
BeliefNet Tool : An Evidential Network Toolbox for Matlab

Walid Trabelsi
LARODEC-ISG

ISG Tunis, Tunisia
wsacraf@gmail.com

Boutheina Ben Yaghlane
LARODEC-ISG

IHEC Carthage, Tunisia
boutheina.yaghlane@ihec.rnu.tn

Abstract

The BeliefNet Tool is a new engine
to perform local computations
efficiently and conveniently in
both undirected and directed ev-
idential networks (i.e. networks
using belief functions theory [10],
[12]). BeliefNet Tool is written
in Matlab and it implements the
basic algorithms as well as the main
operations performing inference
of beliefs in evidential networks.
Attention is especially devoted to
present the structures used when
implementing BeliefNet Tool.

Keywords: Belief functions, Con-
ditional belief functions, Directed
evidential network, Binary join tree.

1 Introduction

We can appreciate the great number of appli-
cations dealing with the field of quantitative
reasoning and decision under uncertainty with
the help of Bayesian networks [9]. The emer-
gence of such applications is expected since
inconsistent, inaccurate and uncertain infor-
mation represent a real-life aspect of human
beings. The massive use of Bayesian networks
is justified by their acceptable computational
complexity. This deployment of Bayesian net-
works can not hide their inadequacy for some
situations involving ignorance. In contrary,
representing ignorance is possible with the

Dempster-Shafer (DS)’s belief functions (BF)
theory but with higher computational com-
plexity. So, tools dealing with DS’s theory
will be of great help for researchers in this
field.

This paper describes one attempt to build
such tool, called the BeliefNet tool. So the
main goal of this paper is to present the de-
sign and the implementation of BeliefNet Tool
dealing with inference in both undirected and
directed evidential networks (EN).

The remain of this paper is organized as fol-
lows. Section 2 presents the graphical rep-
resentation of EN. Section 3 describes briefly
the algorithms performing exact inference in
both singly-connected and multi-connected
EN. Section 4 details the features and the de-
sign of BeliefNet tool by presenting the struc-
tures used in this tool. Section 5 details the
basic operations for inference in EN. Section 6
presents practical issues of BeliefNet Tool. Fi-
nally, we conclude with some future perspec-
tives.

2 Evidential Networks
Representation

A graphical model is considered as a picture
that provides an intuitive description of the
problem. It is considered also as a mathe-
matical structure that specifies the different
connections between the variables of a prob-
lem transforming a complex problem into an
easy and clear representation. An evidential
network (EN) is a graphical model quantified
by the means of belief functions (BF). There

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 362–369

Torremolinos (Málaga), June 22–27, 2008

are two kinds of EN: undirected EN and di-
rected EN. The parametrization of each one
will be discussed in the following sections.

2.1 Parametrization of Directed
Models

A directed model can be parameterized by
specifying the elements of the problem re-
garded as random variables. These variables
are represented explicitly as nodes. The rela-
tions between the specified variables are de-
termined in a mapping set between variables.
Once the qualitative part of the EN is speci-
fied, the quantitative part is specified by the
means of prior and conditional BF distribu-
tions, i.e, the distribution bel(Xi|Pai), where
Xi represents node i and Pai are its parents.
These distributions will be endowed to con-
cerned nodes. The variables can be repre-
sented as integers. The distributions can be
represented as tables. These tables are sim-
ple to manipulate but have the disadvantage
of requiring a number of parameters that is
exponential with the number of parents.

2.2 Parametrization of Undirected
Models

Undirected graphical models, also known as
Markov networks, are common in the physics
and computer vision communities. The el-
ements of the problem are sets of variables.
Every set of variables is represented as an or-
dered sequence of variables in a clique. The
distributions are quantified through joint BF
and they are named clique potentials. If all
variables are discrete these potentials can be
represented as tables. If a clique contains n
binary variables it requires 2n parameters (a
large number of parameters).

3 Exact Inference in Evidential
Networks

In [13], the author introduces the notion
of directed EN with conditional belief func-
tions (CBF) in which two rules are proposed,
namely the Generalized Bayesian Theorem
(GBT) and the Disjunctive Rule of Combi-

nation (DRC). In [1], the author proposed
two algorithms for propagation in singly-
connected EN1 based on these rules:

• The first one is an extension of Mel-
louli’s algorithm (already proposed for
undirected EN [7]) for directed EN. The
main idea of this algorithm is to repre-
sent concerned variables as nodes con-
nected by links (or edges) according to
(in)dependence relations in the initial
structure. The edges represent ”rail-
ways” when nodes communicate with
each other by messages. These mes-
sages are conceived by applying the GBT
and DRC [13] depending on whether the
sender is the child or the parent of the
receiver. This algorithm is based on the
technique of local computations [5].

