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Abstract

Evidential Markov chains (EMCs) are
a generalization of classical Markov
chains to the Dempster-Shafer theory,
replacing the involved states by sets
of states. They have been proposed
recently in the particular field of an
image segmentation application, as hid-
den models. With the aim to propose
them as a more general tool, this paper
explores new theoretical aspects about
the conditioning of belief functions and
the comparison to classical Markov
chains and HMMs will be discussed.
New computation tools based on
matrices are proposed. The potential
application domains seem promising in
the information-based decision-support
systems and an example is given.
Keywords: Markov chains, belief
functions, Dempster-Shafer theory,
Hidden Markov Models, evidential
networks

1 Introduction

Markov chains [4] are well-known statistical
models for memoryless systems. They are ap-
plied to a wide range of application domains, and
they are a mathematically powerful tool [16] [8].

But the parameters they involve are precise prob-
abilities, which will not be available in a family of
decision-making problems where the data are im-
precise or incomplete, or in systems whose behav-
ior can be described only roughly. This is why the

generalization of Markov chains to belief func-
tions has recently been proposed in works around
W. Pieczynsky [3] [7]. This new model, called ev-
idential Markov chain (EMC), was used as hidden
model in a particular application of image seg-
mentation. These works proposed an algorithm
to solve the hidden model based on HMM ap-
proaches, and examined the computational com-
plexity.
The objective of this paper is to explore some the-
oretical aspects about EMCs, and to show their
relevance to a wide panel of possible applications.
Basics of the Dempster-Shafer theory [11] [15]
will first be reminded, then the Markov chains and
the EMC will be defined. Aspects about condi-
tioning will be discussed [13], and some possible
applications will be proposed.

2 Basics of the Dempster-Shafer theory

This section will remind the basics of the
Dempster-Shafer theory and provide tools to un-
derstand them (probabilistic point of view and
matrix) that will be useful in the sequel.

2.1 Basic belief assignment

One calls frame of discernment a set Ω of all pos-
sible hypotheses; Ω can be discrete or continuous.

A mass function, also called BBA (Basic Belief
Assignment) [11], is a mapping m on the power
set 2Ω, which is the set of all subsets of Ω, to [0; 1]
such that

∑
A⊆Ω

m(A) = 1
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A subset A ⊂ Ω is called a focal set as soon as its
mass is nonzero.

If m(�) 6= 0, some belief on an hypothesis that
would be outside Ω. This is the Open World As-
sumption (OWA) [6]. Otherwise, the mass func-
tion is said normalized. m becomes a classical
probability when the focal sets are disjoint atoms.
F ⊆ 2Ω will denote the set of all focal sets.

2.2 Induced probability space

In this paragraph shows that the belief functions
can be manipulated through a probability µ, as did
Shafer [12].
The set 2F is then the set of all collections of focal
sets. Note that 2F ⊆ 22Ω

, which is the set of all
collections of subsets of Ω. The elements of 2F

are then of the form:

A ∈ 2F ⇐⇒ A = {B1, B2...Bn}

with Bi ∈ F ∀i. So, 2F is a σ-algebra onF . Let’s
define on 2F the following function:

µ : 2F → [0; 1]

such that ∀A ∈ 2F ,

µ (A = {B1, B2...Bn}) =
n∑

i=1

m(Bi) (1)

It is easy to see that µ is a measure,
since µ(�) = 0 and µ is additive, i.e.
µ(

⋃
i Ai) =

∑
i µ(Ai) as soon as the Ai are

pairwise disjoint. Furthermore, µ(F) = 1. Thus,
(F , 2F , µ) is a probability space. In other words,
focal sets can be seen as set-valued random vari-
ables. The probability µ(A = {B1, B2...Bn})
corresponds to the fact that one of the focal sets
Bi, 1 ≤ i ≤ n occurs (thus the truth is in one
of these sets). At this stage one doesn’t take
into account the fact that the Bi are disjoint or not.

One can define two functions that provide collec-
tions in 2F for any given A ⊆ Ω (even if A is not
in F):

F(A) = {B ∈ F/B ∩A 6= �}

(these are the elements of F hitting the given sub-
set A), and the dual collection, which is:

F(A) = {B ∈ F/B ⊆ A}

Note that F(A) = Fc(Ac).

