
Competing Fusion for Bayesian Applications

Michael Abramovici, Manuel Neubach
University of Bochum

Chair of Information Technology in

Mechanical Engineering, Bochum, Germany

{abr,manuel.neubach}@itm.rub.de

Madjid Fathi, Alexander Holland
University of Siegen

Institute of Knowledge Based Systems

Siegen, Germany

{fathi,alex}@informatik.uni-siegen.de

Abstract

In this paper we address and discuss the

problem of learning graphical models

like Bayesian networks using structure

learning algorithms. We present a new

parameterized structure learning

approach. A competing fusion

mechanism to aggregate expert

knowledge stored in distributed

knowledge bases or probability

distributions is also described.

Experimental results of a medical case

study show that our approach can

improve the quality of the learned

graphical model.

Keywords: Bayesian Networks, Competing

Fusion, Structure Learning.

1 Introduction

Knowledge representation applications need a

powerful instrument as formal graphical

language requiring reasoning under uncertainty.

Bayesian networks represent knowledge under

conditions of uncertainty. We introduce a

structure learning algorithm for Bayesian

networks, when conditional probability

information is missing or imperfect. The

parameterized approach describes a complete

class of algorithms including as special case

standard hill climbing. Knowledge fusion is an

important field of knowledge science and

engineering [1], which can transform and

integrate distributed knowledge resources to

generate new knowledge representations or

visualizations [2]. Experimental results of a

medical case study concerning a logical alarm

reduction mechanism for intensive care patients

show that our approach is very applicable for

knowledge fusion to improve the efficiency of

working in groups by combining distributed

knowledge items.

2 Bayesian Inference and Probabilistic

Models

Bayesian networks are graphical models to

represent knowledge under conditions of

uncertainty. They have been used in many fields

like logistic applications [3], expert systems [4]

or classification systems as powerful tools for

the knowledge representation and inference

under uncertainty. Next, we review Bayesian

networks and Bayesian inference and proceed to

learn such network structures and finally

combine network structures built from different

experts via competing fusion using sampling

techniques and LinOP aggregation.

Bayesian networks and the use of such

probabilistic models is based on direct acyclic

graphs (DAG) with a probability table

associated with each node. The nodes in a

Bayesian network represent propositional

variables in a domain, the edges between the

nodes represent the dependency relationship

among the variables. Each node has a

conditional probability table (CPT) P(X |

X1,…,Xn) attached that quantifies the effects that

the parents X1,…,Xn have on the node. We could

say that the conditional probabilities encode the

strength of dependencies among the variables.

For each variable a conditional probability

distribution is defined that specifies the

probability of node X being in a certain state

given the values of the parents of X.

A decision maker makes decisions by

combining his own knowledge, experience and

intuition with that available from other sources.

Given a learned network structure like Bayesian

networks the decision maker can derive

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 378–385

Torremolinos (Málaga), June 22–27, 2008

additional information by applying an inference

algorithm. We use the learned Bayesian network

to calculate new probabilities when particular

information is achieved. For instance let A have

n states with P(A) = (x1, ..., xn) and assume that

we get the information e that A can only be in

state i or j. This statement expresses that all

states except for i and j are impossible, so next

we can illustrate the probability distribution as

P(A, e) = (0,...,0, xi, 0,...,0, xj ,0, ...,0). Note that

P(e) is the sum of P(a,e). Assume a joint

probability table P(U) where e is the preceding

finding (n-dimensional table of zeros and ones).

Using the chain rule for a Bayesian network [5]

over the universe U and let ei be findings we

can express the following

���, �� = � �	
|�
�
�� ∙�∈� � ��� (1)

and for A ∈ U we have

��
, �� = ∑ ���, �� �\{�}���� . (2)

On constructing Bayesian networks from skill

data as application area we use nodes to

represent database attributes. Different Bayesian

network structure learning algorithms have been

developed. A good overview demonstrating

general approaches to graphical probabilistic

model learning from data is introduced by [6],

[7] and [8]. In general we can distinguish

between search and score methods and the

dependency analysis approach.

