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Abstract 

In this paper we address and discuss the 

problem of learning graphical models 

like Bayesian networks using structure 

learning algorithms. We present a new 

parameterized structure learning 

approach. A competing fusion 

mechanism to aggregate expert 

knowledge stored in distributed 

knowledge bases or probability 

distributions is also described. 

Experimental results of a medical case 

study show that our approach can 

improve the quality of the learned 

graphical model. 

Keywords: Bayesian Networks, Competing 

Fusion, Structure Learning. 

1   Introduction 

Knowledge representation applications need a 

powerful instrument as formal graphical 

language requiring reasoning under uncertainty. 

Bayesian networks represent knowledge under 

conditions of uncertainty. We introduce a 

structure learning algorithm for Bayesian 

networks, when conditional probability 

information is missing or imperfect. The 

parameterized approach describes a complete 

class of algorithms including as special case 

standard hill climbing. Knowledge fusion is an 

important field of knowledge science and 

engineering [1], which can transform and 

integrate distributed knowledge resources to 

generate new knowledge representations or 

visualizations [2]. Experimental results of a 

medical case study concerning a logical alarm 

reduction mechanism for intensive care patients 

show that our approach is very applicable for 

knowledge fusion to improve the efficiency of 

working in groups by combining distributed 

knowledge items. 

2  Bayesian Inference and Probabilistic 

Models  

Bayesian networks are graphical models to 

represent knowledge under conditions of 

uncertainty. They have been used in many fields 

like logistic applications [3], expert systems [4] 

or classification systems as powerful tools for 

the knowledge representation and inference 

under uncertainty. Next, we review Bayesian 

networks and Bayesian inference and proceed to 

learn such network structures and finally 

combine network structures built from different 

experts via competing fusion using sampling 

techniques and LinOP aggregation.  

Bayesian networks and the use of such 

probabilistic models is based on direct acyclic 

graphs (DAG) with a probability table 

associated with each node. The nodes in a 

Bayesian network represent propositional 

variables in a domain, the edges between the 

nodes represent the dependency relationship 

among the variables. Each node has a 

conditional probability table (CPT) P(X | 

X1,…,Xn) attached that quantifies the effects that 

the parents X1,…,Xn  have on the node. We could 

say that the conditional probabilities encode the 

strength of dependencies among the variables. 

For each variable a conditional probability 

distribution is defined that specifies the 

probability of node X  being in a certain state 

given the values of the parents of X.  

A decision maker makes decisions by 

combining his own knowledge, experience and 

intuition with that available from other sources. 

Given a learned network structure like Bayesian 

networks the decision maker can derive 
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additional information by applying an inference 

algorithm. We use the learned Bayesian network 

to calculate new probabilities when particular 

information is achieved. For instance let A have 

n states with P(A) = (x1, ..., xn) and assume that 

we get the information e that A can only be in 

state i or j. This statement expresses that all 

states except for i and j are impossible, so next 

we can illustrate the probability distribution as 

P(A, e) = (0,...,0, xi, 0,...,0, xj ,0, ...,0). Note that 

P(e) is the sum of P(a,e). Assume a joint 

probability table P(U) where e is the preceding 

finding (n-dimensional table of zeros and ones). 

Using the chain rule for a Bayesian network [5] 

over the universe U and let ei  be findings we 

can express the following 

���, �� = � �	
|�
�
�� ∙�∈� � ���  (1) 
 

and for A ∈ U we have 

��
, �� = ∑ ���, �� �\{�}���� . (2) 

On constructing Bayesian networks from skill 

data as application area we use nodes to 

represent database attributes. Different Bayesian 

network structure learning algorithms have been 

developed. A good overview demonstrating 

general approaches to graphical probabilistic 

model learning from data is introduced by [6], 

[7] and [8]. In general we can distinguish 

between search and score methods and the 

dependency analysis approach. 