F(A) and F(A) are called respectively the inner
and the outer restriction of F with respect to A
[18].

2.3 Belief function, plausibility and
commonality

For a given mass function m a belief function
Bel, a plausibility function Pl and a commonal-
ity function q have been defined as follows [11]
for all A ⊆ Ω:

Bel(A) =
∑

B⊆A,B 6=�
m(B) (2)

Pl(A) =
∑

B∩A6=�
m(B) (3)

q(A) =
∑
B⊇A

m(B) (4)

They can also be written as: Bel(A) = µ(S ⊆
A,S 6= �), Pl(A) = µ(S∩A 6= �), and q(A) =
µ(A ⊆ S).

One can remark that Bel and Pl can be writ-
ten using the inner and the outer extension of A
in F∗ = F \ {�}, which denotes the set of
nonempty focal sets of the frame Ω. The belief
function can be expressed as:

Bel(A) = µ (F∗(A))

and the plausibility as:

Pl(A) = µ(F∗(A))

The two functions Bel and Pl are dual, related
by:
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Pl(A) = 1−m(�)−Bel(Ac) (5)

where Ac denotes the complementary set of A in
Ω.
Smets [15] introduced the pignistic probability
Bet associated to m. When Ω is discrete, it is
defined ∀x ∈ Ω by:

Bet(x) =
1

1−m(�)

∑
A/x∈A

m(A)
|A| (6)

where |A| is the cardinality of A, i.e. the number
of elements of A. Bel, Pl and Bet are all equal
to classical probabilities when the focal sets are
disjoint atoms.
It is important to notice that the three functions
(belief, plausibility and commonality) are not
measures because they are not additive, but sub-
additive since:

Bel(A ∪B) ≥ Bel(A) + Bel(B)

3 Matrix tools

We consider a BBA on a finite discrete frame Ω.
Nf is the number of focal sets. One will define
the mass vector M by its coordinates:

M(j) = m(Aj) = mj (7)

for all focal set Aj , 1 ≤ j ≤ Nf .

3.1 Matrix tools for belief functions

It is known [5] that the relation between the BBA
m and the belief function Bel is a bijection. For
a given discrete space Ω containing N elements
and any function Bel defined on a set of subsets
F ⊆ 2Ω, if Bel satisfies the two assumptions:

(i). Bel(Ω) ≤ 1

(ii). Bel is completely monotone,, i.e. if A ⊂ B
then Bel(A) ≤ Bel(B)

(iii). Bel is subadditive

a mass function m can be deduced thanks to the
so-called Möbius transform:

m(A) =
∑
B⊆A

(−1)|A\B|Bel(B) (8)

If one denotes as M the column vector of the
masses of all the subsets of Ω, its size will be 2N .
The column vector Bel containing all the values
of the belief function on the nonempty subsets
will also be of size 2N , and it can be calculated
from M thanks to a matrix product:

Bel = BfrM.M

and the Möbius transform is then performed by
the inverse matrix BfrM−1. BfrM is a gener-
alization matrix G in the particular case where its
nonzero elements are equal to 1. G is the 2N×2N

matrix defined by Smets [14] as:

Definition 3.1. A generalization matrix of a col-
lection of subsets Ai is a stochastic matrix G sat-
isfying G(i, j) = 0 if Aj 6⊆ Ai.

Smets [14] also defined, similarly:

Definition 3.2. A specialization matrix is a
stochastic matrix S satisfying S(i, j) = 0 if Ai 6⊆
Aj .

In this paper we propose a new matrix in order to
compute the plausibility function. It will be called
the gauge matrix:

Definition 3.3. The gauge (pattern) matrix of a
collection of subets Ai is defined by:

Ga(i, j) =
{

1 if Ai ∩Aj 6= �
0 otherwise

The 2N -size column vector Pl of the plausibility
function is then defined by:

Pl = GaM

The commonality can also be computed through
such a matrix product.

