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Abstract 

We present in this paper a method for 
confidence updating in a multi-sensor 
pedestrian tracking system. We focus 
on the computing of detection and 
recognition confidence indicators 
according to the object detection and/or 
recognition probabilities provided by 
sensor modules. We propose to use the 
Transferable Belief Model in order to 
model and combine the sensor module 
outputs at different times. Since 
detection and recognition processes are 
not really independent, we propose to 
use the cautious rule to combine the 
belief functions. We propose a track 
confidences updating algorithm and its 
interesting behavior is shown on 
synthetic data. 

Keywords: data fusion, multi-target tracking, 
belief updating, detection confidence, 
recognition confidence. 

1     Introduction 

We propose in this paper a loosely coupled 
fusion method based on the tracking process 
were observations (objects detected at a time t) 
are provided by different sensors (physical and 
logical) and are fused with maintained tracks. 
This approach is generic, sensor failure tolerant 
and allows different sensor configurations. We 
focus in this paper on the method computing a 
detection and recognition confidence according 
to the probabilities of object detection and/or 
pedestrian recognition provided by sensor 
modules. The inputs/outputs of the modules are 
normalized probability values, but we prefer to 
use the term “confidence” instead of 
“probability”, because we’re using non Bayesian 
methods to calculate and update them.   

We consider in this paper the problem of 
confidence updating in a multi-sensor pedestrian 

tracking system. The tracking module consists in 
update pedestrian-tracks taking advantage of 
temporal redundant data coming from sensors. 
The tracking module can maintain, initialize and 
delete tracks decreasing the number of false 
alarms coming from detection process. This 
module is a part of an ADAS (Advanced 
Driving Assistance System) in pre-crash 
situation. The confidence evaluation is very 
important since the ADAS can perform 
autonomous braking or maneuvering in case of 
unavoidable collision. 

The paper is organized as follow: section 2 
presents an overview of the system and related 
works. We focus on the management of 
uncertainty and the confidence assessment. To 
do that, we propose to use the Transferable 
Belief Model (TBM) in order to model and 
combine the knowledge about pedestrian 
detection and recognition. Section 3 reminds the 
principle of belief functions and the combination 
operators used in our aggregation algorithm. The 
algorithm computing and updating the 
confidence values in a generic tracking module 
is then described in sections 4 and 5. Results 
presented in section 6 illustrate the evolution in 
time of recognition and detection confidence 
regarding different factors: the performance of 
sensors modules, the quality of extracted 
information (detection and recognition) and the 
frequency of data. Conclusion and perspectives 
will be proposed in the last section. 

2     Overview  

2.1     Related works 

In the large multi-target tracking literature 
[1][2], we can find a lot of methods to compute 
and update the score of each track. The score 
evaluation depends of the association method 
between the current observation and the tracks 
coming from previous observations. The 
counting value is an example representing only 
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the temporal persistence of the track. Other 
methods, such as score of Sittler [3] based on a 
likelihood ratio and hypothesis’ probability 
computed with Bayesian rule [4] proposes to 
include the performance of the detection in the 
track score. These indicators are well formalized 
but not well adapted to the problem of 
heterogeneous observations coming from multi-
sensor system. 

Indeed, the problem of pedestrian detection can 
be decomposed in two parts: the detection of 
obstacles and their identification as pedestrians. 
According to the sensor ability the level of 
detection and recognition will be different. For 
example [5] proposes obstacle detection and 
obstacle identification with multilayer Lidar 
sensor; [6] propose stereo-vision obstacle 
detection with disparity analysis and SVM based 
pedestrian classification, [7] gives pedestrian 
classification results from monocular vision with 
AdaBoost algorithm: these are examples of 
mono-sensor systems. The combination of 
information coming from different sensors has 
the advantage of increasing the information 
reliability and reducing the influence of failing 
information. In the IV (Intelligent Vehicles) 
applications, obstacle detection is often based on 
sequential architecture: Radar/Lidar detection 
module gives the ROI (Region of Interest) to the 
image classifier [8][9]. The fusion methods 
proposed in these projects are strongly coupled. 
Two confidence factors are computed in SAVE-
U system [8]: a track confidence and a 
recognition confidence. However, the 
recognition value takes the last result of 
classification without being updated with the 
history. We argue that recognition indicators 
could be updated according to the tracking. So 
we propose to formalize this approach. 