In the first case the algorithm views the skill

learning problem as searching for a structure

that best fits the data. The methods starts as

graphical representation without any edges,

using some search method to add an edge to the

representation. In the next step they can use

score methods to compare the new with the

older structure. The main problem to learn

Bayesian networks using search and scoring

methods is the NP-hard complexity.

Representative algorithms belonging to the

search and scoring method are polytree

construction algorithms, the K2 algorithm

applying a Bayesian scoring method or the Lam-

Bacchus algorithm applying the minimal

description length principle.

Using the second dependency analysis method is

a different approach. These algorithms try to

discover the dependencies from the data and

next use these dependencies to infer the

structure.

Our approach introduced in the following

section belongs to the first family of algorithms.

Based on the complexity examination we count

the number of independent network parameters

as

|��| = ��|��| − 1�� ∙ |�
����| (3)

 with |pa(Xi)| as number of (joint) states of all

parent nodes of Xi to obtain a complexity

boundary as model complexity.

3 Learning Bayesian Network

Structures

The revelation of conditional independence

relationships plays a fundamental role within the

medical diagnostic and information processing.

When for instance learning network structures

from skill data, one applies information theoretic

measures to detect conditional independence

relations and afterwards uses the well known d-

separation concept [9] to infer the structures of

networks [10]. Measure the volume of the

information flow between two nodes to

conclude if a group of valves corresponding to a

condition set can reduce and eventually block

the information flow.

In Bayesian networks information can be

determined about the value of a node knowing

the value of the other node when both nodes are

dependent. The mutual information between two

nodes can therefore provide information in the

case of two nodes dependency. The degree of

their relationship is also important. The mutual

information of two nodes Xi and Xj is defined as

 !"	�� , �#� = � �	$� , $#�%&'(��$� , $#���$����$#�)*,)+
 (4)

and the conditional mutual information is

defined as

 !"	�� , �#|,�
= � �	$� , $# , -�%&'(��$� , $#|-���$�|-���$#|-�)*,)+,. . (5)

Based on model complexity and evaluation

measures we built up parameterized scoring

functions as follows:

Proceedings of IPMU’08 379

"/�0, 1�= �� � � � �	��2+∈34�	5+�5+∈67�8*�)*∈34��8*��
= $� , 9# = :#�%&'(�	�� = $� , 9# = :#����� = $�� ∙ �	9# = :#��
− ; ∙ ��|��| − 1� ∙ � |�|

8<67�)*�� .
(6)

Formula (6) takes the following form applying

maximum likelihood:

"(�0, 1� = �= ∙ � � � =�#>= %&'(=�#>=�# �?*
>@/

A*
#@/

B
�@/− ; ∙ |��|

(7)

where m represents the network structure, D the

training data, N the total number of cases,

)1(niir ≤≤ the cardinality of the random

variable Xi,)1(niiq ≤≤ the number of joint

states of all parent nodes of Xi and || mθ stands

for the number of independent network

parameters, expressed also as |��| =∑ �C� − 1� ∙ D�B�@/ . In special cases regarding the

scoring function well known quality measures

can be present for specific β allocations like

β=1 (AIC metric) or ; = /(%&'(= (minimum

description length metric). Different additional

quality measure instances are discussed in detail

in [11] and [12].

3.1 Searching Strategies

In several well known searching problems we

have the property that the state description itself

contains all the information needed to find a

solution. The path by which the solution is

reached is in this case irrelevant. The calculation

of the optimal Bayesian network structure

includes browsing through the complete network

search space. The naive approach is to measure

for any search order each graph structure and

give back the best valued DAG. The main

problem is the huge number of different directed

acyclic graphs, which depends on the node

number n:

'�!� = ��−1��E/ F!G H 2��BJ�� B
�@/ . (8)

The following table 1 gives an impression about

the growing number of directed acyclic graphs

depending on the number of network nodes n. If

n exceeds the value 7 machine learning

applications need further searching strategies

like heuristic strategies.

