
Using FLOPER for Running/Debugging Fuzzy Logic Programs

Pedro J. Morcillo and Gines Moreno∗

Department of Computing Systems
University of Castilla-La Mancha

02071, Albacete (Spain)
{pmorcillo, gmoreno}@dsi.uclm.es

Abstract

Fuzzy Logic Programming is an in-
teresting and still growing research
area that agglutinates the efforts
for introducing fuzzy logic into logic
programming, in order to incorpo-
rate more expressive resources on
such languages for dealing with un-
certainty and approximated reason-
ing. The multi-adjoint logic pro-
gramming approach represents a re-
cent and extremely flexible fuzzy
logic paradigm for which, unfortu-
nately, we have not found practical
tools implemented so far. In this
work we describe a prototype sys-
tem, the FLOPER tool, which is
able to directly translate fuzzy logic
programs into Prolog code in or-
der to safely execute these final pro-
grams inside any standard Prolog in-
terpreter in a completely transpar-
ent way for the final user. The sys-
tem also generates a low-level rep-
resentation of the fuzzy code offer-
ing debugging (tracing) capabilities
and opening the door to the design
of more sophisticated program ma-
nipulation tasks such as program op-
timization, program specialization
and so on.

∗This work has been partially supported by the
EU (FEDER), and the Spanish Science and Education
Ministry (MEC) under grants TIN 2004-07943-C04-03
and TIN 2007-65749.

1 Introduction

Logic Programming (LP) [9] has been widely
used for problem solving and knowledge rep-
resentation in the past. However, traditional
LP languages do not incorporate techniques
or constructs to treat explicitly with uncer-
tainty and approximated reasoning. To over-
come this situation, during the last decades
several fuzzy logic programming systems have
been developed where the classical inference
mechanism of SLD–Resolution is replaced
with a fuzzy variant able to handle partial
truth and to reason with uncertainty. Most
of these systems implement the fuzzy resolu-
tion principle introduced by Lee in [8], such
as languages Prolog-Elf [4] and Fril [2].

Following this line, in the original version of
[12] as well as in the more recent multi-adjoint
logic approach of [11], a fuzzy logic program is
conceived as a set of weighted formulas, where
the truth degree of each clause is explicitly an-
notated. A goal is a query to the system, i.e.,
a set of atoms linked with connectives called
aggregators. A state is a pair 〈Q, σ〉 where
Q is a goal and σ a substitution (initially,
the identity substitution). States are evalu-
ated in two separate computational phases.
Firstly, admissible steps (a generalization of
the classical modus ponens inference rule) are
systematically applied by a backward reason-
ing procedure in a similar way to classical res-
olution steps in pure logic programming, thus
returning a computed substitution together
with an expression where all atoms have been
exploited. This last expression is then inter-
preted under a given lattice, hence returning

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 481–488

Torremolinos (Málaga), June 22–27, 2008



a pair 〈truth degree; substitution〉 which is the
fuzzy counterpart of the classical notion of
computed answer traditionally used in LP.

The main contribution of this paper is the
detailed description of the FLOPER system
(see a preliminary introduction in [1]), a
“Fuzzy LOgic Programming Environment for
Research” that we have developed in our re-
search group and which is freely available in:
http://www.dsi.uclm.es/investigacion/
dect/FLOPERpage.htm. Nowadays, the tool
provides facilities for executing as well as
for debugging (by generating declarative
traces) such kind of fuzzy programs, thus
fulfilling the gap we have detected in the
area. Our implementation methods are based
on two different, almost antagonistic ways
(regarding simplicity and precision features),
for generating pure Prolog code, with some
correspondences with other previous at-
tempts described in the specialized literature,
specially the ones detailed in [3] and [10].

