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Abstract 

Mobile devices can now handle a great 
deal of information thanks to the 
convergence of diverse functionalities. 
Mobile environments have already 
shown great potential in terms of 
providing customized services to users 
because they can record meaningful and 
private information continually for long 
periods of time. Most of this 
information has been generally ignored 
because of the limitations of mobile 
devices and the uncertainty of mobile 
environments in real world. In this 
paper, we propose an approach based 
on modular Bayesian networks to 
overcome these problems and to 
analyze various kinds of log data. The 
method adopts a probabilistic approach 
to manage the uncertainty and 
decomposes the probabilistic model 
automatically to decrease complexity 
and how to infer the model, which is 
called cooperative reasoning. In the 
experimental results, the proposed 
methods were evaluated with mobile 
log data collected in the real world. 

Keywords: Modularized probabilistic reasoning, 
Landmark detection. 

1 Introduction 

Mobile environments have very different 
characteristics from desktop computer 
environments. First of all, mobile devices can 
collect and manage various kinds of user 
information, for example, by logging a user's 
calls, SMS (short message service), photography, 
music-playing and GPS (global positioning 
system) information. Also, mobile devices can 
be customized to fit any given user's preferences. 
Furthermore, mobile devices can collect 

everyday information effectively. Such features 
allow for the possibility of diverse and 
convenient services, and have attracted the 
attention of researchers and developers. Recent 
research conducted by Nokia is a good example 
[1]. Especially, the context-aware technique that 
has recently been widely researched is more 
applicable to mobile environments, so many 
intelligent services such as intelligent calling 
services [2], messaging services [3], analysis, 
collection and management of mobile logs [4,5] 
have been actively investigated. 

However, mobile devices do present some 
limitations. They contain relatively insufficient 
memory capacity, lower CPU power (data-
processing speed), smaller screen sizes, 
awkward input interfaces, and limited battery 
lives when compared to desktop PCs. In 
addition, they have to operate in the changeable 
real world, which means that they require more 
active and effective adaptation functions [6].  

In this paper, we propose a novel way of 
analyzing mobile log data effectively and 
extracting semantic information and memory 
landmarks, which can be used as special ways of 
helping recall specific functions [7].  

The proposed method adopts a Bayesian 
probabilistic model to efficiently manage 
various uncertainties that can occur when 
working with mobile environments, including 
real-world irregularities, like varying levels of 
attention and emotions, inaccuracy of sensors, 
and uncertain causal factors.  

The proposed model uses a cooperative 
reasoning method with a modular Bayesian 
network (BN) in order to work competently in 
mobile environments.  

We also discuss how to discover and update 
the Bayesian inference model by using the 
proposed BN learning method with training data. 
The proposed method was applied to a PC 
system, using real mobile log data collected with 

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 402–408

Torremolinos (Málaga), June 22–27, 2008



a smart phone over a period of sixteen days in 
the real world. 

1.1 Prior Work 

In [8], the authors proposed a method for 
identifying landmarks on mobile devices. The 
preliminary investigation is the foundation of 
the present work. 

1.2 Related Work 

There have already been various attempts to 
analyze log data and to support expanded 
services by using the probabilistic approach. Li, 
et al. used a probabilistic model for active 
affective state detection of user [9]. They 
utilized dynamic Bayesian network and utility 
theory to reason the ‘fatigue,’ ‘nervous,’ and 
‘confused’ states. They showed that the 
probabilistic approach was good at management 
of uncertain information like affection.  

Y. Zhang, et al. proposed an active and 
dynamic information fusion method for multi-
sensor systems with dynamic Bayesian networks 
[10]. This showed the usefulness of Bayesian 
approach for information fusion. These works 
showed the Bayesian probabilistic approach was 
good tool for handling, reasoning, and 
combining uncertain information.  