Table 1: Number of directed acyclic graphs g(n)

depending on the number of nodes n

n 5 6 7 8 10

g(n) 29281 3.78⋅106 2.46⋅108 7.84⋅1011 4.18⋅1018

Iterative improvement algorithms often provide

the most practical approach. Consider all states

laid out on the surface of a landscape. The

height of any point on the landscape corresponds

to the evaluation function of the state at that

point. The idea is to move around the landscape

by trying to find the highest peaks which stand

for the optimal solutions [5].

Hill Climbing algorithms always try to make

changes that improve the current state. They

continually move into the direction of increasing

values. Hill Climbing does not maintain a search

tree, so the node data structure need only record

the state and its evaluation by value. When there

is more than one best successor to choose from,

the algorithm can select among them via

random.

Instead of starting randomly in the case of stuck

in a local minimum, we could also allow the

search to take some downhill steps to escape the

local minimum. This is the idea of simulated

annealing. Instead of picking the best move, it

picks a random move. If the move actually

improves the situation, it is always executed.

Otherwise, the algorithm makes the move with

some probability degree less than one. The

probability decreases exponentially with the

badness value of the move. A second parameter

T is also used to determine the probability. At

higher values of T, bad moves are more likely to

be allowed. As T tends to zero, they become

more and more unlikely, until the simulated

annealing algorithm behaves more or less like

Hill Climbing. Hill Climbing search contains

useful optimization potential evaluated in the

following subsection.

3.2 Learning Structures Using LAGD

Hill Climbing

Based on appropriate scoring functions like (6)

or (7) a local search strategy using greedy hill

climbing can be executed to compare the

directed acyclic graphs 04K3 and 0BLM using ∆= "�0BLM� − "�04K3�. Look ahead in good

directions (LAGD) hill climbing as new

generalization approach calculates in advance k

380 Proceedings of IPMU’08

steps in regard to the chosen scoring function.

Another parameter l stands for the number of

best evaluated network structures per look ahead

step. LAGD Hill Climbing offers a new class of

parameterized algorithms including the

parameters:

• number of look ahead steps k

• number of calculated good operations l

per each look ahead step

The LAGD hill climbing algorithm using local

search can be expressed in pseudo code as

follows:

1. Start the algorithm using an arbitrary

DAG 04K3.

2. Calculate the difference value ∆ well-

defined as ∆= "�0BLM� − "�04K3�

between the current DAG candidate 04K3 and all its neighbours 0BLM. Store

the l best valued operations in a specific

set B1.

3. ∀P ∈ Q/: Execute operation b and

calculate according to 2. a specific set

B2 with the l best operations based on

the current network structure. Continue

step 3 until reaching look ahead depth k

and choose on the last recursion level

the operation greedy.

4. Choose a transition sequence to

maximize ∆ based on all considered

sequences and set 04K3 as one of the

DAGs with the greatest score-win rate

in regard to ∆.

5. GOTO 2. UNTIL ∆≤ 0 for all allowed

transition sequences to graph structures

in a distance of k steps.

6. Deliver the outcoming DAG 04K3.

As testbed for the implementation we used the

WEKA environment (Waikato Environment for

Knowledge Analysis), a collection of machine

learning algorithms for data mining and

knowledge discovery tasks [17]. We were able

to integrate our developed LAGD hill climbing

in the Waikato Environment and today LAGD is

an integral part of WEKA. The LAGD Hill

Climbing algorithm spans a whole class of

structure learning algorithms parameterized by

the number of good operations l, the number of

look ahead steps k, the maximal number of

parents per node, the score type as instance of

quality measures like bayes, entropy, akaike

information criterion or minimum description

length, the initiation possibility as naive bayes

classifier and the final application of a markov

blanket correction (compare figure 1).