The outline of this work is as follows. In Sec-
tion 2 we describe the main features of multi-
adjoint logic programming, both syntax and
procedural semantics. Next, in Section 3 we
propose an elegant method for “compiling”
fuzzy programs into standard Prolog code.
Sections 4 and 5 explain, respectively, how to
execute and debug such programs inside our
FLOPER tool. The benefits of our approach
are highlighted by contrasting it with some re-
lated works in Section 6. Finally, in Section 7
we conclude with some lines of future work.

2 Multi-Adjoint Logic Programs

In what follows, we present a short sum-
mary of the main features of our language
(we refer the reader to [11] for a complete
formulation). We work with a first or-
der language, L, containing variables, func-
tion symbols (for building data structures),
predicate symbols, constants, quantifiers (∀
and ∃), and several (arbitrary) connectives
to increase language expressiveness. In our
fuzzy setting, we use implication connectives
(←1,←2, . . . ,←m) and also other connectives
which are grouped under the name of “ag-

gregators” or “aggregation operators”. They
are used to combine/propagate truth values
through the rules. The general definition of
aggregation operators subsumes conjunctive
operators (denoted by &1,&2, . . . ,&k), dis-
junctive operators (∨1,∨2, . . . ,∨l), and av-
erage and hybrid operators (usually denoted
by @1,@2, . . . ,@n). Although the connectives
&i, ∨i and @i are binary operators, we usu-
ally generalize them as functions with an ar-
bitrary number of arguments. In the follow-
ing, we often write @(x1, . . . , xn) instead of
@(x1,@(x2, . . . ,@(xn−1, xn) . . .)). By defini-
tion, the truth function for an n-ary aggre-
gation operator [[@]] : Ln → L is required to
be monotone and fulfills [[@]](>, . . . ,>) = >,
[[@]](⊥, . . . ,⊥) = ⊥. Additionally, our lan-
guage L contains the values of a multi-adjoint
lattice, 〈L,�,←1,&1, . . . ,←n,&n〉, equipped
with a collection of adjoint pairs 〈←i,&i〉,
where each &i is a conjunctor intended to the
evaluation of modus ponens. In general, the
set of truth values L may be the carrier of any
complete bounded lattice but, for simplicity,
in this paper we shall select L as the set of
real numbers in the interval [0, 1].

A rule is a formula A ←i B, where A is an
atomic formula (usually called the head) and
B (which is called the body) is a formula built
from atomic formulas B1, . . . , Bn (n ≥ 0 ),
truth values of L and conjunctions, disjunc-
tions and aggregations. Rules with an empty
body are called facts. A goal is a body sub-
mitted as a query to the system. Variables
in a rule are assumed to be governed by uni-
versal quantifiers. Roughly speaking, a multi-
adjoint logic program is a set of pairs 〈R; v〉,
where R is a rule and v is a truth degree (a
value of L) expressing the confidence which
the user of the system has in the truth of the
rule R. Often, we will write “R with v” in-
stead of 〈R; v〉.
In order to describe the procedural semantics
of the multi–adjoint logic language, in the fol-
lowing we denote by C[A] a formula where A
is a sub-expression (usually an atom) which
occurs in the –possibly empty– context C[]
whereas C[A/A′] means the replacement of A
by A′ in context C[]. Moreover, Var(s) de-

482 Proceedings of IPMU’08



notes the set of distinct variables occurring
in the syntactic object s, θ[Var(s)] refers to
the substitution obtained from θ by restrict-
ing its domain to Var(s) and mgu(E) denotes
the most general unifier of an equation set E.
In the following definition, we always consider
that A is the selected atom in goal Q.

Definition 2.1 (Admissible Steps) Let Q
be a goal and let σ be a substitution. The
pair 〈Q;σ〉 is a state and we denote by E
the set of states. Given a program P, an ad-
missible computation is formalized as a state
transition system, whose transition relation
→AS ⊆ (E × E) is the smallest relation sat-
isfying the following admissible rules:

AS1) 〈Q[A];σ〉→AS〈(Q[A/v&iB])θ;σθ〉 if θ =
mgu({A′ = A}), 〈A′←iB; v〉 in P and B is not
empty.

