
Combining Tabulation and Thresholding Techniques
for Executing Multi-Adjoint Logic Programs

P. Julián G. Moreno
Univ. Castilla-La Mancha∗

Dept. Inf. Technologies & Comp. Systems
Pascual.Julian@uclm.es
Gines.Moreno@uclm.es

J. Medina M. Ojeda-Aciego
Universidad de Málaga†

Dept. Applied Mathematics
jmedina@ctima.uma.es
aciego@ctima.uma.es

Abstract

Multi-adjoint logic programming repre-
sents an extremely flexible attempt for
fuzzifying logic programming, where the
classical SLD-resolution principle has
been extended to cope with imperfect
information. In this paper we propose
an enhanced tabulation-based query an-
swering procedure, which avoids the
generation of useless computations via
thresholding techniques.

1 Introduction

Multi-adjoint logic programming [9–11] is an
extremely flexible framework which combines
fuzzy logic and logic programming. Given a
multi-adjoint logic program, queries are eval-
uated in two separate computational phases.
Firstly, an operational phase in which admis-
sible steps (a generalization of the classical
modus ponens inference rule) are systemati-
cally applied by a backward reasoning proce-
dure, in a similar way to classical resolution
steps in pure logic programming; until an ex-
pression is obtained in which all atoms have
been evaluated. Then, this last expression is
interpreted in the underlying lattice during
an interpretive phase [6], providing the com-
puted answer for the given query.

In [2] a non-deterministic tabulation goal-
oriented proof procedure was introduced for

∗ Partially supported by FEDER and the Spanish
Science and Education Ministry (MEC) under grants
TIN 2004-07943-C04-03 and TIN 2007-65749.

† Partially supported by FEDER and MEC under
grant TIN 2006-15455-C03-01 and by Junta de An-
dalućıa under grant P06-FQM-02049.

residuated (a particular case of multi-adjoint)
logic programs over complete lattices. The
underlying idea of tabulation is, essentially,
that atoms of selected tabled predicates as
well as their answers are stored in a table.
When an identical atom is recursively called,
the selected atom is not resolved against pro-
gram clauses; instead, all corresponding an-
swers computed so far are looked up in the
table and the associated answer substitutions
are applied to the atom. The process is re-
peated for all subsequent computed answer
substitutions corresponding to the atom.

In [7] a fuzzy partial evaluation framework
was introduced for specializing multi-adjoint
logic programs. Moreover, it was pointed out
that if the proposed partial evaluation process
is combined with thresholding techniques, the
following benefits can be obtained:

• The unfolding tree1 consumes less computa-
tional resources by efficiently pruning unnec-
essary branches of the tree and, hence, dras-
tically reducing its size.

• Those derivation sequences performed at ex-
ecution time, need less computation steps to
reach computed answers.

In this paper, we show how the essence of
thresholding can be also embedded into a
tabulation-based query answering procedure
and reinforcing the benefits of both methods
in a unified framework.

The structure of the paper is as follows. In
Section 2 we summarize the main features of

1An incomplete search tree used during the partial
evaluation process.

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 505–512

Torremolinos (Málaga), June 22–27, 2008

multi-adjoint logic programming. Section 3
adapts to the multi-adjoint logic framework
the original tabulation procedure for residu-
ated logic programs of [2]. Inspired by [7], the
resulting method is refined by using thresh-
olding techniques in Section 4. Finally, in Sec-
tion 5 we draw some conclusions and discuss
some lines of future work.

2 Multi-Adjoint Logic Programs

This section is a short summary of the main
features of multi-adjoint languages. The
reader is referred to [9,11] for a complete for-
mulation.

We will consider a language, L, containing
propositional variables, constants, several (ar-
bitrary) connectives to increase language ex-
pressiveness. In our fuzzy setting, we use im-
plication connectives (←1,←2, . . . ,←m) to-
gether with a number of aggregators, which
are only required to be monotonic. They will
be used to combine/propagate truth values
through the rules. The general definition of
aggregation operators subsumes conjunctive
operators (denoted by &1, &2, . . . , &k), dis-
junctive operators (∨1,∨2, . . . ,∨l), and aver-
age and hybrid operators (usually denoted by
@1, @2, . . . , @n).