2.2     System architecture 

Independent sensor modules analyze data 
provided by each sensor to give lists of detected 
objects (Figure 1). Each object is described by 
its position, position error, dimension, 
dimension error, and some scores representing 
the detection probability at time tk: Pd,k 

(probability of object’s existence) and/or the 
recognition probability Pr,k (probability of being 
a pedestrian). 

The sensors are not synchronized, nor are the 
outputs of the modules. Thus a multiplexer 
sends any ready object list to a generic fusion 
and tracking module to combine it with the 

existing track list, tacking into consideration the 
vehicle proprioceptive data (read and filtered 
inside the same module) and the performance of 
each detection module (stored in a configuration 
file with other tuning parameters). Latency 
problem is solved by a time indexed buffer of 
observations and state vectors as in [10]. The 
buffer size depends on the maximum acceptable 
observation delay. 

 

Figure 1: Example of the pedestrian’s tracking 
system architecture 

The fusion and tracking module updates all 
tracks information such as track’s state and 
track’s detection and recognition indicators. The 
object to track association is beyond the scope 
of this article and supposed done. 

Before starting with the confidence update 
method we remind in the following section the 
TBM principle and notation. 

3     TBM principle and notation  

The transferable belief model TBM is a model 
to represent quantified beliefs based on belief 
functions (Smets [11]). It has the advantage of 
being able to explicitly represent uncertainty on 
an event. It takes into account what remains 
unknown and represents perfectly what is 
already known.  

3.1     Knowledge representation 

Let Ω be a finite set of all possible solution of a 
problem. Ω is called the frame of discernment 
(also called state space); it’s composed of 
mutually exclusive elements. The knowledge 
held by a rational agent can be quantified by a 
belief function defined from the power set 2Ω to 
[0,1]. Belief functions can be expressed in 
several forms: the basic belief assignment 
(BBA) m, the credibility function bel, the 
plausibility function pl, and the commonality 
function q which are in one-to-one 
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correspondence. We recall that m(A) quantifies 
the part of belief that is restricted to the 
proposition “the solution is in Ω⊆A ” and 

satisfies: 1)( =∑
Ω⊆A

Am  

Thus, a BBA can support a set Ω⊆A  without 

supporting any sub-proposition of A, which 
allows to account for partial knowledge. 

Smets introduced the notion of open world 
where Ω is not exhaustive; this is quantified by a 
non zero value of m(Ø). 

The other functions can be calculated from the 
BBA m using these formulas: 

Credibility function: ( ) ∑
⊆≠∅

ΩΩ =
AB

BmAbel )(  

Plausibility function: ( ) ∑
∅≠∩

ΩΩ =
BA

BmApl )(  

Commonality function: ∑
⊇

ΩΩ =
AB

BmAq )()(  

3.2     Information fusion 

n distinct pieces of evidence defined over a 
common frame of discernment and quantified by 

BBAs ΩΩ
nmm L1 , may be combined, using a 

suitable operator. The most common are the 
conjunctive and the disjunctive rules of 
combination defined, respectively as: 

)()()( 11

1

nn
AAA

AmAmAm

n

Ω

=∩∩

ΩΩ ××= ∑ L

L

 

)()()( 11

1

nn
AAA

AmAmAm

n

Ω

=∪∪

ΩΩ ××= ∑ L

L

 

Obtained BBAs should be normalized in a 
closed world assumption.  

The conjunctive and disjunctive rules of 
combination assume the independence of the 
data sources. In [12] and [13] Denoeux 
introduced the cautious rule of combination 
(denoted by ) to combine dependent data. This 
rule has the advantage of combining dependent 
BBAs without increasing total belief: the 
combination of a BBA with itself will give the 
same BBA: m = m m (idempotence property). 
The cautious rule of combination is based on 
combining conjunctively the minimum of the 
weighted function representing dependent 
BBAs. 