In the first case the algorithm views the skill 

learning problem as searching for a structure 

that best fits the data. The methods starts as 

graphical representation without any edges, 

using some search method to add an edge to the 

representation. In the next step they can use 

score methods to compare the new with the 

older structure. The main problem to learn 

Bayesian networks using search and scoring 

methods is the NP-hard complexity. 

Representative algorithms belonging to the 

search and scoring method are polytree 

construction algorithms, the K2 algorithm 

applying a Bayesian scoring method or the Lam-

Bacchus algorithm applying the minimal 

description length principle.  

Using the second dependency analysis method is 

a different approach. These algorithms try to 

discover the dependencies from the data and 

next use these dependencies to infer the 

structure. 

Our approach introduced in the following 

section belongs to the first family of algorithms. 

Based on the complexity examination we count 

the number of independent  network parameters 

as 

|��| = ��|��| − 1�� ∙ |�
����| (3) 

  with |pa(Xi)| as number of (joint) states of all 

parent nodes of Xi to obtain a complexity 

boundary as model complexity. 

3   Learning Bayesian Network 

Structures 

The revelation of conditional independence 

relationships plays a fundamental role within the 

medical diagnostic and information processing. 

When for instance learning network structures 

from skill data, one applies information theoretic 

measures to detect conditional independence 

relations and afterwards uses the well known d-

separation concept [9] to infer the structures of 

networks [10]. Measure the volume of the 

information flow between two nodes to 

conclude if a group of valves corresponding to a 

condition set can reduce and eventually block 

the information flow.  

In Bayesian networks information can be 

determined about the value of a node knowing 

the value of the other node when both nodes are 

dependent. The mutual information between two 

nodes can therefore provide information in the 

case of two nodes dependency. The degree of 

their relationship is also important. The mutual 

information of two nodes Xi and Xj is defined as  

 !"	�� , �#� = � �	$� , $#�%&'( ��$� , $#���$����$#�)*,)+
 (4) 

 

and the conditional mutual information is 

defined as 

 !"	�� , �#|,�
= � �	$� , $# , -�%&'( ��$� , $#|-���$�|-���$#|-�)*,)+,.  . (5) 

 

Based on model complexity and evaluation 

measures we built up parameterized scoring 

functions as follows: 
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"/�0, 1�= �� � � � �	��2+∈34�	5+�5+∈67�8*�)*∈34��8*��
= $� , 9# = :#�%&'( �	�� = $� , 9# = :#����� = $�� ∙ �	9# = :#��
− ; ∙ ��|��| − 1� ∙ � |�|

8<67�)*��  . 
(6) 

 

Formula (6) takes the following form applying 

maximum likelihood: 

"(�0, 1� = �= ∙ � � � =�#>= %&'( =�#>=�# �?*
>@/

A*
#@/

B
�@/− ; ∙ |��| 

 

(7) 

where m represents the network structure, D the 

training data, N the total number of cases, 

)1( niir ≤≤  the cardinality of the random 

variable Xi, )1( niiq ≤≤  the number of joint 

states of all parent nodes of Xi and || mθ  stands 

for the number of independent network 

parameters, expressed also as |��| =∑ �C� − 1� ∙ D�B�@/ . In special cases regarding the 

scoring function well known quality measures 

can be present for specific β allocations like 

β=1 (AIC metric) or ; = /( %&'(= (minimum 

description length metric). Different additional 

quality measure instances are discussed in detail 

in [11] and [12]. 

3.1  Searching Strategies 

In several well known searching problems we 

have the property that the state description itself 

contains all the information needed to find a 

solution. The path by which the solution is 

reached is in this case irrelevant. The calculation 

of the optimal Bayesian network structure 

includes browsing through the complete network 

search space. The naive approach is to measure 

for any search order each graph structure and 

give back the best valued DAG. The main 

problem is the huge number of different directed 

acyclic graphs, which depends on the node 

number n:  

'�!� = ��−1��E/ F!G H 2��BJ�� B
�@/ . (8) 

The following table 1 gives an impression about 

the growing number of directed acyclic graphs 

depending on the number of network nodes n.  If 

n exceeds the value 7 machine learning 

applications need further searching strategies 

like heuristic strategies. 