Aggregators are useful to describe/specify
user preferences: when interpreted as a truth
function they may be considered, for instance,
as an arithmetic mean or a weighted sum. For
example, if an aggregator @ is interpreted as
[[@]](x, y, z) = (3x + 2y + z)/6, we are giv-
ing the highest preference to the first argu-
ment, then to the second, being the third ar-
gument the least significant. By definition,
the truth function for an n-ary aggregator
[[@]] : Ln → L is required to be monotone and
fulfill [[@]](⊤, . . . ,⊤) = ⊤, [[@]](⊥, . . . ,⊥) = ⊥.

The language L will be interpreted on a multi-
adjoint lattice, 〈L,�,←1, &1, . . . ,←n, &n〉,
which is a complete lattice equipped with
a collection of adjoint pairs 〈←i, &i〉, where
each &i is a conjunctor2 intended to provide
a modus ponens-rule wrt ←i. In general, the

2An increasing operator satisfying boundary con-
ditions with the top element.

set of truth values L may be the carrier of any
complete bounded lattice but, for simplicity,
in the examples of this work we shall select L
as the set of real numbers in the interval [0, 1].

A rule is a formula A ←i B, where A is an
propositional symbol (usually called the head)
and B (which is called the body) is a formula
built from propositional symbols B1, . . . , Bn

(n ≥ 0), truth values of L and conjunctions,
disjunctions and aggregations. Rules with an
empty body are called facts. A goal is a body
submitted as a query to the system.

Roughly speaking, a multi-adjoint logic pro-
gram is a set of pairs 〈R; α〉, where R is a rule
and α is a value of L, which might express the
confidence which the user of the system has in
the truth of the rule R. Note that the truth
degrees in a given program are expected to
be assigned by an expert. We will often write
“R with α” instead of 〈R; α〉.

Procedural Semantics

The procedural semantics of the multi–adjoint
logic language L can be thought as an op-
erational phase followed by an interpretive
one [6].

In the following, C[A] denotes a formula
where A is a sub-expression (usually a propo-
sitional symbol) which occurs in the (possibly
empty) context C[], whereas C[A/A′] means
the replacement of A by A′ in context C[]. In
the following definition, we always consider
that A is the selected propositional symbol in
goal Q.

Definition 2.1 (Admissible Steps) Let Q
be a goal, which is considered as a state, and
let G be the set of goals. Given a program P,
an admissible computation is formalized as a
state transition system, whose transition rela-
tion →AS ⊆ (G × G) is the smallest relation
satisfying the following admissible rules:

1. Q[A]→ASQ[A/v&iB] if there is a rule
〈A←iB; v〉 in P and B is not empty.

2. Q[A]→ASQ[A/v]) if there is a fact
〈A←i; v〉 in P.

506 Proceedings of IPMU’08

3. Q[A]→ASQ[A/⊥] if there is no rule in P
whose head is A.

Note that the third case is introduced to
cope with (possible) unsuccessful admissible
derivations. We shall use the symbols →AS1,
→AS2 and →AS3 to distinguish between com-
putation steps performed by applying one of
the specific admissible rules. Also, the appli-
cation of a concrete program rule on a step
will be annotated as a superscript of the→AS

symbol, when it was considered relevant.

Definition 2.2 Let P be a program and let Q
be a goal. An admissible derivation is a se-
quence Q→∗

AS Q′. When Q′ is a formula not
containing propositional symbols it is called an
admissible computed answer (a.c.a.) for that
derivation.

Example 2.3 Let P be the following program
and let ([0, 1],≤) be the lattice where ≤ is the
usual order on real numbers.