3.3     Reliability and discounting factor 

The reliability is the user opinion about the 
source [14]. The idea is to weight most heavily 
the opinions of the best source and conversely 

for the less reliable ones. The result is a 
discounting of the BBA m

Ω produced by the 
source into the new BBA mΩ,α where: 
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The discounting factor (1-α) can be regarded as 
the degree of trust assigned to the sensor. 

3.4     Decision making 

The couple (credibility, plausibility) is 
approximated by a measurement of probability 
by redistribute the mass placed on each element 
of 2Ω, different from singleton, to the elements 
which compose it. The probability resulting 
from this approximation is called pignistic 
probability BetP; it’s used for decision making: 

∑
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Ω
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4     Basic belief assignments for detection 

and recognition processes 

4.1     Defining the frames of discernment 

Before constructing any quantified description 
of belief with respect to the objects’ detection 
and/or pedestrians’ recognition, we must define 
a frame of discernment Ω on which beliefs will 
be allocated and updated.  

For the objects detection problem, we can 
associate two general cases: object O and non 
object NO. The object can be a pedestrian or a 
non pedestrian object, but with no object 
identification, the frame of discernment of the 
object detection process is limited to: 

{ }NOO,=Ωd . As an example, a disparity image 

analyzer of a stereo-vision system can have Ωd 
as frame of discernment. 

A mono-vision pedestrian recognition process 
based on an AdaBoost algorithm for example, 
gives the probability of detecting a pedestrian P 
or non pedestrian NP. The non pedestrian can be 
a non pedestrian object or a false alarm. Let 

{ }NPP,1 =Ωr  be the frame of discernment of this 

type of recognition processes. 

Other recognition processes provide more 
detailed data. By analyzing data provided by a 
laser scanner for example, we can get detailed 
recognition data defined over the frame of 
discernment { }FANPO,PO,2 =Ωr , where: PO 
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denote a pedestrian object, NPO a non 
pedestrian object and FA a false alarm. 

4.2     Basic belief assignment calculation 

The outputs of the detection and the recognition 
processes are Bayesian probability functions. 
With no additional information, we have to 
build, based on these probabilities, the basic 

belief assignments d

kdm
Ω

, (BBA of the detection 

module defined over Ωd at time tk) and/or 1

,1
r

krm
Ω  

(BBA of the recognition module defined over 

Ωr1 at time tk) and/or 2
,2
r

krm
Ω  (BBA of the 

recognition module defined over Ωr2 at time tk). 

We used the inverse pignistic probability 
transform proposed by Sudano [15] to calculate 
belief functions from pignistic probabilities. 

To simplify notations we dropped in this paper 
object’s index because we have similar 
equations for all objects. 

4.2.1     BBA of the detection process 

Let Pd,k be the probability function given by the 
detection process at time tk: so we can have 
these values: 

dkd pP =)O(,  then dkd pP −= 1)NO(,  

pd represent the detection probability of an 
object. 

To build the BBA of the detection module d

kdm
Ω

, , 

we will calculate from the probability function 
the less informative BBA who regenerates the 
same probability function Pd as its pignistic 
probability BetPd (see Table1). 

Table 1: the less informative BBA 
of the detection module 

dΩ2  
BetPd,k 

= Pd,k 

d

kdm
Ω

,  

(if pd≤½) 

d

kdm
Ω

,  

(if pd≥½) 

Ø  0 0 
{O} pd 0 2pd-1 

{NO} 1-pd 1-2pd 0 
Ωd  2pd 2-2pd 

 

The first column of Table1 shows the subsets of 
Ω; the second shows the initial probability 
distribution provided by the detection process, 
it's equal to the pignistic probability BetPd,k 

calculated from the BBA d

kdm
Ω

, . The third and the 

fourth columns are the calculated BBA for the 
two cases of pd≤½ and pd≥½.  

4.2.2     BBA of the recognition process 

For the recognition process, we will describe the 
two cases already mentioned. 

The first one is the case of the recognition 
process defined over { }NPP,1 =Ωr . Let Pr1,k be 

the probability function provided by this process 
at time tk: so we can have these values: 

rkr pP =)P(,1  then rkr pP −= 1)NP(,1  

pr represent the recognition probability of an 
object.  

As in the detection process, the same steps are 
used to calculate the BBA of this type of 
recognition module (see Table2); these steps 

give 1

,1
r

krm
Ω as BBA defined over the frame of 

discernment { }NPP,1 =Ωr  at time tk. 

