agent accepts argument a. Definition 4 provides more flexibility than Definition 2 in three aspects: (1) while in classical argumentation frameworks extensions are required to be entirely conflict-free, in the fuzzy approach they are allowed to contain minor internal attacks, (2) an admissible extension of a fuzzy argumentation framework only needs to defend itself well enough against all attacks, and (3), likewise, a stable extension only needs to sufficiently attack all external arguments, in other words, any argument that is to a high degree outside of the extension should be strongly attacked by it.

Definition 4 Let $\langle \mathcal{A}, \not\rightarrow \rangle$ be a FAF. A fuzzy set A over \mathcal{A} is x-conflict-free, $x \in \mathcal{L}$, iff $(\sim (A \not\rightarrow A)) \geq x$. A fuzzy set A is a y-admissible extension if it defends itself well enough against all attacks, i.e. $\inf_{b\in\mathcal{A}}((b\not\rightarrow A) \rightsquigarrow (A \not\rightarrow b)) \geq y$. A ypreferred extension, $y \in \mathcal{L}$, is a maximal $(w.r.t. \subseteq over fuzzy sets)$ y-admissible extension. A z-stable extension, $z \in \mathcal{L}$, is a fuzzy set A that sufficiently attacks all external arguments, i.e. $\inf_{b\in\mathcal{A}}(\sim A(b) \rightsquigarrow (A \not\rightarrow b)) \geq z$.

Example 4 Assume that we replace the AF in Example 2 by a FAF where the fuzzy attack relation is given by red $\not\rightarrow^{0.1}$ pink, pink $\not\rightarrow^{0.1}$ red, red $\not\rightarrow^{1}$ blue, blue $\not\rightarrow^{1}$ red, pink $\not\rightarrow^{1}$ blue, and blue $\not\rightarrow^{1}$ pink. We consider the fuzzy set $A = \{pink^{0.8}, red^{0.7}\}, in other words we accept that the sweater has a colour between pink and red.$

To evaluate the conflict-freeness of A, we determine the degree to which there are internal attacks in A. Using the minimum t-norm we obtain that (cfr. Definition 3) $A \neq pink = 0.1$ and $A \not\rightarrow red = 0.1$, hence $A \not\rightarrow A =$ 0.1, which indicates a minor level of conflict among the accepted arguments. Using the standard negator we obtain $\sim (A \not\rightarrow A) = 0.9$, hence A is 0.9-conflict-free. Note that when using the Lukasiewicz t-norm, which is inherently more tolerant to minor inconsistencies, we would obtain that $A \not\rightarrow pink = 0$ and $A \not\rightarrow red = 0$, hence that A is 1-conflict-free. Because of limited space, in the rest of this example we only consider the Lukasiewicz tnorm and its residual implicator.

Next we verify how well A defends itself against all attacks. Since pink $\neq A = 0$ and red $\neq A = 0$, the only real attack on A comes from the argument that the sweater is blue, namely blue $\neq A = 0.8$. However, from $A \neq blue = 0.8$ and the previously mentioned attack values, it is clear that A strikes back with equal force on all attacking arguments. Since for any residual implicator $a \neq A \rightsquigarrow A \neq a$ equals 1 as soon as $a \neq A \leq A \neq a$, we obtain that A is 1admissible. It is however not a 1-preferred set, since {pink^{0.8}, red^{0.8}} is a superset of A which is also 1-admissible.

As for the stability, ~ $A(pink) \rightsquigarrow A \neq pink = 0.2 \rightsquigarrow 0 = 0.8$, ~ $A(red) \rightsquigarrow A \neq red = 0.3 \rightsquigarrow 0 = 0.7$ and ~ $A(blue) \rightsquigarrow A \neq blue = 1 \rightsquigarrow 0.8 = 0.8$. By which we can conclude that A is a 0.7-stable extension. Note that A does not have a perfect score for stability because, among other things, A neither fully supports nor opposes the argument that the sweater is red.