Krause, et al. clustered the sensor and log data 
collected on mobile devices, discovered a 
context classifier that reflected a given user's 
preferences, and estimated the user's situation in 
order to provide smart services [11]. The context 
classifier was constructed using the BN model, 
which was based on a general learning method 
for a small domain of classification subjects. 

However, these methods were not suitable for 
mobile devices that were limited in terms of 
capacity and power. For larger domains, the 
general BN and BN learning method require 
highly complex computation. This is a crucial 
problem when it comes to modeling everyday 
life situations with mobile devices. To overcome 
these problems, a more appropriate approach 
was necessary. The following researchers have 
studied methods of reducing the levels of 
complexity. 

Marengoni, et al. [12] tried to reduce the 
complexity levels of the BN model by dividing 
it into several multi-level modules and using 
procedural reasoning of the connected BNs (just 

like chain inference). However, this method 
required procedural and classified properties of 
the target functions. 

Tu, et al. [13] proposed a hybrid BN model 
that allowed hierarchical hybridization of BNs 
and HMMs. However, it supported only links 
from lower level HMMs to higher level BNs 
without consideration of links between same 
level BNs. They also remained the hybridization 
of low and high level BNs as future works. 

2  Landmark Detection on Mobile 
Device 

The overall process of landmark extraction 
from the mobile log data used in this paper is 
shown in Fig. 1. Various mobile log data is 
preprocessed in advance, and then the landmark-
reasoning module detects the landmarks. The 
preprocessing module is operated by the 
techniques of statistical function and some rules. 
The BN reasoning module performs 
probabilistic inference.  
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Fig. 1: The process of the landmark extraction 
from mobile log data. The iterative cooperative 
reasoning method is used to infer the modular 
Bayesian networks. The dotted arrow indicates 

virtual linking.  

BNs refer to models that can express large 
probability distributions with relatively low 
complexity. They have the structure of a 
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directed acyclic graph (DAG) that represents the 
link (arc) relations of the node, and has 
conditional probability tables (CPTs) that are 
constrained by the DAG structure [14]. 

2.1 Collection and Preprocessing 

Table 1 shows log information collected on a 
mobile device and on the internet. The GPS log 
presents the places that the user visited, and the 
call and SMS logs show the user's calling 
patterns. The MP3 (a music file format) player 
log offers an idea of the user's emotions and the 
photograph log shows when the user wanted to 
memorize something. 

Table 1: The log information that was collected 
on a mobile device 

Log Information 
GPS latitude, longitude, velocity, direction, date, time 

Call 
caller's phone number, call/receive/absence log, 
time span, start/end time 

SMS 
sender's phone number, call/receive/absence log, 
time span, start/end time 

Photographing photo file name, taking time 

Weather 

weather, visibility range (km), cloud degree (%), 
temperature (°C), discomfort index, effective 
temperature (°C), rainfall (mm), snowfall (cm), 
humidity (%), wind direction, wind velocity 
(m/s), barometer (hPa) 

MP3 Player title, time span, start/end time 
Charging charging status, time span, start/end time 

Since logs have temporal properties, we 
considered their time spans, frequencies (per 
hour, daily, weekly), and start/end times. The 
coordinates from the GPS log are used to get 
place names. In this paper, we divided the 
domain area into a lattice and then labeled each 
region. The user profiles and PIMS (personal 
information management system) datasets were 
used to find the user’s social position (student, 
worker), gender, the position of their home, and 
the names and phone numbers of their friends 
and relatives. 

2.2 Cooperative Reasoning of Modular 
Bayesian Networks 

There are two general differences between the 
proposed BNs and conventional BNs. Firstly, 
we modularized the Bayesian inference models 
according to their separated sub-domains. The 
BN model essentially requires more computing 
power depending on the number of nodes and 
arcs. Especially, since the computational 
complexity of Bayesian inference is 
approximately proportional to O(kN), where k is 
the number of states and N is the number of 

causal nodes, the modularized BN is more 
efficient. 