• The second one is based on Pearl’s al-
gorithm as described in [9] and [8]. It
can be described as two steps: belief ini-
tialization and belief updating doing effi-
cient computations by a message-passing
scheme using the GBT and the DRC
rules.

For multi-connected EN, two algorithms can
be found in the literature:

• The first one uses a binary join tree
(BJT) for representing and inferring be-
liefs in networks (using joint belief func-
tions) [11]. The BJT is constructed by a
process having as a main idea the fusion
algorithm: a successive variable elimi-
nation. The belief propagation scheme
through the BJT involves two phase-
propagation, namely a propagation-up
and a propagation-down.

• The second one proposes a modified bi-
nary join tree (MBJT) (maintaining con-
ditional belief functions) [2]. The basic
idea is to transform the initial directed
EN into a BJT in which some modifica-
tions are proposed. The obtained graphi-
cal structure, called a MBJT, emphasizes

1Also called polytrees, they are graphs where no
more than one (undirected) path connects every two
nodes.

Proceedings of IPMU’08 363

explicitly the conditional relations. In or-
der to avoid the computations of joint be-
lief functions as required when using the
fusion algorithm in BJT, the DRC and
the GBT are used for making inference
efficiently in the MBJT.

All these algorithms have been implemented
in our BeliefNet Tool.

4 Implementation Aspects

In the following, we will present the imple-
mentation choices in order to perform efficient
computations of marginals in directed and
undirected EN. All operations executed dur-
ing inference process (combination, marginal-
ization, etc) deal with mass functions. When
we say mass functions, we invoke focal sets of
a mass function and their masses. Inappropri-
ate representation of focal sets provokes extra
computations and needs much more memory
space in a computer. When BF theory is con-
cerned, the loss of time and memory space are
much more heavy than when probability the-
ory is concerned. Indeed, contrary to proba-
bility theory which need to store and assign a
mass to one state of a system (i.e. singleton),
the BF theory stores and assigns one mass to
more than one state of the system.

4.1 Representing Mass Functions

Mass functions are generally described as fol-
lows:

m : 2Θ −→ [0, 1]

A −→ v

A mass function m associates a mass value v
to a focal element A. Θ is the frame of dis-
cernment and A is a subset of Θ.

[6] showed that a mass function is completely
determined by its focal sets and their relative
masses.

4.2 Representing Focal Sets

[3] showed that focal elements represent the
core supporting belief masses. Generally, they
are regarded as sets of variable configurations.

Basic operations on focal sets are projection
and extension. These operations manipulate
intensively focal sets during the inference pro-
cess. This justifies the influence of focal sets
encoding on the performance of the inference
process.

After making the comparison between differ-
ent representations (bitmasks, binary repre-
sentation, disjunctive normal forms, etc), [6]
argues that the binary representation of fo-
cal sets is the best choice to perform efficient
computations with BF.

Therefore, our implementation of the propa-
gation framework will adopt the binary rep-
resentation.

4.2.1 Binary Representation

A focal element, as a set of configurations, is
represented by a bitset. Each bit of the bitset
corresponds to a configuration: if the bit is
set to 1 then the configuration is present in
the focal element else (i.e. the bit is set to 0)
the configuration is not present in the focal
element. This supposes a global ordering of
the involved variables.

Suppose that we have a mass function S
on domain D = {x1, ..., xn}. Let Θxi =
{xi1, ..., xin} be the set of values of the vari-
able xi. A configuration on ΘD is a vector
(v1, ..., vn) such that vi is a value from Θxi .
A focal set F of a mass function S is a sub-
set of ΘD; in other words, F represents a
set of configurations of values of ΘD. Let
C = {c1, ..., cm} be the set of all possible con-
figurations on D.

|C| =
∏

i=1:n(Θxi), D = {x1, ..., xn} and xi

has its values in Θxi . Therefore, F can be
represented by a bit vector VF such that:

VF =[b1 b2..., bm] where {bi = 1 if ci ∈
F , otherwise bi = 0}

364 Proceedings of IPMU’08

Example 1 Binary representation of fo-
cal sets.