3.2 Markov kernel matrix

Let Ω be a frame of discernment. One
suppose there is a finite partition H =
{Xi / 1 ≤ i ≤ Nc} ⊆ 2Ω on the frame
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Ω. The couple (Ω,H) is called a propositional
space. Each subset Xi can be called a class. Let
m be a BBA on Ω, with a finite set of focal sets
F = {Ak/1 ≤ k ≤ Nf}. One would like to
estimate in which class X is the truth for a given
BBA.
Classes and focal sets can be viewed as random
variables X and A., taking values in H and F re-
spectively. Each focal set Ak can occur with a
probability mk.
The assumption that will be made now is that
there exists a fixed Markov kernel K, which is
the matrix of conditional probabilities of the oc-
curence of one of the two random variables given
the other. (As it will be developed below, in the
particular case of Markov chains, the Markov ker-
nel is the state transition matrix). The kernel K is
defined by K(i, k) = p(i|k) such that

pi =
Nf∑
k=1

p(i|k)mk (9)

where pi = Pr(Xi) and mk = m(Ak). This can
also be written with P , the vector of the probabil-
ities of the classes:

P = KM (10)

As 0 ≤ p(i|k) ≤ 1 for all (i, k), one can no-
tice from (2) and (3) that for all compatible ker-
nel K,we get the following relation, for all set
X = Xi:

Bel(X) ≤ p(X) ≤ Pl(X) (11)

Thus the probabilities pi(Xi) of each class Xi are
imprecise probabilities since they belong to an in-
terval.

3.3 Matrix representations for classes

Let Nf be the number of focal sets and Nc the
number of classes. One supposes that Nf and
Nc are finite. One can still define the gauge ma-
trix Ga of size Nc × Nf by Ga(i, j) = 1 if
Xi ∩ Aj 6= �, and 0 otherwise, for all classes
Xi and for all focal sets Aj . Any Markov kernel
K compatible with the BBA is zero where Ga is
zero. The lines of the transposed matrix GT

a can

be seen as base-2 representations of the focal sets.
One can describe entirely a belief mass by its
gauge matrix Ga and its mass vector M .
When the classes are not atoms, the cardinality of
a focal set can be defined as the number of classes
it meets. This number is obtained by

(11...1) Ga =


|A1|
|A2|

...
|ANf

|


The computation of the belief function, the plau-
sibility function, the commonality and the pignis-
tic probability with matrix products is still possi-
ble, as it was shown by Smets [14] and at para-
graph 3, for the 2Nc subsets of Ω that are unions
of subsets Xi:

Bel = G.M (12)

Pl = Ga.M (13)

q = S.M (14)

Bet = PetPfrM.M (15)

where BfrM , QfrM and BetPfrM where de-
fined by Smets [14] (BfrM and QfrM are re-
spectively a generalization and a specialisation
matrix whose non null elements are 1); Ga is the
gauge matrix (3.3). They are all 2Nc × Nf -sized
matrices.

4 Evidential Markov chains

4.1 Definition

Let Ω = {a1, a2...aN} be the set of the possible
random states xt of a system for each time t.

Definition 4.1. The probability Pr for each state
of the system satisfies the Markov property if and
only if:

Pr(xt|x0, x1, x2, x3, ...xt−1) = Pr(xt|xt−1)
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Definition 4.2. A transition matrix for a system
is the N ×N matrix defined by:

Q = (qij) 1≤i,j≤N

where

qij = Pr(xt+1 = ai|xt = aj)

If a transition matrix exists, the Markov property
is satisfied. If one denotes as Pt the vector of the
probabilities of each state:

Pt = Pr(xt) =


Pr(xt = a1)
Pr(xt = a2)

...
Pr(xt = aN )


one has the following relation:

Pt = QPt−1 = QtP0

Definition 4.3. A Markov chain is a triple
(Ω, Q, P0) where P0 = Pr(x0) is the initial prob-
ability vector.

An evidential Markov chain is a classical Markov
chain where the random variable representing the
possible states of the system is replaced by ran-
dom (focal) sets [3] [9]:

Definition 4.4. Let Ω be a frame of discernment.
An evidential Markov chain (EMC) is a Markov
chain (F , Q,Mo) where F is a set of focal sets
and M0 is the vector of the initial masses of all
the focal sets.