R1 : p←P q &G r with 0.8
R2 : q←P s with 0.7
R3 : q←L r with 0.8
R4 : r← with 0.7
R5 : s← with 0.9

where the labels P, G and L stand for Product,
Gödel and Lukasiewicz connectives.

In the following admissible derivation for the
program P and the goal ←p&Gr, we under-
line the selected expression in each admissible
step:

p&Gr→AS1
R1

(0.8&P(q&Gr))&Gr→AS1
R2

(0.8&P((0.7&Ps)&Gr))&Gr→AS2
R5

(0.8&P((0.7&P0.9)&Gr))&Gr→AS2
R4

(0.8&P((0.7&P0.9)&G0.7))&Gr→AS2
R4

(0.8&P((0.7&P0.9)&G0.7))&G0.7

The a.c.a. for this admissible derivation is:
(0.8&P((0.7&P0.9)&G0.7))&G0.7.

If we exploit all propositional symbols of a
goal, by applying admissible steps as much as
needed during the operational phase, then it
becomes a formula with no propositional sym-
bols which can then be directly interpreted in

the multi–adjoint lattice L. We recall from [6]
the formalization of this process in terms of
the following definition.

Definition 2.4 (Interpretive Step) Let P
be a program and Q a goal. We formalize the
notion of interpretive computation as a state
transition system, whose transition relation
→IS⊆ (G×G) is defined as the least one satis-
fying: Q[@(r1, r2)]→IS Q[@(r1,r2)/[[@]](r1,r2)],
where [[@]] is the truth function of connec-
tive @ in the lattice 〈L,�〉 associated to P.

Definition 2.5 Let P be a program and Q
an a.c.a., that is, Q is a goal not contain-
ing propositional symbols. An interpretive
derivation is a sequence Q →∗

IS Q′. When
Q′ = r ∈ L, being 〈L,�〉 the lattice associated
to P, the value r is called a fuzzy computed
answer (f.c.a.) for that derivation.

Example 2.6 We complete the previous
derivation of Example 2.3 by executing the
necessary interpretive steps to obtain the final
fuzzy computed answer, 0.504, with respect to
lattice ([0, 1],≤).

(0.8&P((0.7&P0.9)&G0.7))&G0.7→IS

(0.8&P(0.63&G0.7))&G0.7→IS

(0.8&P0.63)&G0.7→IS

0.504&G0.7→IS

0.504

In this section we have just seen a procedural
semantics which provides a means to execute
multi-adjoint logic programs. However, there
exist a more efficient alternative for obtain-
ing fuzzy computed answers for a given query
as occurs with the following tabulation-based
proof procedure.

3 The Tabulation Proof Procedure

In what follows, we adapt the original tabu-
lation procedure for propositional residuated
logic programs described in [2] to the gen-
eral case of multi-adjoint logic programs [9].
There are two major problems to address: ter-
mination and efficiency. On the one hand,
the TP operator is bottom-up but not goal-
oriented. Furthermore, the bodies of rules are

Proceedings of IPMU’08 507

all recomputed in every step. On the other
hand, the usual implementations of Fuzzy
Logic Programming languages (e.g. [12]) are
goal-oriented, but inherit the problems of
non-termination and recomputation of goals.
In order to overcome these problems, the
tabulation technique has been proposed in
the deductive databases and logic program-
ming communities. Other implementation
techniques have been proposed for dealing
with uncertainty in logic programming, for
instance translation into Disjunctive Stable
Models [8], but rely on the properties of spe-
cific truth-value domains.

In this section we present a general tabula-
tion procedure for propositional multi-adjoint
logic programs. The datatype we will use for
the description of the method is that of a for-
est, that is, a finite set of trees. Each one of
these trees has a root labeled with a propo-
sitional symbol together with a truth-value
from the underlying lattice (called the cur-
rent value for the tabulated symbol); the rest
of the nodes of each of these trees are labeled
with an “extended” formula in which some of
the propositional symbols have been substi-
tuted by its corresponding value. For the de-
scription of the adaptation of the tabulation
procedure to the framework of multi-adjoint
logic programming, we will assume a program
P together with a query ?A. The purpose of
the computational procedure is to give (if pos-
sible) the greatest truth-value for A that can
be inferred from the information in the pro-
gram P.