It is straightforward to verify that FAFs represent a conservative extension of the classical notion.

Theorem 1 Let $F = \langle \mathcal{A}, \neq \rangle$ be a AF and let $F_f = \langle \mathcal{A}, \neq_f \rangle$ be the fuzzy version over $\{0, 1\}$

of F with $a \neq_f^1 b$ iff $a \neq b$. Then the set of stable extensions of F coincides with the set of supports of the 1-conflict-free 1-stable extensions of F_f .

The following theorems describe some of the effects of accepting more or less arguments (or accepting them to a higher or a lower degree). The extended attack relation is monotone w.r.t. fuzzy set inclusion, i.e. accepting more arguments does not decrease the power to attack.

Theorem 2 Let $\langle \mathcal{A}, \not\rightarrow \rangle$ be a FAF and $B \subseteq A \in \mathcal{F}(\mathcal{A})$. Then $\forall a \in \mathcal{A} \cdot B \not\rightarrow a \leq A \not\rightarrow a$.

Furthermore, z-stability is monotone with respect to fuzzy set inclusion. This might come as a surprise since it is not true in the boolean case, but it is due to the fact that z-stability is independent of the degree of conflict-freeness.

Theorem 3 Let $\langle \mathcal{A}, \neq \rangle$ be a FAF and $B \subseteq A \in \mathcal{F}(\mathcal{A})$. Then if B is a z-stable extension, so is A.

For *x*-conflict-freeness, we obtain antimonotonicity: adding more arguments, results in more conflicts, so conflict-freeness decreases.

Theorem 4 Let $\langle \mathcal{A}, \not\rightarrow \rangle$ be a FAF and let $B \subseteq A \in \mathcal{F}(\mathcal{A})$. Then if A is x-conflict-free, so is B.

4 Query Expansion

Query expansion is the process of expanding keyword based queries with more terms, related to the intended meaning of the query, to refine the search results. One option is to use an available thesaurus such as WordNet, expanding the query by adding synonyms[14]. Related terms can also be automatically discovered from the searchable documents though, taking into account statistical information such as co-occurrences of words in documents: the more frequently two terms co-occur, the more they are assumed to be related[15].

In either case, the thesaurus can be thought of as being a (fuzzy) relation R over the set X of terms. Note that R should be reflexive (i.e. every term is obviously related to itself) and symmetric (i.e. if we say that term a is related to term b to a degree of p, obviously we want that term b is related to term a in the same degree). Transitivity is not necessarily required, for reasons explained in [5]. From Xand R, a FAF F can be generated such that the conflict-free and stable extensions of F correspond to optimal queries.

More in particular, we generate the FAF $F = \langle X, \not\rightarrow \rangle$ where $a \not\rightarrow b = \sim (a R b)$. In other words, the arguments of F correspond to terms, and a term a attacks a term b to the extent to which these terms are not related. Note that, due to the symmetry of R, every argument in X attacks each one of its attackers to the same degree.

A set $A \subseteq X$ is then highly conflict-free if every term in A is related to all other terms in A to a high degree, in other words A is a coherent query. Furthermore, A is highly stable if it strongly attacks all external arguments, i.e. a term can only be left out of the query to the extent that it is not related to at least one of the terms in the query. Together these requirements fit our intuition about what an optimally expanded query should look like, i.e. a query that has a high stability (refined with as many terms as possible) and is highly conflictfree (without losing the coherence). The following example illustrates the interplay between the conflict-freeness and the stability requirements.

Table 1: Fuzzy Thesaurus from [5]

	mac	recipe	computer	apple	fruit	pie				
mac	1	0	0.89	0.89	0	0.01				
recipe		1	0.56	0.83	0.66	1				
computer			1	0.94	0.44	0.44				
apple				1	0.83	0.99				
fruit					1	0.44				
pie						1				

Suppose we have a set of terms $X = \{apple, fruit, mac, pie, recipe, computer\}$ and a fuzzy relation R over X, defined as in¹ Ta-

¹This automatically generated toy thesaurus is taken from [5]. The fact that *apple* seems to co-occur more frequently with *mac* than with *fruit* is due to the bias towards computer related terms on the web.