Table 2: the less informative BBA 
of the recognition module defined over Ωr1 

rΩ2  
BetPr1,k 

=Pr1,k 

1

,1
r

krm
Ω  

(if pr≤½) 

1

,1
r

krm
Ω  

(if pr≥½) 

Ø  0 0 
{P} pr 0 2pr-1 

{NP} 1-pr 1-2pr 0 

Ωr1  2pr 2-2pr 
 

Table 3: the less informative BBA 
of the recognition module defined over Ωr2 

22 rΩ  
Pr2,k= 

BetPr2 

2

,2
r

krm
Ω  

Ø 0 0 

{PO} ppo 
{ }

{ } 2/))FAPO,(

)NPOPO,((

,2

,2

Ω

Ω

+

−

kr

krpo

m

mp
 

{NPO} pnpo 
{ }

{ } 2/))FANPO,(

)NPOPO,((

,2

,2

Ω

Ω

+

−

kr

krnpo

m

mp
 

{PO,NPO} 0 2(min(ppo, pnpo)- 3/)( 2,2 rkr
m ΩΩ )

{FA} pfa 
{ }

{ } 2/))FANPO,(

)FAPO,((

,2

,2

Ω

Ω

+

−

kr

krfa

m

mp
 

{PO,FA} 0 2(min(ppo, pfa)- 3/)( 2,2 rkrm ΩΩ ) 

{NPO,FA} 0 2(min(pnpo, pfa)- 3/)( 2,2 rkrm ΩΩ ) 

Ωr2 0 3 min(ppo , pnpo , pfa) 

The second case is the case of the detection 
module defined over { }FANPO,PO,=Ω . Let 

Pr2,k be its probability function at time tk with: 

pokr PP =)PO(,2  

npokr PP =)NPO(,2  
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fakr PP =)FA(,2  

With: 1=++ fanpopo ppp  

The same method is used to calculate the less 
informative BBA having krP ,2  as its pignistic 

probability BetPr2 ,k (Table3) 

4.3     Discounting BBAs 

To take into account the reliability of a sensor 
and the performance of the detection and the 
recognition processes, discounting will be 
applied to the obtained BBAs. The detection 
process is characterized by its probability of 
false alarm PFA, let αd = 1- PFA be its discounting 
factor. The recognition process is characterized 
by its probability of false recognition PFR so let 
αr = 1-PFR be its discounting factor. 

After the discounting stage, the obtained BBAs 

are denoted: rr

krm
α,

,2
2Ω , rr

krm
α,

,1
1Ω  and dd

kdm
α,

,
Ω  

5     Score fusion and updating 

The data fusion step will update the old tracks' 
scores (detection and recognition scores) with 
the new results of the detection and recognition 
processes. Depending on the sensor module 
structure, we can have the result of recognition, 
or detection or both.  

5.1     Confidence update algorithm 

The algorithm of track confidence updating with 
object features consists in: 

- Transform the probabilities Pd,k  and Pr,k of an 
object into basic belief assignment BBAs: 

d

kdm
Ω

, (BBA of the detection process defined over 

the detection state space Ωd at time tk) and r

krm
Ω
,  

(BBA of the recognition process defined over 
the recognition state space Ωr at time tk) 

- Transform the performance of the sensor 
module into discounting values: the probability 
of false alarm PFA and the probability of 
recognition PR of the sensor module transform 

the last BBAs into dd

kdm
α,

,
Ω and rr

krm
α,

,
Ω where αd 

and αr are respectively the discounting factors of 
detection and recognition BBAs.  

- Compute the combination of discounted 

BBAs: Ω
kdrm ,  

- Combine this result with the associated track 

belief function Ω
−1km  to obtain Ω

km  

- Estimate the track’s detection and recognition 
confidence: Pd,k and Pr,k 

5.2     The common frame of discernment 

To combine all BBAs we have to transform 
them to the same frame of discernment. Let 

{ }FANPO,PO,=Ω  be a general frame. Ω can be 

considered as refinement of the two frames Ωd 
and Ωr1: in fact in { }NOO,=Ωd , the objects O 

can be divided into two sets: pedestrians objects 
PO and non pedestrian objects NPO, and non 
objects NO are false alarms FA. In 

{ }NPP,1 =Ωr , pedestrians P are pedestrian 

objects PO and non pedestrians NP can be non 
pedestrian objects NPO or false alarms FA. 