3.1 Operations for Tabulation

For the sake of clarity in the presentation, we
will introduce the following notation: Given
a propositional symbol A, we will denote by
P(A) the set of rules in P which have head A.
The tabulation procedure requires four basic
operations: Create New Tree, New Subgoal,
Value Update, and Answer Return. The first
operation creates a tree for the first invoca-
tion of a given goal. New Subgoal is applied
whenever a propositional variable in the body
of a rule is found without a corresponding
tree in the forest, and resorts to the previ-

ous operation. Value update is used to prop-
agate the truth-values of answers to the root
of the corresponding tree. Finally, answer re-
turn substitutes a propositional variable by
the current truth-value in the corresponding
tree. We now describe formally the opera-
tions:

Rule 1: Create New Tree.

Given a propositional symbol A, assume
P(A) = {〈A←jBj ; ϑj〉 | j = 1, . . . ,m} and
construct the tree below, and append it to
the current forest. If the forest did not exist,
then generate a singleton list with the tree.

A : ⊥

ϑ1&1B1 ϑ2&2B2 . . . ϑm&mBm

Rule 2: New Subgoal.

Select a non-tabulated propositional symbol
C occurring in a leaf of some tree (this means
that there is no tree in the forest with the root
node labeled with C), then create a new tree
as indicated in Rule 1, and append it to the
forest.

Rule 3: Value Update.

If a tree, rooted at C : r, has a leaf B with
no propositional symbols, and B→IS

∗s, where
s ∈ L, then update the current value of
the propositional symbol C by the value of
supL(r, s).

Furthermore, once the tabulated truth-value
of the tree rooted by C has been modi-
fied, for all the occurrences of C in a non-
leaf node B[. . . , C, . . .] such as the one in
the left of the figure below then, update the
whole branch substituting the constant u by
supL(u, t) (where t is the last tabulated truth-
value for C—i.e., supL(r, s)—) as in the right
of the figure.

...

B[. . . , C, . . .]

B[. . . , u, . . .]
...

...

B[. . . , C, . . .]

B[. . . , supL(u, t), . . .]
...

508 Proceedings of IPMU’08

Rule 4: Answer Return.

Select in any leaf a propositional symbol C
which is tabulated, and assume that its cur-
rent value is r; then add a new successor node
as shown below:

B[. . . , C, . . .]

B[. . . , r, . . .]

Once we have presented the rules to be ap-
plied in the procedure, it is worth to recall
some facts:

1. The only nodes with several immediate
successors are root nodes; the successors
correspond to the different rules whose
head matches the label of the root node.

2. The leaf of each branch is a conjunction
of the truth value of the rule which deter-
mined the branch, with an instantiation
of the body of the rule.

3. The extension of a tree is done only by
Rule 4, which applies only to leaves and
extends the branch with one new node.

4. The only rule which changes the values
of the roots of the trees in the forest is
Rule 3 which, moreover, might update
the nodes of existing branches.

3.2 A non-deterministic procedure
for tabulation

Now, we can state the general non-
deterministic procedure for calculating the
answer to a given query by using a tabulation
technique in terms of the previous rules.

Initial step Create the initial forest with the
create new tree rule, applied to the query.

Next steps Non-deterministically select a
propositional symbol and apply one of
the rules 2, 3, or 4.

Following the steps in [3] it is not difficult to
show both that the order of application of the
rules is irrelevant, and that the algorithm ter-
minates under very general hypotheses.

(i) p : ⊥ → 0.54

(ii) 0.6 &P q

(vi) 0.6 &P 0.9

(vii) 0.54

(iii) 0.5 &P r

(xi) 0.5 &P 0.8

(xii) 0.4

(iv) q : ⊥ → 0.9

(v) 0.9

(viii) r : ⊥ → 0.8

(ix) 0.8 (x) 0.9 &L p

(xiii) 0.9 &L 0.54

(xiv) 0.44

Figure 1: Example forest for query p.