AS2) 〈Q[A];σ〉→AS〈(Q[A/v])θ;σθ〉 if θ =
mgu({A′ = A}), and 〈A′←i; v〉 in P.

AS3) 〈Q[A];σ〉→AS〈(Q[A/⊥]);σ〉 if there is
no rule in P whose head unifies with A.

Note that the third case is introduced to
cope with (possible) unsuccessful admissible
derivations. As usual, rules are taken re-
named apart. We shall use the symbols→AS1,
→AS2 and →AS3 to distinguish between com-
putation steps performed by applying one of
the specific admissible rules. Also, the appli-
cation of a rule on a step will be annotated as
a superscript of the →AS symbol.

Definition 2.2 Let P be a program and let
Q be a goal. An admissible derivation is a se-
quence 〈Q; id〉 →∗

AS 〈Q′; θ〉. When Q′ is a for-
mula not containing atoms, the pair 〈Q′;σ〉,
where σ = θ[Var(Q)], is called an admissible
computed answer (a.c.a.) for that derivation.

In order to illustrate our definitions, con-
sider now the following program P and lattice
([0, 1],≤), where ≤ is the usual order on real
numbers.
R1 : p(X)←P q(X, Y )&G r(Y ) with 0.8
R2 : q(a, Y )←P s(Y ) with 0.7
R3 : q(b, Y )←L r(Y ) with 0.8
R4 : r(Y )← with 0.7
R5 : s(b)← with 0.9

The labels P, G and L mean for Prod-

uct logic, Gödel intuitionistic logic and
 Lukasiewicz logic, respectively. That is,
[[&P]](x, y) = x ·y, [[&G]](x, y) = min(x, y), and
[[&L]](x, y) = max(0, x + y− 1). In the follow-
ing admissible derivation for the program P
and the goal ←p(X)&Gr(a), we underline the
selected expression in each admissible step:
〈p(X)&Gr(a); id〉→AS1

R1

〈(0.8&P(q(X1, Y1)&Gr(Y1)))&Gr(a);σ1〉→AS1
R2

〈(0.8&P((0.7&Ps(Y2))&Gr(Y2)))&Gr(a);σ2〉→AS2
R5

〈(0.8&P((0.7&P0.9)&Gr(b)))&Gr(a);σ3〉→AS2
R4

〈(0.8&P((0.7&P0.9)&G0.7))&Gr(a);σ4〉→AS2
R4

〈(0.8&P((0.7&P0.9)&G0.7))&G0.7;σ5〉,
where:
σ1 = {X/X1},
σ2 = {X/a, X1/a, Y1/Y2}
σ3 = {X/a, X1/a, Y1/b, Y2/b}
σ4 = {X/a, X1/a, Y1/b, Y2/b, Y3/b}
σ5 = {X/a, X1/a, Y1/b, Y2/b, Y3/b, Y4/a}

So, since σ5[Var(Q)] = {X/a}, the a.c.a.
associated to this admissible derivation
is: 〈(0.8&P((0.7&P0.9)&G0.7))&G0.7; {X/a}〉.
Now, after evaluating this arithmetic expres-
sion we obtain the final fuzzy computed an-
swer (f.c.a.) 〈0.504; {X/a}〉.

3 Translating Multi-adjoint Logic
Programs into Pure Prolog Code

This section is devoted to detail a simple, but
powerful method for translating fuzzy pro-
grams into directly executable standard Pro-
log code [1]. The final goal is that the com-
piled code be executed in any Prolog inter-
preter in a completely transparent way for the
final user, i.e., our intention is that after in-
troducing fuzzy programs and fuzzy goals to
the system, it be able to return fuzzy com-
puted answers (i.e., pairs including truth de-
grees and substitutions) even when all inter-
mediate computations have been executed in
a pure (not fuzzy) logic environment.