Ωr2 is identical to Ω, so the BBA of the second 

recognition process r

krm
α,
,2

Ω  is already defined 

over 222 rΩΩ ≡ , but not dd

kdm
α,

,
Ω  and rr

krm
α,

,1
1Ω  

because they are defined respectively over 
dΩ2 and rΩ2 . To transform them to the new 

frame of discernment Ω, we have to do the 
refinement process, i.e. to move our belief on a 
subset of Ωd (respectively Ωr) to the 
corresponding subset of Ω, we get: 

{ }( ) { }( )ONPOPO,
,

,,
dd

kdkd mm
αΩΩ =

{ }( ) { }( )NOFA
,

,,
dd

kdkd mm
αΩΩ =  

( ) ( )dkdkd
ddmm Ω=Ω

ΩΩ α,
,,  

{ }( ) { }( )PPO
,

,1,1
1 rr

krkr mm
αΩΩ =  

{ }( ) { }( )NPFANPO,
,

,1,1
1 rr

krkr mm
αΩΩ =  

( ) ( )1
,

,1,1
1

rkrkr
rrmm Ω=Ω

ΩΩ α  

The three obtained BBAs Ω
krm ,2 , Ω

kdm ,  and Ω
krm ,1  

are not independent, so we chose to combine 
them by the cautious rule of combination 
[12][13]. 

5.3     BBAs combination 

The cautious combination of the two BBAs Ω
kdm ,  

and Ω
krm ,1  for example, denoted Ω

kdrm ,1 can thus 

be computed as follows: 

a. Compute the commonality functions Ω
kdq ,  

and Ω
krq ,1  of the two BBAs Ω

kdm , and Ω
krm ,1  

b. Compute the weight functions wd,k and wr1,k 
from qd,k and qr1,k using the formula: 

∏
⊇

−
+−

=
AB

AB

BqAw
1

)1()()(  
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c. Compute the weight function kdrw ,1 :  

kdkdr ww ,,1 = ),min( ,1,,1 krkdkr www =  

d. Compute Ω
kdrm ,1  by combining all kdrw

A ,1  

conjunctively 

5.4     Updating BBAs 

Measurement noise are supposed time 
independent, so under the assumption of 
measurement independency the BBA result of 

the cautious combination Ω
kdrm ,1  is combined 

with the track’s BBAs Ω
−1km  by the conjunctive 

rule of combination to get Ω
km  the final result of 

BBA combination. 

5.5  Detection and recognition confidences 

result 

The pignistic probability (BetP) calculation 
gives the final result of detection and 
recognition confidences. 

BetP should be calculated on the original frames 
of discernment Ωd and Ωr, so we have to do the 
inverse of the refinement process already done. 

{ }( ) { }( ) { }( )

{ }( )NPOPO,

NPOPOO

Ω

ΩΩΩ

+

+=

k

kkk

m

mmm d

{ }( ) { }( )FANO ΩΩ
= kk mm d

( ) { }( ) { }( )

( )Ω+

+=Ω

Ω

ΩΩΩ

k

kkdk

m

mmm d FANPO,FAPO,

{ }( ) { }( )POP ΩΩ
= mm r

{ }( ) { }( ) { }( )

{ }( )FANPO,

FANPONP

Ω

ΩΩΩ
+=

k

kkk

m

mmm r

( ) { }( ) { }( )

( )Ω+

+=Ω

Ω

ΩΩΩ

k

kkrk

m

mmm r FAPO,NPOPO,
 

The detection and the recognition probabilities 
(Pd,k and Pr,k) of a track are: 

{ }( ) { }( ) ( ) 2/OO,, dkkkdkd
dd mmBetPP Ω+==

ΩΩ

{ }( ) { }( ) ( ) 2/PP,, rkkkrkr
rr mmBetPP Ω+==

ΩΩ  

The fusion module will provide these results as 

output, but will keep the original BBa Ω
km  for 

the next updating stage at time tk+1.   