 Table 2: Attack Relation

	mac	recipe	computer	apple	fruit	pie				
mac	0	1	0.11	0.11	1	0.99				
recipe		0	0.44	0.17	0.44	0				
computer			0	0.06	0.66	0.66				
apple				0	0.17	0.01				
fruit					0	0.66				
pie						0				

ble 1 The corresponding attack relation, using the standard negator, is depicted in Table 2. The user query that we aim to expand is $Q_1 = \{apple, pie\}$. Independently of the choice of t-norm in Definition 3, it holds that $Q_1 \neq mac = 0.99, Q_1 \neq recipe = 0.17,$ $Q_1 \neq computer = 0.66, Q_1 \neq apple = 0.01,$ $Q_1 \neq fruit = 0.66$ and $Q_1 \neq pie = 0.01$.

The query Q_1 is highly conflict-free, namely to degree 0.99 when using the standard negator, since the strength of the attack $apple \not\rightarrow pie$ is almost neglectable. On the other hand, Q_1 is only a 0.17-stable extension (independently of the choice of negator and of the choice of implicator in Definition 4). This unstability is due to the term recipe being excluded from the query without there being a good reason to. Indeed, recipe is not strongly attacked by any of the keywords from the query so, in terms of stability, there is no reason not to include it.

However, it is not possible to add more terms to the query while keeping the original high level of conflict-freeness. We therefore lower our standards and look for expanded queries that are 0.8-conflict-free. The only expanded query that satisfies this condition is $Q_2 = \{apple, pie, recipe\}$, which is a 0.66-stable extension.

Adding more terms to query Q_2 results in a significant drop in conflict-freeness. Indeed, the remaining terms mac, computer, and fruit are under an attack with a strength of at least 0.66 by at least one of the terms already in Q_2 , so including yet another term in Q_2 would leave the conflict-freeness at most at 0.44. However, in the setting described in this section, it is also possible to consider weighted queries. For instance, one can verify that, using the minimum t-norm, for $Q_3 = \{apple^1, pie^1, recipe^1, fruit^{0.3}\}$ we obtain that $Q_3 \not\rightarrow mac = 1$, $Q_3 \not\rightarrow recipe = 0.3$, $Q_3 \not\rightarrow computer = 0.66$, $Q_3 \not\rightarrow apple = 0.17$, $Q_3 \not\rightarrow fruit = 0.66$ and $Q_3 \not\rightarrow pie = 0.3$. Hence, Q_3 is 0.7-conflict-free, and, using the residual or the S-implicator associated with the minimum t-norm, Q_3 is still a 0.66-stable extension.

5 FAF and Fuzzy Answer Set Programming

The answer set programming (ASP)paradigm^[2] has gained a lot of popularity in the last years, due to its truly declarative non-monotonic semantics. ASP and fuzzy logic can be be combined into the single framework of fuzzy answer set programming to increase the flexibility and hence the application potential of ASP. A fuzzy answer set program[11], FASP for short, is a finite set of rules² of the form $a \leftarrow \alpha$ with a an *atom* and α a set of *literals*, each of which is either an atom or of the form not a, a an atom, representing the "negation as failure" of a.

A fuzzy interpretation of a FASP P is a mapping $I: \mathcal{B}_P \to \mathcal{L}$ assigning a truth value from the lattice \mathcal{L} to each of the atoms appearing in P. I is extended to literals by defining $I(not \ a) = \sim I(a)$ and to rules $r: \ a \leftarrow \alpha$ using $I(\alpha) = \lambda_{l \in \alpha} I(l)$ and $I(r) = I(\alpha) \rightsquigarrow I(a)$.