The syntactic conventions that our system ac-
cepts when parsing multi-adjoint logic pro-
grams are very close to those seen in Section
2. For instance, we can code the program of
our running example as:
p(X) <prod q(X,Y) &godel r(Y) with 0.8.
q(a,Y) <prod s(Y) with 0.7.
q(b,Y) <luka r(Y) with 0.8.
r(Y) with 0.7.
s(b) with 0.9.

Proceedings of IPMU’08 483



The reader may easily check the strong sim-
ilarities between the previous code and the
program shown in the example of the previ-
ous section. During the parsing process, our
system produces Prolog code as follows:

• Each atom appearing in a fuzzy rule is trans-
lated into a Prolog atom extended with an ex-
tra argument, called truth variable of the form
TVi, which is intended to contain the truth

degree obtained after the subsequent evalua-
tion of such atom.

• The role of aggregator operators can be eas-
ily played by standard Prolog clauses defining
“aggregator predicates” as follows:
agr_aver(X,Y,Z) :- Z is (X+Y)/2.
and_prod(X,Y,Z):- Z is X * Y.
and_godel(X,Y,Z):- (X=<Y,Z=X;X>Y,Z=Y).
and_luka(X,Y,Z):- H is X+Y-1,

(H=<0,Z=0;H>0,Z=H).

• Program facts (i.e., rules with no body) are
expanded at compilation time to Prolog facts,
where the additional argument of the (head)
atom, instead of being a truth variable, is just
the truth degree of the corresponding rule.
For instance, rules R4 and R5 in our running
example, can be represented by the Prolog
facts r(Y,0.7) and s(b,0.9), respectively.

• Program rules are translated into Prolog
clauses by performing the appropriate calls to
the atoms presented in its body. Regarding
the calls to aggregator predicates, they must
be postponed at the end of the body, in or-
der to guarantee that the truth variables used
as arguments be correctly instantiated when
needed. In this sense, it is also important
to respect an appropriate ordering when per-
forming the calls. In particular, the last call
must necessarily be to the “aggregator predi-
cate” modeling the adjoint conjunction of the
implication operator of the rule, by also using
its truth degree. For instance, rules R1,R2

andR3 in the example of the previous section,
can be represented by the Prolog clauses:
p(X,_TV0) :- q(X,Y,_TV1),r(Y,_TV2),

and_godel(_TV1,_TV2,_TV3),
and_prod(0.8,_TV3,_TV0).

q(a,Y,_TV0) :- s(Y,_TV1),
and_prod(0.7,_TV1,_TV0).

q(b,Y,_TV0) :- r(Y,_TV1),
and_luka(0.8,_TV1,_TV0).

• A fuzzy goal is translated into a Prolog goal
where the corresponding calls to atoms ap-
pear in their textual order before the ones
for “aggregator predicates”. Since aggrega-
tors are not associative in general, they must
appear in an appropriate sequence, as also
occurred with the translation of clause bod-
ies explained before. For instance, the goal
←p(X)&G r(a) in our running example, can
be represented by the following Prolog goal:

?- p(X,_TV1),r(a,_TV2),
and_godel(_TV1,_TV2,_TV3).

Following this method, we have just trans-
lated into standard Prolog code the multi-
adjoint logic program and goal shown in previ-
ous sections. In particular, we have used Sics-
tus Prolog v.3.12.5 for executing them as well
as for implementing the FLOPER tool, whose
capabilities for running/debugging fuzzy pro-
grams will be explained immediately.

4 Running Fuzzy Programs

As detailed in [1], our parser has been imple-
mented by using the classical DCG’s (Definite
Clause Grammars) resource of the Prolog lan-
guage, since it is a convenient notation for ex-
pressing grammar rules. The application con-
tains about 300 clauses and once it is loaded
inside a Prolog interpreter (in our case, Sics-
tus Prolog), it shows a menu which includes
the following options:

• "load", in order to charge a prolog file with
extension ‘.pl’. This action is useful for
reading a file containing a set of clauses im-
plementing aggregators, user predicates, etc.
Nevertheless, the original connectives of the
Product, Gödel and  Lukasiewicz logic, ex-
pressed in the Prolog style seen in the pre-
vious section, are defined in file prelude.pl,
which is automatically loaded by the system
at the beginning of each work session.