Table 1: Number of directed acyclic graphs g(n) 

depending on the number of nodes n 

n 5 6 7 8 10 

g(n) 29281 3.78⋅106 2.46⋅108 7.84⋅1011 4.18⋅1018 

 

Iterative improvement algorithms often provide 

the most practical approach. Consider all states 

laid out on the surface of a landscape. The 

height of any point on the landscape corresponds 

to the evaluation function of the state at that 

point. The idea is to move around the landscape 

by trying to find the highest peaks which stand 

for the optimal solutions [5].  

Hill Climbing algorithms always try to make 

changes that improve the current state. They 

continually move into the direction of increasing 

values. Hill Climbing does not maintain a search 

tree, so the node data structure need only record 

the state and its evaluation by value. When there 

is more than one best successor to choose from, 

the algorithm can select among them via 

random.  

Instead of starting randomly in the case of stuck 

in a local minimum, we could also allow the 

search to take some downhill steps to escape the 

local minimum. This is the idea of simulated 

annealing. Instead of picking the best move, it 

picks a random move. If the move actually 

improves the situation, it is always executed. 

Otherwise, the algorithm makes the move with 

some probability degree less than one. The 

probability decreases exponentially with the 

badness value of the move. A second parameter 

T is also used to determine the probability. At 

higher values of T, bad moves are more likely to 

be allowed. As T tends to zero, they become 

more and more unlikely, until the simulated 

annealing algorithm behaves more or less like 

Hill Climbing. Hill Climbing search contains 

useful optimization potential evaluated in the 

following subsection. 

3.2  Learning Structures Using LAGD 

Hill Climbing  

Based on appropriate scoring functions like (6) 

or (7) a local search strategy using greedy hill 

climbing can be executed to compare the 

directed acyclic graphs 04K3 and 0BLM using ∆= "�0BLM� − "�04K3�. Look ahead in good 

directions (LAGD) hill climbing as new 

generalization approach calculates in advance k 
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steps in regard to the chosen scoring function. 

Another parameter l stands for the number of 

best evaluated network structures per look ahead 

step. LAGD Hill Climbing offers a new class of 

parameterized algorithms including the 

parameters: 

 

• number of look ahead steps k  

• number of calculated good operations l 

per each look ahead step 
 

The LAGD hill climbing algorithm using local 

search can be expressed in pseudo code as 

follows: 
 

1. Start the algorithm using an arbitrary 

DAG 04K3. 

2. Calculate the difference value ∆ well-

defined as ∆= "�0BLM� − "�04K3� 

between the current DAG candidate 04K3 and all its neighbours 0BLM. Store 

the l best valued operations in a specific 

set B1. 

3. ∀P ∈ Q/: Execute operation b and 

calculate according to 2. a specific set 

B2 with the l best operations based on 

the current network structure. Continue 

step 3 until reaching look ahead depth k 

and choose on the last recursion level 

the operation greedy. 

4. Choose a transition sequence to 

maximize ∆ based on all considered 

sequences and set 04K3 as one of the 

DAGs with the greatest score-win rate 

in regard to ∆. 

5. GOTO 2. UNTIL ∆≤ 0 for all allowed 

transition sequences to graph structures 

in a distance of k steps.  

6. Deliver the outcoming DAG 04K3. 

 

As testbed for the implementation we used the 

WEKA environment (Waikato Environment for 

Knowledge Analysis), a collection of machine 

learning algorithms for data mining and 

knowledge discovery tasks [17]. We were able 

to integrate our developed LAGD hill climbing 

in the Waikato Environment and today LAGD is 

an integral part of WEKA. The LAGD Hill 

Climbing algorithm spans a whole class of 

structure learning algorithms parameterized by 

the number of good operations l, the number of 

look ahead steps k, the maximal number of 

parents per node, the score type as instance of 

quality measures like bayes, entropy, akaike 

information criterion or minimum description 

length, the initiation possibility as naive bayes 

classifier and the final application of a markov 

blanket correction (compare figure 1).  