Figure 1: LAGD spans a whole class of

structure learning algorithms

The special case k=1 (nrOfLookAheadSteps=1)

results in standard greedy hill climbing. To

reduce the calculating time adjust the parameter

l to regard only the l best valued operations per

look ahead step. The lower bound concerning

the network structure quality agrees with

standard greedy hill climbing results based on

greedy k-step operation sequences. The

computational complexity per iteration step (k-

step sequence) with n Bayesian network nodes,

k look ahead steps and l good operations per

look ahead step can be determined as U�∑ %� ∙ !(>J/�@V �. This term may be assessed by U�%>J/ ∙ !(�, as can be seen by the following

induction:

We want to show that ∑ %� ∙ !(>J/�@V ≤ 2 ∙ %>J/ ∙ !(.

Initial induction step k=1: ∑ %� ∙ !(/J/�@V = !(≤ 2 ∙ %/J/ ∙ !(= 2 ∙ !((true)

Induction step k → k+1:

� %��>E/�J/
�@V ∙ !(= W� %� ∙ !(>J/

�@V X + %> ∙ !(≤Z[\ 2 ∙ %>J/
∙ !(+ %> ∙ !(≤ZK](% ∙ %>J/ ∙ !(+ %>
∙ !(= 2 ∙ %> ∙ !(= 2 ∙ %�>E/�J/ ∙ !(

Obviously ∑ %� ∙ !(>J/�@V can be assessed by 2 ∙ %>J/ ∙ !(. The argument follows when

neglecting the multiplier 2 according to

Bachmann-Landau notation.

Proceedings of IPMU’08 381

3.3 Experimental Results for Medical

Data Using LAGD Hill Climbing

We have chosen a medical test dataset to

compare our LAGD Hill Climbing algorithm

with other classical well known algorithms like

simulated annealing or standard greedy hill

climbing used for different metrics as instances

of quality measures (i.e. AIC, MDL).

The ALARM network [13] is a commonly used

network which is a representative of a real life

Bayesian network. It was originally described by

Beinlich as a network for monitoring patients in

intensive care. The ALARM network structure

consists of 37 nodes and 46 edges with 8

diagnosis, 16 medical findings and 13 temporary

variables.

A Monte Carlo technique named Probabilistic

Logic Sampling was used to generate case

databases consisting of 10.000 test cases based

on the ALARM network. Probabilistic Logic

Sampling generates each case or sample by

orienting to the weak node order induced by the

underlying directed acyclic graph [14].

The criterion to compare the quality or

performance of different Bayesian networks

learned according to different structure learning

algorithms is the so called LogScore, which is

based on the appropriate local score metric.

When applying for instance the akaike

information criterion (AIC with b=1) the

LogScore AIC derives as follows: ^&'_-&C��[`�0, 1� = −ℎ(�0, 1�
= b= ∙ � � � =�#>=

?*
>@/

A*
#@/ %&'(

B
�@/

=�#>=�# c

− ; ∙ |��|.
(9)

I. e. we derive the LogScore AIC by simply

multiplying the AIC metric by minus one. It

follows from formula (9) the equation ^&'_-&C��[`�0, 1� = −ℎ(�0, 1� = "(�0, 1�.

Figure 2 illustrates the learning curve for the

dataset ALARM using the parameter values

maxNrOfParents=5, nrOfLookAheadSteps=2

and nrOfGoodOperations=5 with LogScore

AIC (b=1).

The quotient
d*+ed*+ is always in the interval (0,1],

i. e. the resulting logarithm of this quotient is

obviously less than or equal to zero.

Figure 2: ALARM LAGD Hill Climbing

learning curve with LogScore AIC

The LogScore starts strong negative and rises

successive in finding better valued neighbour

graphs. With increasing the number of iteration

steps the model-complexity function reduces the

total LogScore by the summand ; ∙ |��|. Our

experimental results evaluate different structure

learning algorithms like simulated annealing,

greedy hill climbing and LAGD based on

LogScore metrics Bayes, AIC and MDL (see

figure 3).