• "parse", for loading a fuzzy program in-
cluded in a file with extension ‘.fpl’. In
order to simultaneously perform the parsing
process with the code generation, each pars-
ing predicate used in DCG’s rules, has been
augmented with a variable as extra argu-
ment which is intended to contain the Prolog
code generated after parsing the correspond-

484 Proceedings of IPMU’08



ing fragment of fuzzy code. We also admit
the presence of pure Prolog clauses inside a
‘.fpl’ file, by including them between ‘$’.

• "list", which displays the set of Prolog
clauses loaded from a ‘.pl’ file as well as
those ones obtained after compiling an ‘.fpl’
file. Of course, the original fuzzy program
contained in this last file is also displayed.

• "save", which stores the resulting Prolog
code into a file. We wish to point out that
the set of clauses obtained during the compi-
lation process is also automatically asserted
in the data base of the Prolog interpreter,
which obviously also contains the clauses im-
plementing the proper tool. This action helps
the development of the following option.

• "run", for executing a fuzzy goal after
being introduced from the keyboard by
using option "intro". As we have seen in
the previous section, if the goal provided
by the user is ‘p(X) &godel r(a)’, then
the system translates it into the stan-
dard Prolog goal ‘p(X, TV1),r(a, TV2),

and godel( TV1, TV2, TV3)’. However, this
query needs a final manipulation before being
executed, which consists in renaming its
last truth variable ( TV3) by Truth degree.
Now, note that the set of non anonymous
variables in the resulting Prolog goal,
are simply those ones belonging to the
original fuzzy goal (i.e., X) and the one
containing its associated ‘Truth degree’.
Then, after reevaluating the Prolog goal
‘p(X, TV1),r(a, TV2), and godel( TV1, TV2,

Truth degree)’, the Prolog interpreter re-
turns the following pair of desired fuzzy com-
puted answers: [Truth degree=0.504,X=a]

and [Truth degree=0.4,X=b].
The previous set of options suffices for
running fuzzy programs: all internal compu-
tations (including compiling and executing)
are pure Prolog derivations whereas inputs
(fuzzy programs and goals) and outputs
(fuzzy computed answers) have always a
fuzzy taste, which produces the illusion on
the final user of being working with a purely
fuzzy logic programming tool.

However, when trying to go beyond pro-

gram execution, our method becomes insuf-
ficient. In particular, observe that we can
only simulate complete fuzzy derivations (by
performing the corresponding Prolog deriva-
tions based on SLD-resolution) but we can
not generate partial derivations or even ap-
ply a single admissible step on a given fuzzy
expression. This kind of low-level manipula-
tions are mandatory when trying to incorpo-
rate to the tool some program transformation
techniques such as those based on fold/unfold
or partial evaluation we have described in
[5, 6, 7]. To achieve this aim, we have con-
ceived a new low-level representation for the
fuzzy code which nowadays already offers de-
bugging (tracing) capabilities.

5 Debugging Fuzzy Programs

Each parsing predicate used in DCG’s rules
(which already contains a parameter allocat-
ing the Prolog code obtained after the compi-
lation process) has also been augmented with
a second extra argument for storing now the
new representation associated to the corre-
sponding fragment of parsed fuzzy code. For
instance, after parsing the first rule of our
program, we obtain the following expression
(whose components have obvious meanings):
rule(number(1),
head(atom(pred(p,1),var(‘X’)])),
impl(‘prod’),
body(and(‘godel’,2,
[atom(pred(q,2),[var(‘X’),var(‘Y’)]),
atom(pred(r,1),[var(‘Y’)])])),

td(0.8)).