Secondly, to consider the co-causality of the 
modularized BN, the proposed method shows N-
pass inference stages (in this paper, we take 2-
pass inference) [8]. A virtual linking technique 
is utilized to reflect the co-causal evidence more 
correctly. The technique is performed to add the 
virtual nodes and regulate their conditional 
probability values (CPVs) to apply the 
probability of the evidence, which is called 
virtual evidence. The concept of the virtual node 
and evidence is shown in Figs. 2 and 3.  

X i

X i'
Virtual node
� In: p

� In: xi=yes

xi=yes xi=no

P (xi'=yes|xi) p k'

CPT

 

Fig. 2: A virtual node to use virtual evidence 
containing probabilistic value. 

X i

P (xi''=yes)
p

� In: p

CPT

 

Fig. 3: A virtual root node that does not have 
additional node. The prior probability value is 

substituted for evidence. 

2.3 Complexity Analysis 

Equation (1) shows the time complexity of the 
exact inference of the BN using the Lauritzen 
Speigelhalter (LS) algorithm [15], which is the 
most popular exact inference algorithm and a 
junction tree-based algorithm, where n 
represents the number of nodes, k represents the 
maximum number of parents for each node, r 
denotes the number of values for each node, and 
w represents the maximum clique that each 
parameter used in the LS algorithm [16]. 

))(( 23
inf nrwrwnnkOcmpx wwk +++=  (1) 

We have replaced the maximum clique size w 
with k, since the clique size is proportional to 
the parents’ size, and the number of values r is 
about 2 in this paper. The ideal modularization 
technique roughly divides the number of nodes 
by the number of modules d but it has to 
compute d times for d modules, so the exact 
inference complexity of the modular BNs is as 
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shown in Equation (2) where the new number of 
nodes is (n/d).  

))1(2(' 2
1

3

inf nkn
d

k
n

d

k
Ocmpx kk

k
+++≅ −

 
(2) 

3 Modular Bayesian Networks Modeling 

In this section we introduce a method of 
discovering the proposed modular BNs 
automatically from the training data set. 

3.1 Discovering of the Bayesian Network 

The BN model G can be defined as (Bs, Θ ), 
which means a network structure Bs and a 

probability parameter set Θ . Θ ={BΦ , Bp} is 

composed of the conditional probability table BΦ 
and the prior probability distribution Bp. In this 
section, we build the structure Bs with the BN 

learning technique, and the parameter θ  is 
calculated from the training data set D by using 
Equation (3). 

)()|(maxarg* θθθ
θ

PDP=  (3) 

P(θ ) means prior probability. The general 
discovery process is shown by Equation (4) 

where ZT={z1, z2, …, zT} represents a set of T 
status variables,  and YT is a set of T observation 
result variables.  

)|(),|(),,( PTTTTT BZPBZYPYZP φθ =  (4) 

The conditional probability table B Φ  is 
calculated from the relational frequency between 
the observation values and the status variables, 
meaning the probabilistic histogram of the 
training data. 

3.2 Discovering the Modular Bayesian 
Networks 

The proposed discovering process of the 
modular BNs is shown in Fig. 4. The method 
includes structure learning, modularization, and 
parameter learning process of BN. In this paper 
we adopts K2 algorithm [17] to learn the 
network structure from the training data, which 
is denoted in the Fig. 5. 

Log data Target landmark Module Domain

Modularization of BN

Parameter learning of BN

Learned Modular BNs

Structure learning of BN

Defining the node set of BN

 

Fig. 4: The learning procedure of modular 
Bayesian network.  

The Fig. 5 includes a parameter setting 
process (for node set X, the topological order set 
of nodes O, a level set of nodes V and the 
maximum size of parents that each node had p). 
The node set of BN (X) is composed of the 
union of the collected log context set (L) and the 
target landmark set (LM). The values of the 
landmark set are defined by users. 