Suppose D = {x1, x2, x3}.
Let Θx1 = {x11, x12} , Θx2 = {x21, x22, x23}
and Θx3 = {x31, x32, x33} be the sets of values
of x1 , x2 and x3, respectively.
F1 = {(x11, x22, x31), (x11, x22, x33)}
F2 = {(x11, x21, x32)}
C = {(x11, x21, x31); (x11, x21, x32); (x11, x21, x33)
; (x11, x22, x31); (x11, x22, x32); (x11, x22, x33)
; (x11, x23, x31); (x11, x23, x32); (x11, x23, x33);
(x12, x21, x31); (x12, x21, x32); (x12, x21, x33);
(x12, x22, x31); (x12, x22, x32); (x12, x22, x33);
(x12, x23, x31); (x12, x23, x32); (x12, x23, x33); }

|C| = 2 ∗ 3 ∗ 3 = 18 configurations

According to binary representation, F1 and
F2 are represented by the two following bit
vectors:
VF1 = [0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0]

VF2 = [0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] .

Notice that we store only focal sets with pos-
itive masses (pairs (Fi,mi) where Fi is a fo-
cal element of ΘD and mi is the correspond-
ing positive belief mass (mi > 0)) because if
we store all possible focal sets of ΘD, the bi-
nary representation will not be efficient as we
store a great number of records which will not
be involved in computations. For example if
we have m = 18 configurations as seen in
the previous example, then we have to store
218 = 262144 pairs of (Fi,mi).

4.3 Representing Potentials

The most high level structures manipulated
in DS framework are potentials. They store
focal elements and their corresponding belief
masses (Fi,mi). During the inference process,
combination and marginalization make heavy
use of potentials which explains the influence
of the potential representation on computa-
tions.

In [6], the author exposed different structures.
Potentials can be represented by lists. Ma-
nipulating records in this list costs O(n2) ele-
mentary operations where n is the size of the
bitset. Another structure was described in [3],
called the hash table, which is a data structure

used to store pairs (key, value). It provides a
hash function to navigate, access, modify ef-
ficiently a value by use of the key. The ad-
vantage of this data structure is that the key
can be an element of the information stored
which makes easy and intuitive the manip-
ulation of stored information. Manipulating
records in this table costs O(n2/s) elemen-
tary operations where n is the size of the bit-
set and s is the size of the table (the number
of records).

The operations of coarsening and aggrega-
tion of knowledge during inference process
make heavy use of computations and memory
space when manipulating mass functions. Af-
ter performing tests, we chosen the structure
of hash table as structure to store the mass
functions (or potentials).

4.4 Representing Join Tree

When BF theory is concerned, the join tree
is regarded as a number of nodes connected
by the means of joint belief functions (for the
BJT) or conditional belief functions (for the
MBJT). Every node is a cluster of variables.
Variables are represented by integers. Sets
of variables are represented by ordered vari-
ables. Thus, the mass function will have focal
sets defined on ordered domains. The join
tree (BJT or MBJT) is represented as a map-
ping set between ordered sequences of vari-
ables. Every edge in the join tree is repre-
sented by an element among the mapping set.
This will improve the efficiency of the basic
operations.

5 Basic Operations for Belief
Propagation

The basic operations for belief functions the-
ory are combination and marginalization.
These two operations invoke two other oper-
ations: extension and projection. We should
notice that the complexity associated to these
operations depends on the representation of
potentials. The complexity of operations will
be compatible with the hash table.

Proceedings of IPMU’08 365

Combination: (bel1, bel2) → bel1 ⊕ bel2.

If bel1 and bel2 are potentials on D1 and D2

respectively, bel1 ⊕ bel2 is a potential on D =
D1 ∪D2.

domain(bel1 ⊕ bel2) = domain(D1) ∪
domain(D2). Let D = D1 ∪ D2, F1 and
F2 be two focal sets defined on D1 and
D2 respectively and m1 and m2 are the
corresponding masses. The mass m of a focal
set F equivalent to the intersection of the
extensions of F1 and F2 is obtained such that:

m =
∑

F
↑D
1 ∩F

↑D
2 =F

{m1 ∗m2} (1)

Marginalization: (bel, D′) → bel↓D.