Once obtained at compilation time, this term
is then asserted into the data base of the Pro-
log interpreter as a Prolog fact, thus making
accessible this low-level representation of the
fuzzy rule to the whole application. Two more
examples: substitutions are modeled by lists
of terms of the form link(V, T) where V and
T contains the code associated to an original
variable and its corresponding (linked) fuzzy
term, respectively, whereas an state is repre-
sented by a term with functor state/2. We
have implemented predicates for manipulat-
ing such kind of code at a very low level in
order to unify expressions, compose substitu-
tions, apply admisible/interpretive steps, etc.

With this nice representation, we can also

Proceedings of IPMU’08 485



% TRACE 1: Execution tree with depth 4 for goal p(a) w.r.t. the multi-adjoint logic program P1.
R0 < p(a), {} >

R1 < &prod(0.9,q(a)), {X1/a} >
R3 < &prod(0.9,&luka(0.7,q(a))), {X1/a,X7/a} >

R3 < &prod(0.9,&luka(0.7,&luka(0.7,q(a)))), {X1/a,X7/a,X11/a} >
R3 < &prod(0.9,&luka(0.7,&luka(0.7,&luka(0.7,q(a))))), {X1/a,... }

>
R2 < &godel(0.8,r(a)), {X2/a} >

R4 < &godel(0.8,0.6), {X2/a} >

% TRACE 2: Execution tree with depth 2 for goal p(X) w.r.t. the multi-adjoint logic program P2.
R0 < p(X), {} >

R1 < &prod(0.9,@aver(1,p(b))), {X/a} >
R0 < &prod(0.9,@aver(1,0)), {X/a} >

Figure 1: Traces and execution trees generated by FLOPER.

build execution trees with any level of
depth, thus producing terms of the the form
tree(S, L), where S represents the state root-
ing the tree, and L is the list containing its
set of children trees. Recently, FLOPER
has been equipped with two new options,
called "tree" and "depth", for visualizing
such trees and fixing the maximum length al-
lowed for their branches (initially 3), respec-
tively. Apart from the important role they
could play in future developments, these op-
tions are nowadays very useful for debugging
purposes: in particular, they allow the possi-
bility of generating declarative traces of the
execution of a given goal and program, as
showed in Figure 1.

By displaying execution trees, FLOPER pro-
vides a much more precise information than
the one obtained by using the simple "run"
option based on the method described in Sec-
tion 3. The complete trace of the execution
of a given goal w.r.t. a program seems to
be crucial when the "run" option fails. Let
us explain its power by means of two exam-
ples which, thanks to their simplicity, rein-
force this claim. Firstly, consider the follow-
ing fuzzy program P1:

p(X) <prod q(X) with 0.9.
p(X) <godel r(X) with 0.8.
q(X) <luka q(X) with 0.7.
r(a) with 0.6.

For goal p(a), FLOPER displays the first
tree (trace 1) showed in Figure 1. Observe
that each node contains an state (composed
by the corresponding goal and substitution)

preceded by the number of the program rule
used by the admissible step leading to it (root
nodes are always labeled with the virtual, non
existing rule R0). Nodes belonging to the
same branch appear in different lines appro-
priately indented to help the readability of the
figure. In our case, the tree contains only two
different branches. It is easy to see that the
first one, corresponding to the first five lines
of the figure, represents an infinite branch,
whereas the second one, identified by lines 1,
6 and 7, indicates that the goal has just one
solution with truth degree 0.6 (which is the
result of evaluating the arithmetic expression
&godel(0.8, 0.6)).

It is important to remark that, when ana-
lyzing the tree with care, we can conclude
that the original goal is solvable, even when
by using the "run" option of FLOPER, the
system answers ‘‘There is no solution’’,
after aborting the infinite loop in which the
Prolog interpreter falls down when generat-
ing (the SLD-resolution derivation associated
to) the first branch of the tree.