 Figure 3: Structure learning results comparing

different Bayesian network structure learning

algorithms with LogScore metrics AIC, Bayes

and MDL

Figure 4 displays in detail the dependency

between the quality of the calculated network

structure and the number of look ahead steps

with fixed parameter value l=2. We have chosen

the minimum description length as local score

metric for an exemplary comparison of greedy

hill climbing and LAGD since results were very

similar using the other metrics AIC and Bayes.

-103600

-102600

-101600

-100600

-99600

-98600

-97600

-96600

-95600

-94600

LogScore AIC LogScore Bayes LogScore MDL

Simulated Annealing

(Tstart: 10, delta factor:

0.9999, # runs: 100000)

Greedy Hill Climbing (max.

parent nodes: 5)

Repeated Greedy Hill

Climbing (max. # parent

nodes: 5)

LAGD (max. # parent

nodes: 5, look ahead steps:

4, # good operations: 5)

LAGD (max. # parent

nodes: 5, look ahead steps:

11, # good operations: 2)

382 Proceedings of IPMU’08

Figure 4: Comparison of greedy Hill Climbing

and LAGD with varied look ahead steps using

LogScore MDL

It is obvious that increasing LAGD look ahead

steps causes a better network quality. The

startling bending down of the curve when

increasing the look ahead parameter from 5 to 6

may be explained as follows: With look ahead

parameter k=5 LAGD finds a good local

optimum, while with parameter k=6 LAGD falls

in a trap, when seeing a better evaluated graph

structure in the beginning. LAGD follows this

“false” path, that finally results in a local

optimum, which is unfortunately worse than in

the case k=5.

4 Competing Fusion of Distributed

Knowledge

The development of knowledge-based systems

involves knowledge acquisition from a diversity

of sources often geographically distributed. It is

obviously difficult to bring together information

from different knowledge sources about a

subject of common interest. The sources include

for instance written documents, interviews and

application data stored in distributed knowledge

bases disposed from different experts often

specialized in a medical field like intensive care

or a specialist in internal medicine.

Intuitively merging medical knowledge bases is

to find a knowledge base that has at least as

much information as each component medical

knowledge base and is the smallest such medical

knowledge base. Different experts working

together are not in a position to generate the

complete Bayesian network structure including

conditional probability tables and all necessary

random variables. An expert Ei (i=1,…,n)

working in an specific hospital division has only

access to specific medical data or medical

knowledge to build a substructure of a complete

Bayesian network structure. The main problem

occurs when all included experts compose their

individual medical knowledge to build up the

Bayesian network structure representing the

domain knowledge. We can integrate knowledge

stored in different Bayesian networks BNi

through knowledge fusion. Researchers

differentiate the aspects competing,

complementary and cooperative knowledge

fusion.

To merge different Bayesian networks (for

example BN1 and BN2) we must first determine a

measure for the approximation quality. A

suitable measure is the Kullback-Leibler

divergence between Bayesian network structures

like BN1 and BN2. The Kullback-Leibler

divergence [15] expresses the difference or

distance between two probability distributions.

Given the probability distributions p and q

define KL(p,q) as follows:

 f^��, D� = � ��$�%&') ��$�D�$�. (10)

The Kullback-Leibler divergence is obviously

not symmetric and can also be verbalised using

the cross entropy H(p,q) as follows:

 f^��, D� = − � ��$�%&') D�$�
+ � ��$�%&') ��$�

 = g��, D� − g���.
(11)

The KL divergence values are not negative with

KL(p,q) = 0 if and only if p=q.

Competing fusion includes combined expert

knowledge from different fields like medical,

financial or engineering problem scenarios.

Each expert can generate a case database with

embedded and not obvious inferable conditional

probability table settings and network structures.

The Bayesian network learning algorithm

introduced in section 3 delivers Bayesian

networks for each expert to fuse via sampling or

via LinOP aggregation.