Let F be a focal set defined on ΘD. If bel is
a potential for D and D′ ⊆ D, then bel′ is a
potential for D′. Therefore domain (bel′) =
D′. Let m be the mass of F and m′ be the
mass of the focal set F ′ in the new potential
bel′.

m′ =
∑

F↓D′=F ′
{m} (2)

When we observe the formulas (1) and
(2), we understand that the operations of
extension and projection are the key opera-
tions. So, the mass functions representation
is determined in order to make these two
operations more efficient. In the following,
we will draw up the corresponding algorithms.

Projection: To project a focal set F is
to change the domain d on which this focal
set is defined. The new domain D will deter-
mine the new configurations (newconfig) of
the new focal set (Fres). The algorithm nav-
igates through the configurations g of F and
eliminates the values of eliminated variables
found in {D − d}. Thus, every configuration
g will see a number of its elements deleted
using the function Truncate. The function
Projection returns the new configurations in
(Fres) (see example 2).

Complexity of projection: O(n) where n
is the number of variables to eliminate.

Projection(F , D)
Fres ← ∅
d ← Domain(F)
If d = D

Fres ← F
else

focus ← d ∩D
For each configuration g ∈ F

newconfig ← Truncate(g, focus)
Fres ∪ (newconfig)

End For
End If
return(Fres)

Extension: During the extension process,
the algorithm adopts the same approach as in
the Projection function, but when extending a
focal set F we will add a number of elements
to every configuration g. Therefore, g may
be extended into more than one configuration
using the function Extend according to the
values of variables found in extent (d ∩ D)
(see example 2).

Extension(F , D)
Fres ← ∅
d ← Domain(F)
If d = D

Fres ← F
else

extent ← d ∩D
For each configuration g ∈ F

newconfig ← Extend(g, extent)
Fres ∪ (newconfig)

End For
End If
return(Fres)

Complexity of extension: O(n) where n is
the number of variables to add.

We note that for the two operations projec-
tion and extension, we verify whether the do-
main d of the focal set F to project or to ex-
tend is equal or not to the destination domain
D. This will avoid extra effort since the focal
set F will remain the same.

We notice that the function Extend and Trun-
cate are built-in function in Matlab.

366 Proceedings of IPMU’08

Example 2 Extension and Projection of
focal sets.
Let D = {x1, x2, x3}. Let Θx1 = {x11, x12} , Θx2 =
{x21, x22, x23} and Θx3 = {x31, x32, x33} be the sets of
values of x1 , x2 and x3 respectively. Let F1 and F2 be
two focal sets defined respectively on D1 = {x1, x2}
and D2 = D.

F1 = {(x11, x22)}
F2 = {(x11, x21, x31); (x12, x21, x31); (x12, x22, x33)}
Suppose we will extend F1 to be defined on D, and
project F2 to be defined on D3 = {x2, x3}.
Let c1 = (x11, x22) be a configuration of F1.
So, extent=x3 defined on Θx3 = {x31, x32, x33}
So, c′1 ← Extend(c1, extent) thus F ↑D

1 =
{(x11, x22, x31); (x11, x22, x32); (x11, x22, x33)}. We de-
duce that the function Extend expanded c1 into 3 con-
figurations corresponding to the 3 values of x3.

F ↓D3
2 = {(x21, x31); (x22, x33)}. The function Trun-

cate eliminates the values relative to focus=x1 from

configurations in F2.

We notice that the unique configuration of
the focal set F1 is extended into three new
configurations because the variable added to
the old domain (x3) has three values. The
number of configurations in the focal set F2

is reduced from three to two since we elimi-
nated the instances (or values) of the elimi-
nated variables (x1) from the old configura-
tions. After elimination, we found duplicate
configurations which we eliminate in the new
focal set F ↓D3

2 . Once we have presented the
core of marginalization and combination, we
are able to set the corresponding algorithms.