Our second example is not involved with
infinite branches, but it copes with other
kind of (pure Prolog) unsuccessful be-
haviour. Consider now a fuzzy program,
say P2, containing the single rule ‘p(a) <
prod @aver(1, p(b)) with 0.9’ (where the
average aggregator @aver has the obvious
meaning: see its Prolog-based definition in

486 Proceedings of IPMU’08



Section 3) which, once parsed by FLOPER,
is translated into the following Prolog clause:
p(a, TV0) : p(b, TV1), agr aver(1, TV1, TV2),
and prod(0.9, TV2, TV0). It is easy to see that,
in order to execute goal p(X) by means of
the "run" option, the Prolog interpreter will
fail when trying to solve the first atom,
"p(b, TV1)", appearing in the body of this
Prolog clause. However, in the fuzzy setting
we know that the proposed goal has a so-
lution, as revealed by the (single) successful
branch appearing in the second trace of Fig-
ure 1. By applying and admissible step of kind
3 (see →AS3 in Definition 2.1), on the second
node of the tree, we generate the final state
showed in the third line of the figure (the sys-
tem simply replaces the non solvable selected
atom p(b) by the lowest truth degree 0). Note
that this last state (labeled with the virtual
rule R0 -as also occurs with the root node-
because no program rule has been applied
to perform the computation), once evaluated
the associated arithmetic expression, returns
a fuzzy computed answer confirming that p(X)
is true with truth degree 0.45 when X = a.

As we have seen, the generation of traces
based on execution trees, contribute to in-
crease the power of FLOPER by providing
debugging capabilities which allow us to dis-
cover solutions for queries even when the Pro-
log compilation-execution process fails. For
the future and also supported on the genera-
tion of execution trees, we plan to introduce
new options into the FLOPER menu imple-
menting all the transformation techniques we
are proposed in the past [5, 6, 7]: the key point
is the correct manipulation of the leaves of
this kind of partially evaluated trees, in order
to produce unfolded rules, reductants, etc.

6 Related Work

The multi-adjoint logic approach and the
fuzzy logic language described in [3] are very
close between themselves, with a similar syn-
tax based on “weighted” rules and levels of
flexibility and expressiveness somehow com-
parable. However, whereas in the fuzzy lan-
guage presented in [3] truth degrees are based

on Borel Algebras (i.e., union of intervals of
real numbers), in the so called multi-adjoint
logic programming approach of [11, 10] truth
degrees are elements of any given lattice.
Other important difference between both lan-
guages emerges at an operational level, since
the underlying procedural principle of the lan-
guage of [3] introduces several problems when
considering most of the transformation tech-
niques we are developing in our group: the
real problem does not appear only at the syn-
tactic level, but what is worse, the major in-
convenience is the need for redefining the core
of its procedural mechanism to cope with con-
straints possibly mixed with atoms. In this
last setting, computation steps are described
by means of an state transition system where,
instead of two elements, each state contains
three components 〈atom, substitution, cons-
traint〉. This strict separation of atoms and
constraints (in both, computation states and
clause bodies) represents a severe obstacle
for the adaptation of our notion of unfolding
rule since it is neither easy to execute nor to
code on the body of unfolded clauses the con-
straints generated by those computation steps
performed at transformation time. This is one
of the most important reasons for which, in
our research group, we are mainly concerned
with the approach of [11]. Despite the needs
for more research efforts, our approach re-
ported in this paper enjoys the following ad-
vantages w.r.t. [3]: 1) we think that using
standard Prolog instead of CLP (R) will make
our ideas more accessible to a wider audience
and 2) as we have seen in previous sections,
our Prolog code generation (and implementa-
tion) largely helped us to produce a low level
representation of the final code very useful for
debugging and transformation purposes.