If the vector of masses at time t is denoted as Mt,
one can write the following relation:

Mt = QMt−1 (16)

In the particular case where F is the set of the N
atoms of Ω, the EMC becomes a classical proba-
bilistic Markov chain.
One can verify through equations 12, 13, 14 and
15 that the belief function, the plausibility, the
commonality and the pignistic probability of an
EMC are Markov chains whose transition matri-
ces are of the form

Q′ = HQ(HT H)−1HT

where the matrix H represents BfrM , Ga,
QfrM and BetPfrM respectively. Of course,
if the topology of the focal sets does not satisfy
some conditions, the matrix HT H will not be in-
vertible.
The fact that theses functions are Markov chains
is still true when the matrices H are restricted to
a subcollection of subsets, for example to atoms.
If H is square, it may be invertible, the resulting
transition matrix will be:

Q′ = HQH−1

4.2 Conditioning and the Generalized Bayes
Theorem

Evidential Markov chains are particular cases of
evidential networks [19] since they rely on con-
ditional masses. There have been some works
about conditioning in the Dempster-Shafer the-
ory [1] [17].
In probability theory the conditional probability
of a subset A given a subset B is the new proba-
bility defined on B as probability space, and it is
given by the Bayes formula:

Pr(A|B) =
Pr(A ∩B)

Pr(B)
(17)

Such relations of conditioning have been pro-
posed for belief masses [11]. Thanks to the prob-
ability µ introduced at 2.2, ere are four ways to
express the conditional certainty that the truth
is always (µ(S ⊆ A) = Bel(A)) / possibly
(µ(S ∩A 6= �) = Pl(A)) in A given that it is al-
ways / possibly in B: Bel(A∩B)

Bel(B) , Bel(B)−Bel(B\A)
Bel(B) ;

Pl(B)−Pl(B\A)
Pl(B) (Dempster’s Bel(A|B) [15]) and

Pl(A∩B)
Pl(B) (Dempster’s Pl(A|B) [15]).

Dempster also defined the underlying conditional
mass [15], which is equal to, in the unnormalized
case:

m(A oB) =
{

µ(S ∩B = A) for A ⊆ B
0 otherwise

and, in its normalized version: m(A|B) = m(A o
B)/µ(Bc). Smets [13] proposes expressions for
the generalization of the Bayes theorem to belief

390 Proceedings of IPMU’08



functions (GBT). In this article, the expression
proposed for the masses themselves is the Con-
junctive Rule of Combination [2], which is ex-
actly the one expressed using m(A oB):

mt(A) =
∑
B

m(A oB)mt−1(B)

This is exactly the operation performed in the
EMC transition matrix product 16.
Nevertheless, Smets’ expressions for the GBT for
the belief and the plausibility functions suppose
that one of the two frames of discernment is a par-
tition. To be applied to a EMC, the GBT implies
that F is a partition of Ω. This is a particular case
which is not very interesting since it corresponds
to a classical probabilistic case where the belief
and the plausibility are all equal to a simple prob-
ability.
In conclusion, through its transition matrix, the
EMC performs one form of conjunctive rule of
combination of Demspter’s unnormalized condi-
tional masses.

4.3 Associated Hidden Markov Model

Definition 4.5. A Hidden Markov Model (HMM)
is a 5-uple (Ωx,Ωy, Q,K, P0) where (Ωx, Q, P0)
is a Markov chain, and the observation is a ran-
dom variable y taking values in Ωy and such that
the Markov kernel of y given x is K.

The internal states x of the Markov chain are not
known, except through the knowledge of y. To
estimate xt from an observed sequence yt (when
dim(y) < dim(x)), algorithms have been pro-
posed such as the Baum-Welch algorithm and the
Viterbi algorithm [10].
To compare a HMM and a EMC (see figures 1
and 2) let’s consider a given HMM with transi-
tion matrix Q. If there exists a compatible EMC
with transition matrix Q′, the following condition
must be satisfied:

(KQ−Q′K)P = 0 for all probability vectorP

If dim(M) ≤ dim(P ), one solution is Q′ =
K.Q.KT .(K.KT )−1 (if K is not degenerated).
Thus it is possible to find one EMC which is com-
patible with a given HMM, but it is not so easy

to find one HMM compatible with a given EMC
since KT K is not invertible.