 

 

Figure 1:  LAGD spans a whole class of 

structure learning algorithms 

The special case k=1 (nrOfLookAheadSteps=1) 

results in standard greedy hill climbing. To 

reduce the calculating time adjust the parameter 

l to regard only the l best valued operations per 

look ahead step. The lower bound concerning 

the network structure quality agrees with 

standard greedy hill climbing results based on 

greedy k-step operation sequences. The 

computational complexity per iteration step (k-

step sequence) with n Bayesian network nodes, 

k look ahead steps and l good operations per 

look ahead step can be determined as U�∑ %� ∙ !(>J/�@V �. This term may be assessed by U�%>J/ ∙ !(�, as can be seen by the following 

induction: 

We want to show that ∑ %� ∙ !(>J/�@V ≤ 2 ∙ %>J/ ∙ !(. 

Initial induction step k=1:  ∑ %� ∙ !(/J/�@V = !( ≤ 2 ∙ %/J/ ∙ !( = 2 ∙ !( (true) 

Induction step k → k+1:   

� %��>E/�J/
�@V ∙ !( = W� %� ∙ !(>J/

�@V X + %> ∙ !( ≤Z[\ 2 ∙ %>J/
∙ !( + %> ∙ !( ≤ZK]( % ∙ %>J/ ∙ !( + %>
∙ !( = 2 ∙ %> ∙ !( = 2 ∙ %�>E/�J/ ∙ !( 

Obviously ∑ %� ∙ !(>J/�@V  can be assessed by  2 ∙ %>J/ ∙ !(. The argument follows when 

neglecting the multiplier 2 according to 

Bachmann-Landau notation. 
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3.3  Experimental Results for Medical 

Data Using LAGD Hill Climbing  

We have chosen a medical test dataset to 

compare our LAGD Hill Climbing algorithm 

with other classical well known algorithms like 

simulated annealing or standard greedy hill 

climbing used for different metrics as instances 

of quality measures (i.e. AIC, MDL).  

The ALARM network [13] is a commonly used 

network which is a representative of a real life 

Bayesian network. It was originally described by 

Beinlich as a network for monitoring patients in 

intensive care. The ALARM network structure 

consists of 37 nodes and 46 edges with 8 

diagnosis, 16 medical findings and 13 temporary 

variables. 

A Monte Carlo technique named Probabilistic 

Logic Sampling was used to generate case 

databases consisting of 10.000 test cases based 

on the ALARM network. Probabilistic Logic 

Sampling generates each case or sample by 

orienting to the weak node order induced by the 

underlying directed acyclic graph [14].  

The criterion to compare the quality or 

performance of different Bayesian networks 

learned according to different structure learning 

algorithms is the so called LogScore, which is 

based on the appropriate local score metric. 

When applying for instance the akaike 

information criterion (AIC with b=1) the 

LogScore AIC derives as follows:  ^&'_-&C��[`�0, 1� = −ℎ(�0, 1�
= b= ∙ � � � =�#>=

?*
>@/

A*
#@/ %&'(

B
�@/

=�#>=�# c 

− ; ∙ |��|. 
(9) 

I. e. we derive the LogScore AIC by simply 

multiplying the AIC metric by minus one. It 

follows from formula (9) the equation ^&'_-&C��[`�0, 1� = −ℎ(�0, 1� = "(�0, 1�. 

Figure 2 illustrates the learning curve for the 

dataset ALARM using the parameter values 

maxNrOfParents=5, nrOfLookAheadSteps=2 

and nrOfGoodOperations=5 with LogScore 

AIC (b=1).  