Focusing now in the multi-adjoint logic ap-
proach, it is unavoidable to mention the im-
plementation issues documented in [10]. Like
our proposal, we all deal with the same
target ([0;1]-valued) multi-adjoint logic lan-
guage, and also our developments are based
in pure Prolog code (even when they are sup-
ported on a neural net architecture). How-
ever, whereas they are restricted to the propo-

Proceedings of IPMU’08 487



sitional case, we have lifted our results to
the more general first-order case. Moreover,
the procedural semantics implemented in [10]
has been conceived as a bottom-up proce-
dure where the repeated iteration of an appro-
priately defined consequence operator repro-
duces the model of a program, thus obtaining
the computed truth-values of all propositional
symbols involved in that program (in a paral-
lel way). In a complementary sense, the exe-
cuting and debugging “query answering” pro-
cedures implemented in FLOPER, are goal-
oriented and have a top-down behaviour.

7 Conclusions and Future Work

In this paper we were concerned with imple-
mentation techniques for fuzzy logic program-
ming and more exactly, for the multi-adjoint
logic approach, which enjoys high levels of
expressivity and a clear operational mecha-
nism. Apart from [10] and our prototype tool
FLOPER, there are not abundant tools avail-
able in practice. We have firstly proposed a
technique for running such kinds of programs
based on a “transparent compilation process”
to standard Prolog code. Secondly, we have
next proposed a low-level representation of
the fuzzy code allowing the possibility of de-
bugging (by generating declarative traces) the
execution of a given program and goal. This
last development also opens the door to im-
plement new and powerful program manip-
ulation techniques in which we are working
nowadays. These actions, together with the
study of mechanism for surpassing the sim-
pler case of modeling truth degrees with real
numbers, are some prioritary tasks in our re-
search group for the near future.

References

[1] J.M. Abietar, P.J. Morcillo, and
G. Moreno. Designing a software tool for
fuzzy logic programming. In Proc. of IC-
CMSE’07, Volume 2, pages 1117–1120.
American Institute of Physics, 2007.

[2] J. F. Baldwin, T. P. Martin, and B. W.
Pilsworth. Fril- Fuzzy and Evidential

Reasoning in Artificial Intelligence. John
Wiley & Sons, Inc., 1995.

[3] S. Guadarrama, S. Muñoz, and
C. Vaucheret. Fuzzy Prolog: A
new approach using soft constraints
propagation. Fuzzy Sets and Systems,
Elsevier, 144(1):127–150, 2004.

[4] M. Ishizuka and N. Kanai. Prolog-ELF
Incorporating Fuzzy Logic. In Proc. of
IJCAI’85, pages 701–703. Morgan Kauf-
mann, 1985.

[5] P. Julián, G. Moreno, and J. Penabad.
On Fuzzy Unfolding. A Multi-adjoint
Approach. Fuzzy Sets and Systems, El-
sevier, 154:16–33, 2005.

[6] P. Julián, G. Moreno, and J. Pen-
abad. Operational/Interpretive Unfold-
ing of Multi-adjoint Logic Programs.
Journal of Universal Computer Science,
12(11):1679–1699, 2006.

[7] P. Julián, G. Moreno, and J. Penabad.
Efficient reductants calculi using par-
tial evaluation techniques with thresh-
olding. Electronic Notes in Theoretical
Computer Science, Elsevier, 188:77–90,
2007.

[8] R.C.T. Lee. Fuzzy Logic and the Res-
olution Principle. Journal of the ACM,
19(1):119–129, 1972.

[9] J.W. Lloyd. Foundations of Logic Pro-
gramming. Springer-Verlag, Berlin, 1987.

[10] J. Medina, E. Mérida-Casermeiro, and
M. Ojeda-Aciego. A neural implementa-
tion of multi-adjoint logic programs via
sf-homogeneous programs. Mathware &
Soft Computing, XII:199–216, 2005.

[11] J. Medina, M. Ojeda-Aciego, and
P. Vojtáš. Similarity-based Unification:
a multi-adjoint approach. Fuzzy Sets and
Systems, 146:43–62, 2004.

[12] P. Vojtáš and L. Pauĺık. Soundness and
completeness of non-classical extended
SLD-resolution. In Proc. ELP’96, pages
289–301. LNCS 1050, Springer, 1996.

488 Proceedings of IPMU’08