Example 3.1 Consider the following pro-
gram with mutual recursion and query p:

R1 : p ←P q with 0.6
R2 : p ←P r with 0.5
R3 : q ← with 0.9
R4 : r ← with 0.8
R5 : r ←L p with 0.9

Firstly, the initial tree consisting of nodes
(i), (ii), (iii) is generated, see Figure 1. Then
New Subgoal is applied on q, a new tree is gen-
erated with nodes (iv) and (v), and its current
value is directly updated to 0.9.

By using this value, Answer Return extends
the initial tree with node (vi). Now Value
Update generates node (vii) and updates the
current value of p to 0.54.

Then, New Subgoal is applied on r, and a new
tree is generated with nodes (viii), (ix) and
(x). Value Update increases the current value
to 0.8.

By using this value, Answer Return extends
the initial tree with node (ix). Now Value Up-
date generates node (xii). The current value
is not updated since its value is greater than
the newly computed one.

Finally, Answer Return can be applied again
on propositional symbol p on node (x), gen-
erating node (xiii). A further application of
Value Update generates node (xiv) and the

Proceedings of IPMU’08 509

forest is terminated, as no rule performs any
modification.

4 Combining Tabulation with
Thresholding

In this section we will focus on the concept
of thresholding, initially proposed in [7] for
safely pruning branches when generating un-
folding trees. The original method was firstly
introduced inside the core of a fuzzy partial
evaluation framework useful not only for spe-
cializing fuzzy programs, but also for gener-
ating reductants [11].

Fortunately, if queries are evaluated following
the tabulation method proposed before, re-
ductants are not required to be included in
a program (which obviously would increase
both the size and execution time of the final
completed program) because their effects are
efficiently achieved by the direct use of Rule 3:
Value Update, as the reader can easily check.

Anyway, even when reductants are not
mandatory in the tabulation framework we
have just described, in [7] a refined notion
of reductant (called PE-reductant) was sup-
ported on the concept of partial evaluation
with thresholding, and it is important to re-
cast some useful ideas from there. Partial
evaluation (PE) [4] is an automatic program
transformation technique aiming at the opti-
mization of a program with respect to parts of
its input: hence, it is also known as program
specialization. It is expected that the partially
evaluated (or residual) program could be ex-
ecuted more efficiently than the original pro-
gram. This is because the residual program is
able to save some computations, at execution
time, that were done only once at PE time.
To fulfill this goal, PE uses symbolic compu-
tation as well as some techniques provided by
the field of program transformation [1], spe-
cially the so called unfolding transformation
(essentially, the replacement of a call by its
definition body).

Following this path, the idea is to unfold
goals, as much as possible, using the no-
tion of unfolding rule developed in [5, 6] for
multi-adjoint logic programs, in order to ob-

tain an optimized version of the original pro-
gram. In [7], the construction of such “un-
folding trees” was improved by pruning some
useless branches or, more exactly, by avoiding
the use (during unfolding) of those program
rules whose weights do not surpass a given
“threshold” value. For this enhanced defini-
tion of unfolding tree we have that:

1. Nodes contain information about an up-
per bound of the truth degree associated
to their associated goal;

2. A set of threshold values is dynamically
set to limit the generation of useless
nodes.

This last feature provides great chances to re-
duce the unfolding tree shape, by stopping un-
folding of those nodes whose truth degree up-
per bound component falls down a threshold
value α.

4.1 Rules for tabulation with
thresholding

In what follows, we will see that the general
idea of thresholding can be combined with
the tabulation technique shown in the pre-
vious section, in order to provide more ef-
ficient query answering procedures. Specifi-
cally, we will discard the previous descriptions
of Rule 1: Create New Tree and Rule 2: New
Subgoal, and instead of them, we propose new
definitions:

Rule 1: Root Expansion.