The quotient 
d*+ed*+  is always in the interval (0,1], 

i. e. the resulting logarithm of this quotient is 

obviously less than or equal to zero. 

Figure 2: ALARM LAGD Hill Climbing 

learning curve with LogScore AIC 

The LogScore starts strong negative and rises 

successive in finding better valued neighbour 

graphs. With increasing the number of iteration 

steps the model-complexity function reduces the 

total LogScore by the summand ; ∙ |��|. Our 

experimental results evaluate different structure 

learning algorithms like simulated annealing, 

greedy hill climbing and LAGD based on 

LogScore metrics Bayes, AIC and MDL (see 

figure 3). 

 Figure 3: Structure learning results comparing 

different Bayesian network structure learning 

algorithms with LogScore metrics AIC, Bayes 

and MDL 

Figure 4 displays in detail the dependency 

between the quality of the calculated network 

structure and the number of look ahead steps 

with fixed parameter value l=2. We have chosen 

the minimum description length as local score 

metric for an exemplary comparison of greedy 

hill climbing and LAGD since results were very 

similar using the other metrics AIC and Bayes. 
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Figure 4: Comparison of greedy Hill Climbing 

and LAGD with varied look ahead steps using 

LogScore MDL 

It is obvious that increasing LAGD look ahead 

steps causes a better network quality. The 

startling bending down of the curve when 

increasing the look ahead parameter from 5 to 6 

may be explained as follows: With look ahead 

parameter k=5 LAGD finds a good local 

optimum, while with parameter k=6 LAGD falls 

in a trap, when seeing a better evaluated graph 

structure in the beginning. LAGD follows this 

“false” path, that finally results in a local 

optimum, which is unfortunately worse than in 

the case k=5. 

4   Competing Fusion of Distributed 

Knowledge 

The development of knowledge-based systems 

involves knowledge acquisition from a diversity 

of sources often geographically distributed. It is 

obviously difficult to bring together information 

from different knowledge sources about a 

subject of common interest. The sources include 

for instance written documents, interviews and 

application data stored in distributed knowledge 

bases disposed from different experts often 

specialized in a medical field like intensive care 

or a specialist in internal medicine. 

Intuitively merging medical knowledge bases is 

to find a knowledge base that has at least as 

much information as each component medical 

knowledge base and is the smallest such medical 

knowledge base. Different experts working 

together are not in a position to generate the 

complete Bayesian network structure including 

conditional probability tables and all necessary 

random variables. An expert Ei (i=1,…,n) 

working in an specific hospital division has only 

access to specific medical data or medical 

knowledge to build a substructure of a complete 

Bayesian network structure. The main problem 

occurs when all included experts compose their 

individual medical knowledge to build up the 

Bayesian network structure representing the 

domain knowledge. We can integrate knowledge 

stored in different Bayesian networks BNi 

through knowledge fusion. Researchers 

differentiate the aspects competing, 

complementary and cooperative knowledge 

fusion. 

To merge different Bayesian networks (for 

example BN1 and BN2) we must first determine a 

measure for the approximation quality. A 

suitable measure is the Kullback-Leibler 

divergence between Bayesian network structures 

like BN1 and BN2. The Kullback-Leibler 

divergence [15] expresses the difference or 

distance between two probability distributions. 

Given the probability distributions p and q 

define KL(p,q) as follows:  
 

 f^��, D� =   � ��$�%&')  ��$�D�$�.    (10) 

 

The Kullback-Leibler divergence is obviously 

not symmetric and can also be verbalised using 

the cross entropy H(p,q) as follows: 
 

 f^��, D� =   − � ��$�%&')  D�$�    
+ � ��$�%&')  ��$� 

       = g��, D� − g���. 
(11) 

 

The KL divergence values are not negative with 

KL(p,q) = 0 if and only if  p=q. 

Competing fusion includes combined expert 

knowledge from different fields like medical, 

financial or engineering problem scenarios. 