Log Data
L={ l1, …}

Target landmark
LM={ lm1, …}

Topological Order
O={o1, …} sorted by Mi=Σj Mij

K2 Algorithm

the node set of BN
X={X1, X2, …}=L∪LM

Calculating link strenth
M(Xi, Xj): Mutual Information

 

Fig. 5: The BN structure learning procedure 

To determine the topological order (O), we 
ranks each variable based on its total influence 
on the other variables with mutual information. 
The K2 learning method and the mutual 
information computation are presented in the 
next section. 

The network structures discovered are divided 
into several modules by a modularization 
process as shown in Fig. 6, where G is the 
network structure and d denotes the number of 
modules. The 1st process defines the nodes of 
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the module-BNs based on the module domain 
and the log context set. The 2nd Process defines 
the arcs of the module BNs based on the 
network structure (G). The 3rd Process defines 
the virtual nodes based on the network structure 
(G).  

Module Domain 
M1={X2, …}, …, 

Md={X34, …}

A B C D

E G

F H

Initialize {G1, …, Gd} 
based on {M1, … Md} 

and L

Make the arcs 
in {G1, …, Gd} 

based on G

Add the virtual nodes 
in {G1, G2, …, Gd} 

based on G

A B

E F

C D

G H

A B

E F

C D

G H

A B

E

G'

F

C D E'

G H

Modularization of BN

A B

E

G'

F

C D E'

G H

G

G1 G2  
Fig. 6: The modularization process of BN. The 
right side shows an example, in which the gray 

nodes denote evidence nodes and the white 
nodes mean landmark nodes or their virtual 

nodes.  

3.3 K2 Algorithm 

The K2 method was proposed by Cooper and 
Herskovits [17]. It is shown in Fig. 7. It is the 
most popular BN algorithm and the basis of 
many advanced discovery algorithms. This 
algorithm adopts a score metric known as the 
K2 metric, which calculates scores based on the 
difference between the BN graph and the 
training data distribution. The search process of 
the K2 algorithm is greedy and heuristic.  

The K2 algorithm uses a topological order to 
maintain the graph as the DAG by maintaining 
that the prior node cannot be the child of the 
posterior node without any other DAG checking 
rules. However, we have to optimize the 
topological order since a different topological 
order will have led to a different BN structure. 
In this paper, we compute the influence score of 
all the nodes by using mutual information [18], 
and sorted the topological order with the score. 

Equations (5) and (6) show the influence score 
and the mutual information calculation.  

∑=
j

jii XXMM );(  (5) 

∑=
yx yPxP

yxP
yxPYXM

, )()(
),(

log),();(  (6) 

  

Sort_nodes_by_topological_order(X, O)  
for i=1 to n do:  

iπ =Φ  // initialize the parent set 

Score[ i]=g(xi, iπ ) // k2 metric score of node xi 

Continue=true 
repeat 

Z= arg maxj g(xi, iπ ∪{ xj})  and  j<i  and 

ijx π∉   

Score’[i]= g(xi, iπ ∪{ xZ}) 

if Score’[ i]>Score[ i] then  

Score[ i] = Score’[ i], iπ = iπ ∪{ xZ} 

else  Continue=false 

until | iπ |<MaxParentNum and Continue=true 

Fig. 7. The K2 learning algorithm. 
MaxParentNum is a limitation of the number of 

parents and iπ
 
is a parent set of xi and g() is 

calculated by K2 metric function[17]. 

4 Experiments 

The log data used in this paper include a GPS 
log, call log, SMS log, picture log, music 
playing log, device charging log, and weather 
log obtained from a website. We collected data 
from three college students (women) with real-
world smart phones for 14 days. These users 
performed subtasks (such as writing activity 
diaries, shopping, walking and calling) to make 
the data more substantial.  