Given a tree with root A : r in the forest, and a
program rule 〈A←lB; ϑ〉 not consumed before,
such that ϑ � r, append the new child ϑ&lB
to the root of the tree.

Rule 2: New Subgoal/Tree.

Select a non-tabulated propositional sym-
bol C occurring in a leaf of some tree (this
means that there is no tree in the forest with
the root node labeled with C), then create a
new tree with a single node, the root C : ⊥,
and append it to the forest.

510 Proceedings of IPMU’08

There are several remarks to do regarding the
new definitions of rules 1 and 2. Firstly, no-
tice that the creation of new trees is now per-
formed in rule 2, instead of rule 1, which jus-
tifies its new name. On the other hand, the
new rule 1, does not create a new tree by ex-
panding (one level) all the possible children
of the root. Instead of it, the Root Expansion
rule has a lazy behaviour: each time it is fired,
it expands the tree by generating at most one
new leaf, if and only if this new leaf might con-
tribute in further steps to reach greater truth
degrees than the current one heading the tree.
In this sense, the truth degree attached to the
root of the tree, acts as a threshold for de-
ciding which program rules can be used for
generating new nodes in the tree. Note also
that this threshold is dynamically updated by
rule Value Update: the more it grows, the less
chances for Root Expansion to create new chil-
dren of the root.

The new non-deterministic procedure for tab-
ulation with thresholding is as follows:

Initial step Create an initial tree by using
the rule new subgoal/tree on the query.

Next steps Non-deterministically select a
propositional symbol and apply one of
the rules 1, 2, 3, or 4.

In order to show the correctness of the new
tabulation procedure, we have just to note
that, in the Root Expansion rule, when we
generate a leaf ϑ&lB for a root node A : r,
the value generated by the leaf will always be
less than ϑ, independently of the truth degree
eventually computed for the subgoal B. So,
we can safely discard at run-time the use of
those program rules (or facts) whose weight ϑ
falls down the threshold value r. Otherwise,
we would generate useless nodes which never
would increase the truth degree of the root.

4.2 A deterministic procedure for
tabulation with thresholding

The main goal of thresholding is to reduce the
number and size of trees in the forest. This
way, although the order of application of the

(i) p : ⊥ → 0.54

(ii) 0.6 &P q

(v) 0.6 &P 0.9

(vi) 0.54

(iii) q : ⊥ → 0.9

(iv) 0.9

Figure 2: Example threshold forest for p

rules is irrelevant because they generate the
same solutions, the refinements introduced by
thresholding might produce different forests
depending on how and when rules are applied.
In this section we provide some heuristics in
order to minimize as much as possible the
complexity of the generated forest.

To begin with, we assume now that the pro-
cedure starts with a forest containing a single
tree with root A : ⊥, being A the propositional
query we plan to answer.

Obviously, the Root Expansion rule has a cru-
cial role in this sense: the more lazily it is
applied, the less chances it has to generate
new nodes. So, we assign it the lowest pri-
ority in our deterministic procedure. For a
similar reason, it is also important to increase
the threshold at the root of a tree as fast as
possible. In order to do this, we propose:

1. Assign maximum priority to Value Up-
date and Answer Return.

2. When program rules are consumed by
Root Expansion in a top-down way, we
assume that facts textually appear be-
fore rules with body, and program rules
are distributed in a descending ordering
w.r.t. their weights, whenever possible.

Notice for instance, the distribution of the
rules in Example 3.1, which accomplish with
the ordering we have just commented. The
proposed strategy applied to the example
avoids the construction of a number of nodes,
see Figure 2, which evidences the benefits of
combining tabulation with thresholding.

The answer to the query example with this

Proceedings of IPMU’08 511

optimized procedure is as follows: the initial
tree consisting of nodes (i), (ii) is generated.
Then New Subgoal is applied on q, a new tree
is generated with nodes (iii) and (iv), and its
current value is directly updated to 0.9.