-98.650,0

-98.550,0

-98.450,0

-98.350,0

-98.250,0

-98.150,0

-98.050,0

-97.950,0

-97.850,0

-97.750,0

-97.650,0

1 2 3 4 5 6 7 8 9 10
Lo

g
S

co
re

 M
D

L

Look Ahead Steps

Greedy Hill Climbing LAGD (# good operations: 2)

Proceedings of IPMU’08 383

Competing fusion via sampling:

1. Synthesize for each expert network a

case database using a Monte Carlo

technique.

2. Aggregate the expert case databases.

3. Learn the aggregated Bayesian network

structure based on the case database

determined in 2. using an automatic

learning algorithm.

Figure 5: Sampling aggregation results with

Kullback-Leibler divergence

The ALARM network [13] was splitted in two

disjoint case databases based on a Monte Carlo

technique named Probabilistic Logic Sampling.

The respective Bayesian networks BN1 and BN2

were learned with LAGD. According to the

described sampling algorithm the Bayesian

network Sampl.-Aggr. was generated. The

number of samples was varied between 200 and

20000. Results are illustrated in figure 5.

The use of Monte Carlo techniques and the

hereby induced noise may be avoided by

applying an aggregation operator for a common

unified probability distribution. The aggregation

of L expert probability distributions p1,…,pL

using the LinOP operator [16] leads to the

following algorithm:

1. Aggregate the probability distributions

p1,…,pL of L Bayesian networks using the

LinOP operator for a common probability

distribution

�∗ = � i�∑ i#j#@/
j

�@/ �� , (12)

 with LinOP

^G!U� �i/, �/, … , ij , �j� = � i���
j

�@/ . (13)

2. Learn the aggregated Bayesian network with

a local score metric based learning

algorithm using p
*
.

The ALARM network results using competing

fusion via LinOP aggregation demonstrates the

following figure 6 [18]:

Figure 6: LinOP aggregation results with

Kullback-Leibler divergence

When comparing sampling aggregation to

LinOP aggregation in the case of small sample

sizes (less than 2000) the results show that

LinOP aggregation clearly outperforms

sampling aggregation. Due to the introduced

noise the aggregated network Samp.-Aggr. has

an even higher Kullback-Leibler divergence

compared to the original Bayesian networks BN1

and BN2. Increasing successively sample sizes

causes in both cases an asymptotical alignment

of Kullback-Leibler divergence of the

aggregated network structure to the optimum.

5 Summary and Future Work

We presented a new local score metrics based

structure learning approach called LAGD Hill

Climbing. The number of look ahead steps and

the number of operations considered for look

ahead are configurable, which spans a whole

class of structure learning algorithms. Both the

time taken for computing and the quality of the

calculated Bayesian network structure may be

tuned by adjusting these parameters.

The test result for the ALARM network using

quality measures like LogScore AIC, Bayes and

MDL clarifies the advantages of LAGD in

regard to the achievable network quality. LAGD

is fully integrated in the Waikato Environment

for Knowledge Analysis and may be

downloaded via the WEKA website. In the

future, the usage of a generalized structure

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

200 2000 10000 20000

K
u

ll
b

a
c
k
-L

e
ib

le
r

D
iv

e
rg

e
n

c
e

Samples

BN 1

BN 2

Samp.-Aggr.

OPT

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

200 2000 10000 20000

K
u

ll
b

a
c
k
-L

e
ib

le
r

D
iv

e
rg

e
n

c
e

Samples

BN 1

BN 2

LinOP-Aggr.

OPT

384 Proceedings of IPMU’08

learning approach including dynamic

interdependencies between look ahead steps and

number of good operations is intended.