Let bel1 and bel2 be two potentials defined
on D1 and D2 respectively, and D = D1 ∪
D2. For every potential (bel1 and bel2),
we navigate through the pairs (F, m) to ex-
tend the focal set F into Fres and puts
the new pair (Fres,m). Therefore we ob-
tain two potentials in which the focal sets
are defined on the same domain D. Then,
we will put the intersection between every
focal set Fres1 in the potential V res1 and
Fres2 in the potential V res2 into a new focal
set (newfocalset) and assign to it the prod-
uct of the two corresponding masses m1 and
m2. The pair (newfocalset, m1∗m2) is added
to a potential V inter1. Since many couples
Fres1 and Fres2 may have the same intersec-
tions, there will be similar focal sets in pairs

(newfocalset, m1 ∗ m2) into V inter1. This
implies the use of a regrouping function called
Regroup (see below). Therefore we obtain a
new potential V inter2. This potential will
not be the result of the combination of the
two initial potentials bel1 and bel2 if there was
an empty intersection in newfocalset because
we should call the Normalize function which
will normalize all pairs into V inter2 (see be-
low). As a result we obtain belres.

Combine(bel1, bel2)
V res1 ← ∅
If D1 = D

V res1 ← bel1
else

For each pair(F1,m1) ∈ bel1
Fres1 ← Extension(F1, D)
V res1 ∪ (Fres1,m1)

End For
End If
V res2 ← ∅
If D2 = D

V res2 ← bel2
For each pair(F2,m2) ∈ bel2

Fres2 ← Extension(F2, D)
V res2 ∪ (Fres2,m2)

End For
End If
V inter ← ∅
For each pair(Fres1,m11) ∈ V res1

For each pair(Fres2,m22) ∈ V res2

newfocalset ← Fres1 ∩ Fres2

If newfocalset 6= ∅
V inter1 ∪ (newfocalset, (m1 ∗m2))

else
emptym ← emptym + (m1 ∗m2)

End If
End For

End For
belres ← ∅
If emptym > 0

V inter2 ← Regroup(V inter1)
belres ← Normalize(V inter2, emptym)

else
belres ← Regroup(V inter1)

End If
return(belres)

Complexity of combination : O((n ∗m)2/(s ∗ t))

Proceedings of IPMU’08 367

elementary operations where n and m are re-
spectively the sizes of the bitset stored in po-
tentials bel1 and bel2 , and s and t are the
sizes of bel1 and bel2 (the number of records).

The Regroup function will regroup the masses
m2 of focal sets F2 which have the same con-
figurations. Indeed it will navigate through
the pairs (F1, m1) of the potential bel and
sums the masses of focal sets having the
same configurations into summass. After
that summass is assigned to a one copy
of the similar focal sets to construct a pair
(F1, summass) which will be added to the re-
sult potential belres.

Regroup(bel)
belres ← ∅
For each pair(F1, m1) ∈ bel

summass ← 0
For each pair(F2,m2) ∈ bel

If F1 = F2

summass ← summass + m2

End If
End For

belres ∪ (F1, summass)
End For
return(belres)

Complexity of regrouping : O(n2/s) ele-
mentary operations where n is the size of the
bitset and s is the size of the potential bel (the
number of records).

The function Normalize(P) normalizes the
potential P according to the closed world as-
sumption [12]. It redistributes the conflict
mass associated to the empty focal element
after empty intersections during combination.

Normalize(bel,emptym)
belres ← ∅
For each pair(F, m) ∈ bel

m′ ← m/(1− emptym)
belres ∪ (F, m′)

End For
return(belres)

Complexity of normalization : O(n2/s)
elementary operations where n is the size of

the bitset and s is the size of the potential bel
(the number of records).

The marginalization of a potential bel on a
domain D concerns only the focal sets of bel.
Indeed, the function Marginalize will navi-
gate through the focal sets F in pairs (F, m)
of bel and will project F on the domain D to
obtain F ′. The new focal set F ′ will have as
a mass the same as the one of F and the new
pair (F ′,m) is added to the result potential
belres.

Marginalize(bel , D)
belres ← ∅
For each pair(F,m) ∈ bel

F ′ ← Projection(F, D)
belres ∪ (F ′,m)

End For
return(belres)

Complexity of marginalization : O(n2/s)
elementary operations where n is the size of
the bitset and s is the size of the potential bel
(the number of records).

6 Software Issues

Aside from the various theoretical issues we
have discussed above, there are some practi-
cal issues which make the difference between
software packages.

6.1 Relevant attributes of BeliefNet
Tool

Target people: All available packages are
free for academic use.

Availability: The first version of BeliefNet
Tool will be released soon and will be dis-
tributed under the GNU/GPL licence.