6     Results 

All results are based on synthetic data covering 
most important and critical cases that show the 
advantage of the described fusion system and 

the advantage of using belief functions, 
especially in the situations where there is lake of 
information. Graphs show the evaluation of the 
detection and the recognition confidences with 
respect to the time i.e. to the sensor scanning 
cycle. 

To compare the variation of the detection and 
the recognition track confidences with the 
corresponding object confidences, we’re 
showing for the tracks the pignistic probability 
BetP (5.5) to have comparable variables. 

To show the difference between the cautious and 
the conjunctive rule of combination in case of 
combining dependent data, we combined two 

BBAs: Ω
kdm , and Ω

krm ,2  calculated from 

probabilities provided by detection and 
recognition processes provided by a sensor. 
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Figure 2: Comparison between the cautious and the 

conjunctive rules of combination 

Figure 2 shows that the recognition process is 
not affected by the combination method because 
the detection BBA does not contain recognition 
data. But the difference is clear between the 
track detection results for the two methods: 
because of the dependent detection information 
in the two BBAs, the confidence result of the 
conjunctive combination will be highest than the 
cautious combination but erroneous. 
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Figure 3: Track detection and recognition with two 

sensors 

Figure 3 and Figure 4 show the sensors’ 
reliability effects. With constant object detection 
and recognition, the more reliable sensor 
dominates: in Figure 3, the sensor 1 is reliable in 
detection with a probability of false detection of 
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20%, but not in recognition (80% false 
recognition) and the sensor 2 is reliable in 
recognition (20% false recognition) but not in 
detection (80% false detection): fusion results 
shows that the corresponding track is well 
detected and recognized. Figure 4 shows the 
inverse case. 
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Figure 4: same as Figure.3 with different data 

With no object detection information, Figure 5 
shows that object recognition provides detection 
data in good recognition state (BetP>50%), but 
not in non recognition (BetP<50%).  
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Figure 5: Track detection and recognition with 
variable object recognition and without object 

detection information 
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Figure 6: Track detection and recognition with 

variable object detection and without object 
recognition information 
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Figure 7: Track detection and recognition with 

variable object recognition and constant good object 
detection 

The case is not the same with the lack of 
recognition information. Figure 6 shows that 
good detection (BetP>50%) can’t provide 
recognition information because without 
recognition we can’t distinguish between 
pedestrian object and non pedestrian object, non 
detection (BetP>50%) provide the recognition 
information: non pedestrian. 
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Figure 8: Track detection and recognition with 

variable object detection and constant good object 
recognition 
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Figure 9: Track detection and recognition with 

variable object detection and constant low object 
recognition 

Figure 7 shows that good object detection (80%) 
doesn’t affect track recognition that remains 
variable with the object recognition. 

Figure 8 shows that good object recognition 
(80%) means good track detection, even thaw if 
the object detection is variable. 

Figure 9 shows that a low object recognition 
(20%) affects the track recognition but not the 
track detection.  
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Figure 10: Track detection and recognition with 

variable object recognition and constant low object 
detection 
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Figure 10 shows that with low object detection 
information (20%) we can’t get any track 
detection or track recognition information. 

These results showed the advantage of using 
belief functions, especially in the situations 
where there is lake of information. The next step 
will be the implementation and the test of the 
system as an imbedded real time system in the 
experimental vehicle. 

7     Conclusion 

In this paper we have described a credibilistic 
approach to combine and update detection and 
recognition confidences in a multi-sensor 
pedestrian tracking system. We have showed 
that combining confidences should take into 
consideration the data dependency by using 
appropriate fusion operator. Results showed that 
our generic tracking and fusion module can 
profit of any existing object’s confidence data 
(detection and/or recognition) to provide track’s 
detection and recognition information by 
redistributing knowledge between the two 
confidences and taking into consideration 
sensors’ reliabilities. These confidences are very 
important for any ADAS system in pre-crash 
situation since the ADAS can perform 
autonomous braking or maneuvering in case of 
unavoidable collision. 

The future work concentrates on testing the 
system with real sensors data, and its 
implementation as a real time system in our 
laboratory platform CARMEN equipped with 
Lidar, radar and vision systems. 
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