The final experimental set was selected based 
on sixteen days because the other data was not 
collected well enough (especially, the GPS data 
was often missing). The data set was segmented 
into units of ten minutes and does not contain 
redundant data (779 datasets). We defined 48 
landmarks shown in the table 2. To discover the 
modular BNs, we divided the landmarks into 
four modules based on four categories (Emotion 
& status, Everyday life, Events, School life). All 
data set were discretized and the state set of the 
most landmarks was defined as {yes, no}. 
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Table 2: Module domain definition of landmark 
nodes 

DomainDomainDomainDomain    LandmarksLandmarksLandmarksLandmarks    

Emotion 

& status 

bored, busy, cold, concentration, fret, 

hungry, joy, overflowing joy, sad, sleepy, 

surprising, throb, tired, troublesome, with 

leisure, yearning 

Everyday 

life 

eat (Chinese), eat (western), eat (Korean), 

home activity, meet family, moving, ready 

to go out, ride a vehicle, run, sleeping, 

supper, using vehicle, walk 

Event date with my date, drinking(alcohol), eat 

(tee), eat out, hair-cut, meet friend, meet 

kin, take a walk, traffic jam, weight-

training 

School 

life 

employment counsel, extracurricular 

lecture, go to school, late for school, 

lecture, school activity, school-club 

activity, study, test in school 

4.1 Comparison of the Discovered BNs 

In this section, we describes the test result of 
the landmark extraction model. We set the 
MaxParentNum parameters (p) as 4 and 8 in the 
experiment. Fig. 8 shows the modular BNs 
discovered with (parameter p=8). The average 
number of nodes, parents, and conditional 
probability values and the level of complexity 
are shown in Table 3. The complexities are 
calculated by Equation (2). We are able to 
observe the decrement of the complexity of the 
modular BNs. 

Table 3: The comparison of the complexity of 
learned BNs. 

BN N # N #avg P # P #avg C 

1BN 115 115 298 2.59 O (2.6 ×106) 

mBN 189 47.25 182 1.14 O (9.58×102) 

1BN-monolithic BN, mBN-modular BN, N-node, P-parent, C-

complexity, # - the number of, #avg – the average number of. 

Table 4 shows the results of the landmark 
reasoning evaluation. Because the number of 
training data was small, we used the leave-one-
out validation method. We compared the 
monolithic BN and modular BNs with the 
parameters p=4 and p=8. The computation of the 
precision rate is (TP/(TP+FP)), the recall rate is 
(TP/(TP+FN)), and the hit rate is 
((TP+TN)/(TP+TN+FP+FN)).  

As shown by the results, the performance of 
the modular BNs is similar to that of the 
monolithic BN. This means the proposed 
method is valuable since it is used to reduce the 
BN model and increase efficiency.  

Table 4: The correctness comparison of 
extracted landmarks. 

BN P TP TN FP FN PR RC HR 
1BN 8 135 35,845 64 1,348 0.678 0.091 0.962 
mBN 8 133 35,853 56 1,350 0.704 0.090 0.962 
1BN 4 420 35,807 102 1,063 0.805 0.283 0.969 
mBN 4 420 35,807 102 1,063 0.805 0.283 0.969 
P-parent size parameter, TP - true positive, TN - true negative, FP 

- false positive, FN - false negative, PR-precision, RC-recall, HR-

Hit rate. 
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Fig. 8: The BN modules trained with p=8. The 
dark nodes: virtual nodes, the lighter nodes: 
landmark nodes, the others: evidence nodes. 

5 Concluding Remarks 

In this paper, we proposed a modular 
landmark inference model, which was efficient 
and suitable to mobile environments. We 
introduced the modularized BN model for 
efficient operations in mobile environments, and 
proposed the cooperative inference method by 
applying the virtual node concept. We 
discovered the modular BNs automatically from 
the given training data. In experimental results 
with mobile life log data, we observed that the 
proposed method was able to reduce the level of 
complexity.  
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However, the recall performance of the BN 
was not so good because the training data was 
not enough and much biased to negative sample. 
In the future, we need to continue research with 
sufficient real world data. Since we used only 
K2 algorithm and information theory based 
ordering method, we have to study other 
algorithms with our modularization approach. 
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