LAGD hill climbing may be applied in the field

of mechanical engineering and especially

product lifecyle management to learn from

existing condition monitoring data and reveal

relationships between sensor data,

environmental parameters and failure events. In

this context competing fusion improves the

quality of aggregated knowledge models based

on distributed knowledge sources. Aggregation

and fusion methods like sampling aggregation

and LinOP aggregation make the generated

condition monitoring knowledge collected in the

product use phase from various customers

within a feedback cycle usable for product

development and help to improve the next

generation of a given product, which is topic of

another paper [19].

References

[1] L. Ru-qian (2003). Knowledge Science and

Computation Science. Tsighua University Press,

Beijing, China.

[2] A.D. Preece, K.Y. Hui (2000). The Kraft

Architecture for Knowledge Fusion and

Transformation. In Knowledge Based Systems,

volume 13, pages 113-120.

[3] A. Holland (2004). A Bayesian Approach to Model

Uncertainty in Network Balanced Score Cards. In

Proceedings of the 10th International Conference on

Soft Computing (Mendel Conference), Brno, Czech

Republic, pages 134-138.

[4] G.D. Kleiter (1992). Bayesian Diagnosis in Expert

Systems. In Artificial Intelligence, volume 54, pages

1-32.

[5] S. Russel, P. Norvig (2003). Artificial Intelligence. A

Modern Approach. Prentice Hall, New Jersey, USA.

[6] D. Heckerman (1995). A Tutorial on Learning

Bayesian Networks. In Technical Report, MSR-TR-

95-06, Microsoft Research, USA.

[7] P. Krause (1996). Learning Probabilistic Networks.

In Technical Report, Philips Research Laboratories,

United Kingdom.

[8] C. Borgelt, R. Kruse (2002). Graphical Models.

Methods for Data Analysis and Mining. John Wiley

& Sons, New York, USA.

[9] J. Pearl (1988). Probabilistic Reasoning in Intelligent

Systems. Morgan Kaufmann, San Francisco, USA.

[10] F.V. Jensen (2001). Bayesian Networks and Decision

Graphs. Statistics for Engineering and Information

Science, Springer-Verlag, Berlin Heidelberg New

York.

[11] C. Borgelt (2000). Data Mining with Graphical

Models. Dissertation, University of Magdeburg,

Germany.

[12] G. Grimmett, D. Stirzaker (2004). Probability and

Random Processes. 3rd Edition, Oxford University

Press, UK.

[13] I.A. Beinlich, H.J. Suermondt, R.M. Chavez, G.F.

Chooper (1989). The ALARM Monitoring System. A

Case Study with two Probabilistic Inference

Techniques for Belief Networks. In Proceedings of

the Second European Conference on Artificial

Intelligence in Medical Care, pages 247-256.

[14] M. Henrion (1988). Propagating Uncertainty in

Bayesian Networks by Probabilistic Logic Sampling.

In Uncertainty in Artificial Intelligence 2, pages 149-

163, North-Holland.

[15] L.C. van der Gaag, S. Renooij (2001). On the

evaluation of Probabilistic Networks. In Proceedings

of the 8th Conference on Artificial Intelligence in

Medicine, Lecture Notes in Computer Science,

volume 2101, pages 457-461, Springer-Verlag,

Berlin Heidelberg New York.

[16] M. Pradhan (1997). Focussing Attention in Anytime

Decision Making. PhD thesis, Section on Medical

Informatics, Stanford University, USA.

[17] I.H. Witten, E. Frank (2005). Data Mining: Practical

machine learning tools and techniques. 2nd Edition,

Morgan Kaufmann, San Francisco.

[18] P. Maynard-Reid II, U. Chajewska (2001).

Aggregating Learned Probabilistic Beliefs. In

Proceedings of the 17th Conference on Uncertainty

in Artificial Intelligence, pages 354-361.

[19] M. Abramovici, M. Fathi, A. Holland, M. Neubach

(2008). Integration of Product Use Information into

PLM. In Proceedings of the 15th CIRP International

Conference on Life Cycle Engineering (LCE 2008),

Sydney, Australia.

Proceedings of IPMU’08 385