Each expert can generate a case database with 

embedded and not obvious inferable conditional 

probability table settings and network structures. 

The Bayesian network learning algorithm 

introduced in section 3 delivers Bayesian 

networks for each expert to fuse via sampling or 

via LinOP aggregation. 
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Competing fusion via sampling: 

1. Synthesize for each expert network a 

case database using a Monte Carlo 

technique. 

2. Aggregate the expert case databases. 

3. Learn the aggregated Bayesian network 

structure based on the case database 

determined in 2. using an automatic 

learning algorithm. 

 

 

Figure 5: Sampling aggregation results with 

Kullback-Leibler divergence 

The ALARM network [13] was splitted in two 

disjoint case databases based on a Monte Carlo 

technique named Probabilistic Logic Sampling. 

The respective Bayesian networks BN1 and BN2 

were learned with LAGD. According to the 

described sampling algorithm the Bayesian 

network Sampl.-Aggr. was generated. The 

number of samples was varied between 200 and 

20000. Results are illustrated in figure 5.  

The use of Monte Carlo techniques and the 

hereby induced noise may be avoided by 

applying an aggregation operator for a common 

unified probability distribution. The aggregation 

of L expert probability distributions p1,…,pL 

using the LinOP operator [16] leads to the 

following algorithm: 

1. Aggregate the probability distributions 

p1,…,pL of L Bayesian networks using the 

LinOP operator for a common probability 

distribution 
 

�∗ =   � i�∑ i#j#@/
j

�@/ �� ,    (12) 

 

        with LinOP 
 

^G!U� �i/, �/, … , ij , �j� = � i���
j

�@/ .    (13) 

  

2. Learn the aggregated Bayesian network with 

a local score metric based learning 

algorithm using p
*
. 

 

The ALARM network results using competing 

fusion via LinOP aggregation demonstrates the 

following figure 6 [18]: 

 

Figure 6: LinOP aggregation results with 

Kullback-Leibler divergence 

When comparing sampling aggregation to 

LinOP aggregation in the case of small sample 

sizes (less than 2000) the results show that 

LinOP aggregation clearly outperforms 

sampling aggregation. Due to the introduced 

noise the aggregated network Samp.-Aggr. has 

an even higher Kullback-Leibler divergence 

compared to the original Bayesian networks BN1 

and BN2. Increasing successively sample sizes 

causes in both cases an asymptotical alignment 

of Kullback-Leibler divergence of the 

aggregated network structure to the optimum. 

5   Summary and Future Work 

We presented a new local score metrics based 

structure learning approach called LAGD Hill 

Climbing. The number of look ahead steps and 

the number of operations considered for look 

ahead are configurable, which spans a whole 

class of structure learning algorithms. Both the 

time taken for computing and the quality of the 

calculated Bayesian network structure may be 

tuned by adjusting these parameters. 

The test result for the ALARM network using 

quality measures like LogScore AIC, Bayes and 

MDL clarifies the advantages of LAGD in 

regard to the achievable network quality. LAGD 

is fully integrated in the Waikato Environment 

for Knowledge Analysis and may be 

downloaded via the WEKA website. In the 

future, the usage of a generalized structure 
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learning approach including dynamic 

interdependencies between look ahead steps and 

number of good operations is intended. 

LAGD hill climbing may be applied in the field 

of mechanical engineering and especially 

product lifecyle management to learn from 

existing condition monitoring data and reveal 

relationships between sensor data, 

environmental parameters and failure events. In 

this context competing fusion improves the 

quality of aggregated knowledge models based 

on distributed knowledge sources. Aggregation 

and fusion methods like sampling aggregation 

and LinOP aggregation make the generated 

condition monitoring knowledge collected in the 

product use phase from various customers 

within a feedback cycle usable for product 

development and help to improve the next 

generation of a given product, which is topic of 

another paper [19]. 
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