Used language: Matlab (see section 6.2)

Extensibility: Since BeliefNet Tool aims at
academic use it is open to new algorithms
and new representations. For instance, we
can add approximate algorithms and try to
experiment new structures to hold the distri-
butions.

368 Proceedings of IPMU’08

API (application program interface)
availability: The new version of Matlab per-
mits to integrate our packages into other ap-
plications. So, BeliefNet Tool can be used as
an autonomous program or as a module in an
other application.

6.2 Why Matlab ?

Matlab is a high-performance language for
technical computing. It integrates computa-
tion, visualization, and programming in an
easy-to-use environment where problems and
solutions are expressed in familiar mathemati-
cal notation. It provides a good debugger and
profiler which make implementation more ef-
ficient. Its basic data is an array that doesn’t
require dimensioning. This allows us to solve
many technical computing problems, espe-
cially those with matrix and vector formula-
tions.

Matlab is a high-level language which lib-
erates the mind from details like memory
management, and enables one to write clear
and concise code. Nowadays, Matlab is the
most used language for a high productivity
research, development, and analysis. One of
the incontestable advantages of this language
is its family of additional application-specific
solutions called toolboxes.

7 Conclusion

This paper has introduced, BeliefNet Tool, a
new DS engine. It described the most sig-
nificant algorithms of belief propagation in
EN. In addition, this paper provided suit-
able structures and implementation aspects
adopted when conceiving BeliefNet Tool.

To make BeliefNet Tool more useful we plan
to implement approximate inference algo-
rithms [4]. In the near future we will integrate
the inference algorithms of [14]. We are also
interested in making the graphical user inter-
face more interactive and easy to use such as
create graphs interactively.

References

[1] Ben Yaghlane, B. (2002). Uncertainty represen-
tation and reasoning in directed evidential net-
works. PhD thesis, Institut Supérieur de Gestion
de Tunis Tunisia.

[2] Ben Yaghlane, B. and Mellouli, K. (2006). Belief
functions propagation in directed evidential net-
works. In Proceedings of IPMU’2006, Informa-
tion Processing and Management of Uncertainty
in Knowledge-based Systems, pages 1451–1458,
Paris, France.

[3] Haenni, R. and Lehmann, N. (2001). Implement-
ing belief function computations. Technical re-
port, Department of Informatics, University of
Fribourg.

[4] Haenni, R. and Lehmann, N. (2002). Resource
bounded and anytime approximation of belief
function computations. International Journal of
Approximate Reasoning, 31:103–154.

[5] Lauritzen, S. and Shenoy, P. (1996). Computing
marginals using local computation. Technical Re-
port 267, Kansas University, School of Business.

[6] Lehmann, N. (2001). Argumentation systems and
belief functions. PhD thesis, Institut fur Infor-
matik, Fribourg.

[7] Mellouli, K. (1987). On the propagation of beliefs
in networks using the Dempster-Shafer theory of
evidence. PhD thesis, School of Business, Univer-
sity of Kansas, Lawrence, KS.

[8] Neapolitan, R. E. (1990). Probabilistic reasoning
in expert systems: Theory and algorithms. Willey
Interscience, New York, NY.

[9] Pearl, J. (1988). Probabilistic reasoning in intel-
ligent systems: networks of plausible inference.
Morgan Kaufmann Pub. San Mateo, Ca, USA.

[10] Shafer, G. (1976). A mathematical theory of evi-
dence. Princeton Univ. Press. Princeton, NJ.

[11] Shenoy, P. P. (1997). Binary join tree. In-
ternational Journal of Approximate Reasoning,
1(2):250–256.

[12] Smets, P. (1978). Un modèle mathématico-
statistique simulant le processus du diagnostic
médical. PhD thesis, Université Libre de Brux-
elles, (available through University Microlm In-
ternational, 30–32 Mortimer street, London W1N
7RA, thesis 80–70,003).

[13] Smets, P. (1993). Belief functions: the disjunctive
rule of combination and the generalized Bayesian
theorem. International Journal of Approximate
Reasoning, 9:1–35.

[14] Xu, H. and Smets, P. (1994). Evidential reason-
ing with conditional belief functions. In Hecker-
man, D., Poole, D., and Lopez De Mantaras, R.,
editors, Uncertainty in Artificial Intelligence 94,
pages 598–606. Morgan Kaufmann, San Mateo,
Ca.

Proceedings of IPMU’08 369