A fuzzy *y*-model, $y \in \mathcal{L}$, of P is a fuzzy interpretation I that satisfies $\mathcal{A}_p(P, I) \geq y$ where \mathcal{A}_p is a function (aggregator) that takes as input a program and an interpretation, yielding a value denoting the degree in which I is a model of P, based on the satisfaction of the rules. A common aggregator is $\mathcal{A}_p(P, I) = \inf \{I(r) \mid r \in P\}$, which considers the least fulfilled rule to compute the degree to which I is a model of P. Naturally, \mathcal{A}_p should be increasing whenever the degrees of satisfaction I(r) of the rules in P are increasing.

We show that, under certain conditions, the *y*-stable extensions of a FAF $F = \langle \mathcal{A}, \not\rightarrow \rangle$ cor-

²In the present paper we do not consider negative literals of the form $\neg a$, a an atom. In terms of [11], this makes every interpretation 1-consistent. Also, we do not consider constraints (rules with empty head).

respond to the fuzzy *y*-models of a FASP Π_F that can be constructed from *F* as follows: intuitively, for each argument $a \in \mathcal{A}$, Π_F will contain exactly one rule r_a introducing *a*. The body of r_a contains one literal *not* b_a for each $b \in \mathcal{A}$ such that $(b \not\rightarrow a) > 0_{\mathcal{L}}$. Each literal b_a is itself defined through a single rule³ $b_a \leftarrow b, (b \not\rightarrow a)$.

Definition 5 For a FAF $F = \langle \mathcal{A}, \not\rightarrow \rangle$, the associated FASP Π_F is defined by $\Pi_F = R_a \cup R_b$ where

$$R_a = \{a \leftarrow \{not \ b_a \mid (b \not\rightarrow a > 0_{\mathcal{L}})\} \mid a \in \mathcal{A}\}$$
$$R_b = \{b_a \leftarrow b, (b \not\rightarrow a) \mid (b \not\rightarrow a) > 0_{\mathcal{L}}\}$$

Where we take min as the t-norm for aggregating the body in R_a -rules and the t-norm of the argumentation framework for the R_b rules.

The aggregator \mathcal{A}_{Π_F} is such that all rules from R_b must evaluate to $1_{\mathcal{L}}$, while for other rules, the minimal degree of satisfaction is taken, *i.e.*

$$\mathcal{A}_{\Pi_F}(\Pi_F, I) = \begin{cases} \inf_{r_a \in R_a} (I(r_a)) & \text{iff } (\alpha) \\ 0_{\mathcal{L}} & \text{otherwise} \end{cases}$$

where $(\alpha) \equiv \forall r \in R_b \cdot I(r) = 1_{\mathcal{L}}.$

The condition on $r \in R_b$ guarantees that $I(b_a) = b \downarrow b \not\rightarrow a$ for the implicator in theorem 5.

Note that any argument a that is not attacked will have a corresponding fact rule $a \leftarrow \text{ in } R_a$.

We show that y-stable extensions of F correspond to certain fuzzy y-models of Π_F .

Theorem 5 Let $F = \langle \mathcal{A}, \neq \rangle$ be a FAF. If \rightsquigarrow is a contrapositive implicator, $x = y \Rightarrow$ $x \rightsquigarrow y = 1, \sim$ is an involutive negator and $\sim \sup_{x \in X}(F(x)) = \inf_{x \in X}(\sim F(x))$, then for any $y \in \mathcal{L}$, X is a y-stable extension of F iff $X' = X \cup \{b_a^q \mid q = (X(b) \land (b \not\rightarrow a))\}$ is a y-model of Π_F .

Note that the above equivalence concerns FASP *models*, not answer sets where answer sets are models that are free from

"assumptions" [11] and, in a sense, minimal models. However, unlike with answer set programming, minimality is not a desirable criterion for argumentation frameworks as, intuitively, one attempts to maximize the set of arguments that can be defended against attacks. The only limit on the size of an extension is the desire for conflict-freeness (see also Theorems 3 and 4) which can be imposed separately, as is done for y-models in [11].