By using this value, Answer Return extends
the initial tree with node (v). Now Value Up-
date generates node (vi) and updates the cur-
rent value of p to 0.54.

Now, Root Expansion prevents using the rule
with body r, since its weight is smaller than
the currently computed for p. Hence, the for-
est is terminated.

5 Conclusions and Further
Research

In this paper we where concerned with effi-
cient query answering procedures for proposi-
tional multi-adjoint logic programs. We have
shown that, by using a fuzzy variant of tabu-
lation (specially tailored for the multi-adjoint
logic approach) it is possible to avoid the re-
peated evaluation of redundant goals. More-
over, in the same fuzzy setting, we have also
combined tabulation with thresholding, thus
safely avoiding other kind of non-redundant,
but useless computations.

Nowadays, we are working in a more general
version of the proposed method, in order to
lift our results to the first order case. For the
future, beyond query answering procedures,
we also plan to study the role that tabula-
tion combined with thresholding might play
in program transformation techniques such as
partial evaluation and fold/unfold, in order
to efficiently specialize and optimize multi-
adjoint logic programs.

References

[1] R.M. Burstall and J. Darlington. A Trans-
formation System for Developing Recursive
Programs. Journal of the ACM, 24(1):44–67,
1977.

[2] C.V. Damásio, J. Medina, and M. Ojeda-
Aciego. A tabulation proof procedure for
residuated logic programming. In Proc. of
the European Conference on Artificial Intelli-

gence, Frontiers in Artificial Intelligence and
Applications, 110:808–812, 2004.

[3] C.V. Damásio, J. Medina, and M. Ojeda-
Aciego. Termination of logic programs
with imperfect information: applications and
query procedure. Journal of Applied Logic,
5(3):435–458, 2007.

[4] N.D. Jones, C.K. Gomard, and P. Sestoft.
Partial Evaluation and Automatic Program
Generation. Prentice-Hall, Englewood Cliffs,
NJ, 1993.

[5] P. Julián, G. Moreno, and J. Penabad. On
Fuzzy Unfolding. A Multi-adjoint Approach.
Fuzzy Sets and Systems, Elsevier, 154:16–33,
2005.

[6] P. Julián, G. Moreno, and J. Penabad. Op-
erational/Interpretive Unfolding of Multi-
adjoint Logic Programs. Journal of Universal
Computer Science, 12(11):1679–1699, 2006.

[7] P. Julián, G. Moreno, and J. Penabad. Effi-
cient reductants calculi using partial evalua-
tion techniques with thresholding. Electronic
Notes in Theoretical Computer Science, El-
sevier Science, 188:77–90, 2007.

[8] T. Lukasiewicz. Fixpoint characterizations
for many-valued disjunctive logic programs
with probabilistic semantics. In Logic Progr.
and Non-Monotonic Reasoning, LPNMR’01,
volume 2173 of LNAI, pages 336–350, 2001.

[9] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
Multi-adjoint logic programming with con-
tinuous semantics. Proc of Logic Program-
ming and Non-Monotonic Reasoning, LP-
NMR’01, Springer-Verlag, Lecture Notes in
Artificial Intelligence, 2173:351–364, 2001.

[10] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
A procedural semantics for multi-adjoint
logic programing. Progress in Artificial Intel-
ligence, EPIA’01, Springer-Verlag, Lecture
Notes in Artificial Intelligence, 2258(1):290–
297, 2001.

[11] J. Medina, M. Ojeda-Aciego, and P. Vojtáš.
Similarity-based Unification: a multi-adjoint
approach. Fuzzy Sets and Systems, 146:43–
62, 2004.

[12] P. Vojtáš and L. Pauĺık. Soundness and
completeness of non-classical extended SLD-
resolution. In R. Dyckhoff et al, editor, Proc.
ELP’96 Leipzig, pages 289–301. LNCS 1050,
Springer Verlag, 1996.

512 Proceedings of IPMU’08