Figure 1: Scheme of a HMM

Figure 2: Scheme of a EMC

Now suppose we have a EMC, and let’s consider
again the partition of Ω into classesH = {Xi/i ≤
i ≤ Nc} ⊆ 2Ω; one assumes that the conditional
belief functions Bel(Ai|Xk) are known, and that
the BBA on H is normalized. The GBT can then
be applied [13]:

αBel(Xi|Aj) =
∏
k 6=i

Bel(Ac
j |Xk)−

∏
k

Bel(Ac
j |Xk)

where α is the normalizing factor:

α = 1−
∏
k

Bel(Ac
j |Xk)

Thus, thanks to the Möbius transform, a BBA can
be calculated for the classes. If this BBA were a
classical probability, the classes Xi could be seen
as the hidden internal state of the Markov chain
whose observations are the (random) focal sets.
Thus, an EMC can be viewed as a generalization
of a classical HMM.
In conclusion, we showed that it can be easy to
find one EMC compatible with a given HMM. For
a given EMC, a family of compatible HMMs ex-
ists. When the EMC observations are random fo-
cal sets, the EMC internal state can be solved as
in a HMM.
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5 Applications

The EMC model have been first proposed to
achieve image segmentation [7] [3]. It was sup-
posed to be hidden in those cases; this means the
BBA could not be observed directly, but through
a measurement y such that the conditional prob-
abilities Pr(y|A) are known to be fixed for each
focal set A. An algorithm derived from the clas-
sical HMM identification was proposed [7].
EMCs can be also interesting models for other un-
certain systems, particularly if they involve phe-
nomena that are difficult to quantify, like human
behaviors. Such modelling can be applied to the
forecasting of the future evolution of a system;
it can also be useful for simulations in order to
measure the performances of other algorithms.
Techniques used in the classical statistics, such as
Monte-Carlo or Importance Sampling, could be
generalized to EMCs.
As an example, an EMC can be used as a simu-
lation model for the tenseness between two coun-
tries that could lead to a conflict or a war. The
tenseness is an underlying value that can be esti-
mated only through open sources of information
(journal articles, television news...) and indirectly
(e.g. through symptomatic events such as demon-
strations, declarations, political decisions...). A
decision-support system should be able to extract
a BBA from these events; to validate such systems
on can use an EMC whose focal sets are overlap-
ping rough estimations of the tenseness, and the
tenseness itself is quantized on several values (4
in the example shown figure 3. These intervals of
tenseness are the classes Xi.

Figure 3: Example for an EMC with three focal
sets ”low”, ”medium” and ”high” for 4 levels of
tenseness between two countries

The 3× 3 transition matrix of the EMC could re-
flect the fact that when the tenseness begins to

rise, it can easily rise more. For example, it can
be:

Q =

 0.9 0.1 0
0.1 0.6 0.2
0 0.3 0.8


This matrix shows for example that the tenseness
can increase easily from medium to high, but res-
olution of the crisis from high to medium is less
likely to happen. The EMC allows to translate
such approximately described phenomena into a
model that can be implemented.
An example obtained by running such an EMC
is shown at figure 4. There, a mass function is
generated by the EMC model at each time. Pre-
viously, an expert had assigned a mass function
to each one of the predefined possible classes of
events. The simulator computes then the Euclid-
ian distance between the mass vector generated
by the EMC and the mass vectors of each class,
and it chooses randomly one class amongst the
nearest ones.

Figure 4: Random sequence of classes of geopo-
litical events following an evidential Markov-
modelled increase of tenseness

6 Conclusion

Evidential Markov chains (EMCs) are a general-
ization of the classical Markov chains. They are
Markov chains involving masses on focal sets in-
stead of probabilities on elementary states. They
have been proposed only in the image segmen-
tation model [3] [7]. This paper examines some
theoretical aspects of EMCs: it relates them to the
Dempster’s rules of conditioning and the Smets’
Generalized Bayes Theorem; it points out that an
EMC is a generalization of a HMM. Some com-
putation tools based on matrix are also proposed.
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EMC models have potentially interesting appli-
cations in the field of uncertain systems, partic-
ularly those involving human behaviors or impre-
cise data such as text. An example is given for the
simulation of the tenseness between two conflict-
ing countries.
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