6 Concluding Remarks

We've motivated and introduced fuzzy argumentation frameworks as a conservative extension of the classical notion from [6] which allows for more fine-grained knowledge representation in terms of doubts (some degree of conflict may be tolerated) and strength of attacks, both absolute and with respect to the degree of acceptance of the attacker and the attacked. The strong connection with Fuzzy Answer Set Programming[11] also provides a practical implementation using DLVHEX[10]. In future work, we intend to extend our approach to (applications of) bipolar argumentation frameworks [3, 8, 12, 1]. We will also investigate dialogical semantics, see e.g. [13], for fuzzy argumentation frameworks.

Acknowledgements

Jeroen Janssen is supported by the Fund for Scientific Research - Flanders (FWO-Vlaanderen).

References

- L. Amgoud, C. Cayrol, and M.-C. Lagasquie-Schiex. On the bipolarity in argumentation frameworks. In Proceedings of the 10th International Workshop on Non-Monotonic Reasoning, NMR'2004, pages 1–9, 2004.
- [2] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, 2003.
- [3] C. Cayrol and M. C. Lagasquie-Schiex. On the acceptability of arguments in bipolar argumentation frameworks. In

³Although program rules in [11] syntactically may not contain constants from \mathcal{L} , the semantics in [11] easily supports such an extension using the "fuzzy input literals" mechanism (Section 4 in [11]).

Proceedings of ECSQARU 2005, volume 3571 of Lecture Notes in Artificial Intelligence, pages 378–389. Springer Verlag, 2005.

- [4] C. I. Chesñevar, G. R. Simari, T. Alsinet, and L. Godo. A logic programming framework for possibilistic argumentation with vague knowledge. In AUAI '04: Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages 76–84, Arlington, Virginia, United States, 2004. AUAI Press.
- [5] M. De Cock, C. Cornelis, and E. Kerre. Fuzzy rough sets: the forgotten step. *IEEE Transactions on Fuzzy Systems*, 15(1):121–130, 2007.
- [6] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. *Artificial Intelligence*, 77(2):321–358, 1995.
- [7] T. Gordon and N. Karacapilidis. The zeno argumentation framework. In Proceedings of the biannual International Conference on Formal and Applied Practical Reasoning (FAPR) workshop, 1996.
- [8] N. Karacapilidis and D. Papadias. Computer supported argumentation and collaborative decision making: the hermes system. *Information systems*, 26(4):259– 277, 2001.
- [9] J. Kohlas, D. Berzati, and R. Haenni. Probabilistic argumentation systems and abduction. Annals of Mathematics and Artificial Intelligence, 34(1-3):177–195, 2002.
- [10] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir. Computing fuzzy answer sets using DLVHEX. In *International Conference on Logic Programming*, 2007.
- [11] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir. An introduction to fuzzy answer set programming. Annals of Mathematics and Artificial Intelligence, 50(3-4):363–388, 2007.

- [12] B. Verheij. On the existence and multiplicity of extension in dialectical argumentation. In S. Benferhat and E. Giunchiglia, editors, *Proceedings of the 9th International Workshop on Non-Monotonic Reasoning (NMR2002)*, pages 416–425, 2002.
- [13] D. Vermeir and H. Jakobovits. Dialectic semantics for argumentation frameworks. In Proceedings of the Seventh International Conference on Artificial Intelligence and Law, pages 53-62. Association for Computing Machinery, june 1999.
- [14] E. M. Voorhees. Query expansion using lexical-semantic relations. In Proceedings of ACM SIGIR 1994 (17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval), pages 61–69, 1994.
- [15] J. Xu and W. B. Croft. Query expansion using local and global document analysis. In Proceedings of ACM SIGIR 1996 (19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval), pages 4–11, 1996.